Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 820
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334327

RESUMO

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Assuntos
Macrófagos , Doença de Newcastle , Vírus da Doença de Newcastle , Transdução de Sinais , Internalização do Vírus , Animais , Endocitose , Gangliosídeos/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
2.
J Virol ; 98(3): e0189723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411946

RESUMO

Ferroptosis, a form of programmed cell death characterized by iron-dependent lipid peroxidation, has recently gained considerable attention in the field of cancer therapy. There is significant crosstalk between ferroptosis and several classical signaling pathways, such as the Hippo pathway, which suppresses abnormal growth and is frequently aberrant in tumor tissues. Yes-associated protein 1 (YAP), the core effector molecule of the Hippo pathway, is abnormally expressed and activated in a variety of malignant tumor tissues. We previously proved that the oncolytic Newcastle disease virus (NDV) activated ferroptosis to kill tumor cells. NDV has been used in tumor therapy; however, its oncolytic mechanism is not completely understood. In this study, we demonstrated that NDV exacerbated ferroptosis in tumor cells by inducing ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Blocking YAP degradation suppressed NDV-induced ferroptosis by suppressing the expression of Zrt/Irt-like protein 14 (ZIP14), a metal ion transporter that regulates iron uptake. These findings demonstrate that NDV exacerbated ferroptosis in tumor cells by inducing YAP degradation. Our study provides new insights into the mechanism of NDV-induced ferroptosis and highlights the critical role that oncolytic viruses play in the treatment of drug-resistant cancers.IMPORTANCEThe oncolytic Newcastle disease virus (NDV) is being developed for use in cancer treatment; however, its oncolytic mechanism is still not completely understood. The Hippo pathway, which is a tumor suppressor pathway, is frequently dysregulated in tumor tissues due to aberrant yes-associated protein 1 (YAP) activation. In this study, we have demonstrated that NDV degrades YAP to induce ferroptosis and promote virus replication in tumor cells. Notably, NDV was found to induce ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Our study reveals a new mechanism by which NDV induces ferroptosis and provides new insights into NDV as an oncolytic agent for cancer treatment.


Assuntos
Ferroptose , Neoplasias , Vírus da Doença de Newcastle , Terapia Viral Oncolítica , Proteínas de Sinalização YAP , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Ferro , Neoplasias/terapia , Vírus Oncolíticos/fisiologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases , Ubiquitinas
3.
J Virol ; : e0132224, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254313

RESUMO

The phosphatidyl-inositol 3-kinase/serine-threonine kinase (PI3K/ AKT) signaling pathway constitutes a classical phosphorylation cascade that integrates tyrosine, lipid, and serine acid-threonine phosphorylation, affecting cell function. The pathway is vulnerable to viral infection. Newcastle disease virus (NDV) poses a significant threat to the global poultry industry; however, its mechanism of early viral cell invasion and pathogenesis remain unclear. Previous in vivo and in vitro studies have shown that NDV infection activates PI3K/AKT signaling; however, it remains unclear whether NDV establishes infection through endocytosis regulated by this pathway. This study aimed to examine whether different genotypes of NDV strains could activate the PI3K/AKT signaling pathway within 2 h of in vitro infection. This activation, which relies on PI3K phosphorylation, remains unaffected by the phosphorylation-phosphatase and tensin homolog/phosphatase and tensin homolog (p-PTEN/PTEN) signaling pathway. Moreover, inhibition of PI3K activity impedes NDV replication. Additionally, interfering with the PI3K regulatory subunit p85 has no significant effect on NDV replication. Conversely, the tyrosine kinase activity upstream of PI3K can influence AKT activation and viral replication, particularly through vascular endothelial growth factor receptor 2 (VEGFR2). Additionally, NDV F protein primarily mediates PI3K and AKT phosphorylation to activate the PI3K/AKT signaling pathway. NDV F and VEGFR2 proteins, along with the PI3K p85α subunit, interact and co-localize at the cell membrane. NDV-induced PI3K/AKT signaling pathway activation impacts clathrin-mediated endocytosis, with VEGFR2 playing a pivotal role. In conclusion, this study shows that NDV infection is established early through F protein binding to VEGFR2, activating the PI3K/AKT signaling pathway and inducing clathrin-mediated endocytosis, supporting infection prevention and control measures. IMPORTANCE: Newcastle disease virus (NDV) is a threat to the global poultry industry; however, the mechanisms of NDV infection remain unclear. NDV affects the phosphatidyl-inositol 3-kinase/serine-threonine kinase (PI3K/ AKT) signaling pathway, requiring endocytosis for successful infection. Based on previous studies, we identified a close correlation between NDV infection and replication and the PI3K/AKT signaling pathway activity. This study examined the molecular mechanisms through which NDV activates the PI3K/AKT signaling pathway to regulate endocytosis and facilitate infection. This study showed that early-stage in vitro NDV infection activated the PI3K/AKT signaling pathway, enhancing clathrin-mediated endocytosis, crucial for infection onset. Notably, this process involves the interaction between NDV F protein and the vascular endothelial growth factor receptor 2 tyrosine kinase, leading to the subsequent binding and phosphorylation of the PI3K p85α regulatory subunit. This activation primes PI3K, initiating a cascade that promotes clathrin-mediated endocytosis. Our findings elucidate how NDV capitalizes on the PI3K/AKT signaling pathway to establish infection through endocytosis.

4.
FASEB J ; 38(15): e23856, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092913

RESUMO

Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.


Assuntos
Eritrócitos , Ácido N-Acetilneuramínico , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/metabolismo , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Animais , Ácido N-Acetilneuramínico/metabolismo , Humanos , Plasmodium yoelii/metabolismo , Camundongos , Proteína HN/metabolismo , Malária/parasitologia , Malária/metabolismo
5.
J Gen Virol ; 105(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39207120

RESUMO

The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.


Assuntos
Aminoaciltransferases , Vírus da Doença de Newcastle , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , Proteólise , Animais , Embrião de Galinha , Cricetinae , Humanos , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Arginina/metabolismo , Linhagem Celular , Proteína HN/metabolismo , Proteína HN/genética , Interações Hospedeiro-Patógeno , Doença de Newcastle/virologia , Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376490

RESUMO

Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.


Assuntos
Vírus da Doença de Newcastle , Sirtuínas , Animais , NAD , Vírus da Doença de Newcastle/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sirtuínas/genética , Galinhas , Linhagem Celular
7.
J Virol ; 97(3): e0174322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36877044

RESUMO

Type III interferons (IFNLs) have critical roles in the host's innate immune system, also serving as the first line against pathogenic infections of mucosal surfaces. In mammals, several IFNLs have been reported; however, only limited data on the repertoire of IFNLs in avian species is available. Previous studies showed only one member in chicken (chIFNL3). Herein, we identified a novel chicken IFNL for the first time, termed chIFNL3a, which contains 354 bp, and encodes 118 amino acids. The predicted protein is 57.1% amino acid identity with chIFNL. Genetic, evolutionary, and sequence analyses indicated that the new open reading frame (ORF) groups with type III chicken IFNs represent a novel splice variant. Compared to IFNs from different species, the new ORF is clustered within the type III IFNs group. Further study showed that chIFNL3a could activate a panel of IFN-regulated genes and function mediated by the IFNL receptor, and chIFNL3a markedly inhibited the replication of Newcastle disease virus (NDV) and influenza virus in vitro. These data collectively shed light on the repertoire of IFNs in avian species and provide useful information that further elucidate the interaction of the chIFNLs and viral infection of poultry. IMPORTANCE Interferons (IFNs) are critical soluble factors in the immune system, and are composed of 3 types (I, II, and III) that utilize different receptor complexes (IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively). Herein, we identified IFNL from the genomic sequences of chicken and termed it chIFNL3a, located on chromosome 7 of chicken. Phylogenetically clustered with all known types of chicken IFNs, the finding of this IFN is considered a type III IFN. To further evaluate the biological properties of chIFNL3a, the target protein was prepared by the baculovirus expression system (BES), which could markedly inhibit the replication of NDV and influenza viruses. In this study, we uncovered a new interferon lambda splice variant of chicken, termed chIFNL3a, which could inhibit viral replication in cells. Importantly, these novel findings may extend to other viruses, offering a new direction for therapeutic interventions.


Assuntos
Galinhas , Orthomyxoviridae , Animais , Interferon lambda , Antivirais/farmacologia , Interferons/metabolismo , Orthomyxoviridae/metabolismo , Vírus da Doença de Newcastle/metabolismo , Mamíferos
8.
J Virol ; 97(3): e0198422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36877059

RESUMO

The paramyxoviruses represent a large family of human and animal pathogens that cause significant health and economic burdens worldwide. However, there are no available drugs against the virus. ß-carboline alkaloids are a family of naturally occurring and synthetic products with outstanding antiviral activities. Here, we examined the antiviral effect of a series of ß-carboline derivatives against several paramyxoviruses, including Newcastle disease virus (NDV), peste des petits ruminants virus (PPRV), and canine distemper virus (CDV). Among these derivatives, 9-butyl-harmol was identified as an effective antiviral agent against these paramyxoviruses. Further, a genome-wide transcriptome analysis in combination with target validation strategies reveals a unique antiviral mechanism of 9-butyl-harmol through the targeting of GSK-3ß and HSP90ß. On one hand, NDV infection blocks the Wnt/ß-catenin pathway to suppress the host immune response. 9-butyl-harmol targeting GSK-3ß dramatically activates the Wnt/ß-catenin pathway, which results in the boosting of a robust immune response. On the other hand, NDV proliferation depends on the activity of HSP90. The L protein, but not the NP protein or the P protein, is proven to be a client protein of HSP90ß, rather than HSP90α. 9-butyl-harmol targeting HSP90ß decreases the stability of the NDV L protein. Our findings identify 9-butyl-harmol as a potential antiviral agent, provide mechanistic insights into the antiviral mechanism of 9-butyl-harmol, and illustrate the role of ß-catenin and HSP90 during NDV infection. IMPORTANCE Paramyxoviruses cause devastating impacts on health and the economy worldwide. However, there are no suitable drugs with which to counteract the viruses. We determined that 9-butyl-harmol could serve as a potential antiviral agent against paramyxoviruses. Until now, the antiviral mechanism of ß-carboline derivatives against RNA viruses has rarely been studied. Here, we found that 9-butyl-harmol exerts dual mechanisms of antiviral action, with its antiviral activities being mediated by two targets: GSK-3ß and HSP90ß. Correspondingly, the interaction between NDV infection and the Wnt/ß-catenin pathway or HSP90 is demonstrated in this study. Taken together, our findings shed light on the development of antiviral agents against paramyxoviruses, based on the ß-carboline scaffold. These results present mechanistic insights into the polypharmacology of 9-butyl-harmol. Understanding this mechanism also deepens the host-virus interaction and reveals new drug targets for anti-paramyxoviruses.


Assuntos
Antivirais , Doença de Newcastle , Animais , Humanos , Antivirais/farmacologia , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta , Harmina , Vírus da Doença de Newcastle/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo
9.
J Virol ; 97(3): e0001623, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36794935

RESUMO

Viruses require host cell metabolic reprogramming to satisfy their replication demands; however, the mechanism by which the Newcastle disease virus (NDV) remodels nucleotide metabolism to support self-replication remains unknown. In this study, we demonstrate that NDV relies on the oxidative pentose phosphate pathway (oxPPP) and the folate-mediated one-carbon metabolic pathway to support replication. In concert with [1,2-13C2] glucose metabolic flow, NDV used oxPPP to promote pentose phosphate synthesis and to increase antioxidant NADPH production. Metabolic flux experiments using [2,3,3-2H] serine revealed that NDV increased one-carbon (1C) unit synthesis flux through the mitochondrial 1C pathway. Interestingly, methylenetetrahydrofolate dehydrogenase (MTHFD2) was upregulated as a compensatory mechanism for insufficient serine availability. Unexpectedly, direct knockdown of enzymes in the one-carbon metabolic pathway, except for cytosolic MTHFD1, significantly inhibited NDV replication. Specific complementation rescue experiments on small interfering RNA (siRNA)-mediated knockdown further revealed that only a knockdown of MTHFD2 strongly restrained NDV replication and was rescued by formate and extracellular nucleotides. These findings indicated that NDV replication relies on MTHFD2 to maintain nucleotide availability. Notably, nuclear MTHFD2 expression was increased during NDV infection and could represent a pathway by which NDV steals nucleotides from the nucleus. Collectively, these data reveal that NDV replication is regulated by the c-Myc-mediated 1C metabolic pathway and that the mechanism of nucleotide synthesis for viral replication is regulated by MTHFD2. IMPORTANCE Newcastle disease virus (NDV) is a dominant vector for vaccine and gene therapy that accommodates foreign genes well but can only infect mammalian cells that have undergone cancerous transformation. Understanding the remodeling of nucleotide metabolic pathways in host cells by NDV proliferation provides a new perspective for the precise use of NDV as a vector or in antiviral research. In this study, we demonstrated that NDV replication is strictly dependent on pathways involved in redox homeostasis in the nucleotide synthesis pathway, including the oxPPP and the mitochondrial one-carbon pathway. Further investigation revealed the potential involvement of NDV replication-dependent nucleotide availability in promoting MTHFD2 nuclear localization. Our findings highlight the differential dependence of NDV on enzymes for one-carbon metabolism, and the unique mechanism of action of MTHFD2 in viral replication, thereby providing a novel target for antiviral or oncolytic virus therapy.


Assuntos
Metilenotetra-Hidrofolato Desidrogenase (NADP) , Doença de Newcastle , Vírus da Doença de Newcastle , Replicação Viral , Animais , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Doença de Newcastle/enzimologia , Doença de Newcastle/fisiopatologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Nucleotídeos/metabolismo , Serina/metabolismo , Replicação Viral/genética , Linhagem Celular , Células A549 , Humanos , Mesocricetus , Técnicas de Silenciamento de Genes , Transporte Proteico/genética , Mitocôndrias/enzimologia , Regulação para Cima/fisiologia
10.
J Virol ; 97(5): e0032423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37042750

RESUMO

In ovo vaccination is an attractive immunization approach for chickens. However, most live Newcastle disease virus (NDV) vaccine strains used safely after hatching are unsafe as in ovo vaccines due to their high pathogenicity for chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. Our previous studies reported that NDV strain TS09-C was a safe in ovo vaccine, and the F protein cleavage site (FCS) containing three basic amino acids (3B-FCS) was the crucial determinant of the attenuation of TS09-C in chicken embryos. Here, five trypsin-like proteases that activated NDV in chicken embryos were identified. The F protein with 3B-FCS was sensitive to the proteases Tmprss4, Tmprss9, and F7, was present in fewer tissue cells of chicken embryos, which limited the viral tropism, and was responsible for the attenuation of NDV with 3B-FCS, while the F protein with FCS containing two basic amino acids could be cleaved not only by Tmprss4, Tmprss9, and F7 but also by Prss23 and Cfd, was present in most tissue cells, and thereby was responsible for broad tissue tropism and high pathogenicity of virus in chicken embryos. Furthermore, when mixed with the protease inhibitors aprotinin and camostat, NDV with 2B-FCS exhibited greatly weakened pathogenicity in chicken embryos. Thus, our results extend the understanding of the molecular mechanism of NDV pathogenicity in chicken embryos and provide a novel molecular target for the rational design of in ovo vaccines, ensuring uniform and effective vaccine delivery and earlier induction of immune protection by the time of hatching. IMPORTANCE As an attractive immunization approach for chickens, in ovo vaccination can induce a considerable degree of protection by the time of hatching, provide support in closing the window in which birds are susceptible to infection, facilitate fast and uniform vaccine delivery, and reduce labor costs by the use of mechanized injectors. The commercial live Newcastle disease virus (NDV) vaccine strains are not safe for in ovo vaccination and cause the death of chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. In the present study, we identified five trypsin-like proteases that activate NDV in chicken embryos and elucidated their roles in the tissue tropism and pathogenicity of NDV used as in ovo vaccine. Finally, we revealed the molecular basis for the pathogenicity of NDV in chicken embryos and provided a novel strategy for the rational design of in ovo ND vaccines.


Assuntos
Doença de Newcastle , Peptídeo Hidrolases , Doenças das Aves Domésticas , Vacinas Virais , Animais , Embrião de Galinha , Anticorpos Antivirais , Galinhas , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Peptídeo Hidrolases/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas , Vacinas Virais/administração & dosagem , Virulência
11.
Microb Pathog ; 196: 106884, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197691

RESUMO

Newcastle disease virus (NDV) is a highly infectious viral disease that impacts birds globally, especially domestic poultry. NDV is a type of avian paramyxovirus which poses a major threat to the poultry industry due to its ability to inflict significant economic damage. The membrane protein, Hemagglutinin-Neuraminidase (HN) of NDV is an attractive therapeutic candidate. It contributes to pathogenicity through various functions, such as promoting fusion and preventing viral self-agglutination, which allows for viral spread. In this study, we used pharmacophore modeling to identify natural molecules that can inhibit the HN protein of NDV. Physicochemical characteristics and phylogenetic analysis were determined to elucidate structural information and phylogeny of target protein across different species as well as members of the virus family. For structural analysis, the missing residues of HN target protein were filled and the structure was evaluated by PROCHECK and VERIFY 3D. Moreover, shape and feature-based pharmacophore model was employed to screen natural compounds' library through numerous scoring schemes. Top 48 hits with 0.8860 pharmacophore fit score were subjected towards structure-based molecular docking. Top 9 compounds were observed witihin the range of -8.9 to -7.5 kcal/mol binding score. Five best-fitting compounds in complex with HN receptor were subjected to predict biological activity and further analysis. Top two hits were selected for MD simulations to validate binding modes and structural stability. Finally, upon scrutinization, A1 (ZINC05223166) emerges as potential HN inhibitor to treat NDV, necessitating further validation via clinical trials.

12.
Virol J ; 21(1): 7, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178138

RESUMO

BACKGROUND: Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS: Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS: S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION: These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.


Assuntos
Neoplasias Colorretais , Vírus Oncolíticos , Humanos , Animais , Camundongos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Proteína HN/genética , Proteína HN/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , Hemaglutininas , Ácido N-Acetilneuramínico/metabolismo , Células HCT116 , Vírus Oncolíticos/genética , Modelos Animais de Doenças , Proteínas de Membrana , Neoplasias Colorretais/terapia
13.
Vet Res ; 55(1): 58, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715081

RESUMO

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Assuntos
Apoptose , Proteína HN , NF-kappa B , Doença de Newcastle , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Animais , Proteína HN/genética , Proteína HN/metabolismo , Doença de Newcastle/virologia , NF-kappa B/metabolismo , Doenças das Aves Domésticas/virologia , Galinhas , Embrião de Galinha
14.
Vet Res ; 55(1): 16, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317245

RESUMO

Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.


Assuntos
Avulavirus , Doenças dos Bovinos , Doença de Newcastle , Doenças dos Roedores , Rotavirus , Vacinas Virais , Animais , Bovinos , Humanos , Camundongos , Vírus da Doença de Newcastle/genética , Galinhas , Anticorpos Antivirais , Vetores Genéticos , Avulavirus/genética , Proteínas Virais/genética , Vacinas de Produtos Inativados , Imunidade
15.
Avian Pathol ; 53(1): 14-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009206

RESUMO

RESEARCH HIGHLIGHTS: A thermostable, safe, and effective NDV GVII recombinant vaccine was generated.Fusion gene replacement with GVII did not affect GI K148/08 virus thermostability.Strain rK148/GVII-F provided adequate protection against a lethal NDV challenge.Oropharyngeal shedding was significantly reduced on post-challenge days 5 and 7.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Vírus da Doença de Newcastle/genética , Vacinas Atenuadas , Genótipo , Vacinas Sintéticas , Doenças das Aves Domésticas/prevenção & controle , Anticorpos Antivirais
16.
Avian Pathol ; 53(3): 194-198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38288967

RESUMO

We report the first North American origin class I avian orthoavulavirus 1 (AOAV-1) isolated from a faecal dropping of wild Eurasian teal (Anas crecca) in South Korea. Whole genome sequencing and comparative phylogenetic analysis revealed that the AOAV-1/Eurasian teal/South Korea/KU1405-3/2017 virus belongs to the sub-genotype 1.2 of class I AOAV-1. Phylogenetic analysis suggested multiple introductions of the North American sub-genotype 1.2 viruses into Asia and its establishment in the wild bird population in East Asia since May 2011. These results provide information on the epidemiology of AOAV-1, particularly the role of migratory wild birds in exchanging viruses between the Eurasian and North American continents. Enhanced genomic surveillance is required to improve our understanding on the evolution and transmission dynamics of AOAV-1 in wild birds.


Assuntos
Patos , Influenza Aviária , Animais , Filogenia , Aves , Animais Selvagens/genética , Vírus da Doença de Newcastle/genética , República da Coreia/epidemiologia , Sequenciamento Completo do Genoma/veterinária , América do Norte/epidemiologia
17.
Avian Pathol ; : 1-9, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39318350

RESUMO

RESEARCH HIGHLIGHTS: Development of nr-NDV.Reverse transfection was applied for the recovery of nr-NDV.Propagation of nr-NDV was done by sub-passaging transfected BSR T7/5 cells.Safety profile was done to prove that the nr-NDV is non-replicating.

18.
Avian Pathol ; 53(2): 134-145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037737

RESUMO

RESEARCH HIGHLIGHTS: Virulent NDV genotypes were repeatedly isolated from pigeons.Evidence of epidemiological links among viruses isolated from various locations.Distinct phylogenetic branches suggest separate, simultaneous evolution of NDVs.Study information could be helpful in the development of an effective vaccine.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Columbidae , Variação Genética , Genótipo , Doença de Newcastle/epidemiologia , Paquistão , Filogenia
19.
BMC Vet Res ; 20(1): 76, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413949

RESUMO

BACKGROUND: Newcastle Disease Virus (NDV) causes severe economic losses in the poultry industry worldwide. Hence, this study aimed to discover a novel bioactive antiviral agent for controlling NDV. Streptomyces misakiensis was isolated from Egyptian soil and its secondary metabolites were identified using infrared spectroscopy (IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The inhibitory activity of bioactive metabolite against NDV were examined. Three experimental groups of 10-day-old specific pathogen-free embryonated chicken eggs (SPF-ECEs), including the bioactive metabolite control group, NDV control positive group, and α-sitosterol and NDV mixture-treated group were inoculated. RESULTS: α-sitosterol (Ethyl-6-methylheptan-2-yl]-10,13-dimethyl-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol), a secondary metabolite of S. misakiensis, completely inhibited hemagglutination (HA) activity of the NDV strain. The HA activity of the NDV strain was 8 log2 and 9 log2 for 0.5 and 0.75% RBCs, respectively. The NDV HA activity for the two concentrations of RBCs was significantly (P < 0.0001) inhibited after α-sitosterol treatment. There was a significant (P < 0.0001) decrease in the log 2 of HA activity, with values of - 0.500 (75%, chicken RBCs) before inoculation in SPF-ECEs and - 1.161 (50%, RBCs) and - 1.403 (75%, RBCs) following SPF-ECE inoculation. Compared to ECEs inoculated with NDV alone, the α-sitosterol-treated group showed improvement in histological lesion ratings for chorioallantoic membranes (CAM) and hepatic tissues. The CAM of the α-sitosterol- inoculated SPF-ECEs was preserved. The epithelial and stromal layers were noticeably thicker with extensive hemorrhages, clogged vasculatures, and certain inflammatory cells in the stroma layer in the NDV group. However, mild edema and inflammatory cell infiltration were observed in the CAM of the treated group. ECEs inoculated with α-sitosterol alone showed normal histology of the hepatic acini, central veins, and portal triads. Severe degenerative alterations, including steatosis, clogged sinusoids, and central veins, were observed in ECEs inoculated with NDV. Mild hepatic degenerative alterations, with perivascular round cell infiltration, were observed in the treated group. CONCLUSION: To the best of our knowledge, this is the first study to highlight that the potentially bioactive secondary metabolite, α-sitosterol, belonging to the terpene family, has the potential to be a biological weapon against virulent NDV. It could be used for the development of innovative antiviral drugs to control NDV after further clinical investigation.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Streptomycetaceae , Animais , Vírus da Doença de Newcastle , Antivirais/farmacologia , Antivirais/uso terapêutico , Sitosteroides/farmacologia , Sitosteroides/uso terapêutico , Galinhas , Doença de Newcastle/tratamento farmacológico , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle
20.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397030

RESUMO

Oncolytic Newcastle disease virus is a new type of cancer immunotherapy drug. This paper proposes a scheme for delivering oncolytic viruses using hydrogel microneedles. Gelatin methacryloyl (GelMA) was synthesized by chemical grafting, and GelMA microneedles encapsulating oncolytic Newcastle disease virus (NDV) were prepared by micro-molding and photocrosslinking. The release and expression of NDV were tested by immunofluorescence and hemagglutination experiments. The experiments proved that GelMA was successfully synthesized and had hydrogel characteristics. NDV was evenly dispersed in the allantoic fluid without agglomeration, showing a characteristic virus morphology. NDV particle size was 257.4 ± 1.4 nm, zeta potential was -13.8 ± 0.5 mV, virus titer TCID50 was 107.5/mL, and PFU was 2 × 107/mL, which had a selective killing effect on human liver cancer cells in a dose and time-dependent manner. The NDV@GelMA microneedles were arranged in an orderly cone array, with uniform height and complete needle shape. The distribution of virus-like particles was observed on the surface. GelMA microneedles could successfully penetrate 5% agarose gel and nude mouse skin. Optimal preparation conditions were freeze-drying. We successfully prepared GelMA hydrogel microneedles containing NDV, which could effectively encapsulate NDV but did not detect the release of NDV.


Assuntos
Metacrilatos , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Vírus da Doença de Newcastle , Gelatina/metabolismo , Hidrogéis/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa