Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843442

RESUMO

Increasing threats of air pollution prompt the design of air purification systems. As a promising initiative defense strategy, nanocatalysts are integrated to catalyze the detoxification of specific pollutants. However, it remains a grand challenge to tailor versatile nanocatalysts to cope with diverse pollutants in practice. Here, we report a nanozyme metabolism system to realize broad-spectrum protection from air pollution. Atomic K-modified carbon nitride featuring flavin oxidase-like and peroxidase-like activities was synthesized to initiate nanozyme metabolism. In situ experiments and theoretical investigations collectively show that K sites optimize the geometric and electronic structure of cyano sites for both enzyme-like activities. As a proof of concept, the nanozyme metabolism was applied to the mask against volatile organic compounds, persistent organic pollutants, reactive oxygen species, bacteria, and so on. Our finding provides a thought to tackle global air pollution and deepens the understanding of nanozyme metabolism.

2.
Nano Lett ; 24(15): 4439-4446, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38498723

RESUMO

Graphitic carbon nitrides (g-C3N4) as low-cost, chemically stable, and ecofriendly layered semiconductors have attracted rapidly growing interest in optoelectronics and photocatalysis. However, the nature of photoexcited carriers in g-C3N4 is still controversial, and an independent charge-carrier picture based on the band theory is commonly adopted. Here, by performing transient spectroscopy studies, we show characteristics of self-trapped excitons (STEs) in g-C3N4 nanosheets including broad trapped exciton-induced absorption, picosecond exciton trapping without saturation at high photoexcitation density, and transient STE-induced stimulated emissions. These features, together with the ultrafast exciton trapping polarization memory, strongly suggest that STEs intrinsically define the nature of the photoexcited states in g-C3N4. These observations provide new insights into the fundamental photophysics of carbon nitrides, which may enlighten novel designs to boost energy conversion efficiency.

3.
Nano Lett ; 24(21): 6233-6239, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38758973

RESUMO

We study the molecular beam epitaxy of rock-salt ScN on the wurtzite GaN(11̅00) surface. To this end, ScN is grown on freestanding GaN(11̅00) substrates and self-assembled GaN nanowires exhibiting (11̅00) sidewalls. On both substrates, ScN crystallizes twin-free thanks to a specific epitaxial relationship, namely ScN(110)[001]∥GaN(11̅00)[0001], providing a congruent, low-symmetry interface. The 13.1% uniaxial lattice mismatch occurring in this orientation mostly relaxes within the first few monolayers of growth by forming a near-coincidence site lattice, where 7 GaN planes coincide with 8 ScN planes, leaving the ScN surface nearly free of extended defects. Overgrowth of the ScN with GaN leads to a kinetic stabilization of the zinc blende phase, that rapidly develops wurtzite inclusions nucleating on {111} nanofacets, commonly observed during zinc blende GaN growth. Our ScN/GaN(11̅00) platform opens a new route for the epitaxy of twin-free metal-semiconductor heterostructures including closely lattice-matched GaN, ScN, HfN, and ZrN compounds.

4.
Small ; 20(16): e2307246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039499

RESUMO

Perovskite solar cells (PSCs) with a booming high power conversion efficiency (PCE) are on their road toward industrialization. A proper design of the counter electrode (CE) with low cost, high conductivity, chemical stability, and good interface contact with the other functional layer atop the perovskite layer is vital for the overall performance of PSCs. Herein, the application of titanium nitride (TiN) is reported as a conductive medium for the printable CE in hole-conductor-free mesoscopic PSCs. TiN improves the conductivity of the CE and reduces the resistivity from 20 to 10 mΩ∙cm. TiN also improves the wettability of the CE with perovskite and enhances the back interface contact, which promotes charge collection. On the other hand, TiN is chemically stable during processing and undergoes no distinguishable chemical reaction with halide perovskite. Devices with TiN as the conductive media in the CE deliver a champion PCE of 19.01%. This work supplies a considerable choice for the CE design of PSCs toward industrial applications.

5.
Small ; 20(8): e2306100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817367

RESUMO

Herein, the construction of a heterostructured 1D/3D CoN-Co2 N@NF (nickel foam) electrode used for thermodynamically favorable hydrazine oxidation reaction (HzOR), as an alternative to sluggish anodic oxygen evolution reaction (OER) in water splitting for hydrogen production, is reported. The electrode exhibits remarkable catalytic activities, with an onset potential of -0.11 V in HzOR and -71 mV for a current density of 10 mA cm-2 in hydrogen evolution reaction (HER). Consequently, an extraordinary low cell voltage of 53 mV is required to achieve 10 mA cm-2 for overall hydrazine splitting in a two-electrode system, demonstrating significant energy-saving advantages over conventional water splitting. The HzOR proceeds through the 4e- reaction pathway to release N2 while the 1e- pathway to emit NH3 is uncompetitive, as evidenced by differential electrochemical mass spectrometric measurements. The X-ray absorption spectroscopy, in situ Raman spectroscopy, and theoretical calculations identify cobalt nitrides rather than corresponding oxides/(oxy)hydroxides as catalytic species for HzOR and illustrate advantages of heterostructured CoN-Co2 N in optimizing adsorption energies of intermediates/reagents and promoting catalytic activities toward both HzOR and HER. The CoN-Co2 N@NF is also an excellent supercapacitive material, exhibiting an increased specific capacity (938 F g-1 at 1 A g-1 ) with excellent cycling stability (95.8%, 5000 cycles).

6.
Small ; 20(7): e2306132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800612

RESUMO

Epitaxy growth and mechanical transfer of high-quality III-nitrides using 2D materials, weakly bonded by van der Waals force, becomes an important technology for semiconductor industry. In this work, wafer-scale transferrable GaN epilayer with low dislocation density is successfully achieved through AlN/h-BN composite buffer layer and its application in flexible InGaN-based light-emitting diodes (LEDs) is demonstrated. Guided by first-principles calculations, the nucleation and bonding mechanism of GaN and AlN on h-BN is presented, and it is confirmed that the adsorption energy of Al atoms on O2 -plasma-treated h-BN is over 1 eV larger than that of Ga atoms. It is found that the introduced high-temperature AlN buffer layer induces sufficient tensile strain during rapid coalescence to compensate the compressive strain generated by the heteromismatch, and a strain-relaxation model for III-nitrides on h-BN is proposed. Eventually, the mechanical exfoliation of single-crystalline GaN film and LED through weak interaction between multilayer h-BN is realized. The flexible free-standing thin-film LED exhibits ≈66% luminescence enhancement with good reliability compared to that before transfer. This work proposes a new approach for the development of flexible semiconductor devices.

7.
Small ; 20(30): e2310535, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38420898

RESUMO

The exploiting electrocatalysts for water/seawater electrolysis with remarkable activity and outstanding durability at industrial grade current density remains a huge challenge. Herein, CoMoNx and Fe-doped CoMoNx nanosheet arrays are in-situ grown on Ni foam, which possess plentiful holes, multilevel heterostructure, and lavish Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF interfaces. They require low overpotentials of 213 and 296 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline media to achieve current density of 800 mA cm-2, respectively, and both possess low Tafel slopes (51.1 and 49.1 mV dec-1) and undiminished stability over 80 h. Moreover, the coupled Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF electrolyzer requires low voltages of 1.735 V to yield 500 mA cm-2 in alkaline water. Notably, they also exhibit exceptional electrocatalytic properties in alkaline seawater (1.833 V@500 mA cm-2). The experimental studies and theoretical calculations verify that Fe doping does reduce the energy barrier from OH* to O* intermediates during OER process after catalyst reconstruction, and the non-metallic N site from MoN exhibits the lowest theoretical overpotential. The splendid catalytic performance is attributed to the optimized local electron configuration and porous structure. This discovery provides a new design method toward low-cost and excellent catalysts for water/seawater splitting to produce hydrogen.

8.
Small ; : e2404822, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096107

RESUMO

Selective photocatalytic CO2 reduction to high-value hydrocarbons using graphitic carbon nitride (g-C3N4) polymer holds great practical significance. Herein, the cyano-functionalized g-C3N4 (CN-g-C3N4) with a high local electron density site is successfully constructed for selective CO2 photoreduction to CH4 and C2H4. Wherein the potent electron-withdrawing cyano group induces a giant internal electric field in CN-g-C3N4, significantly boosting the directional migration of photogenerated electrons and concentrating them nearby. Thereby, a high local electron density site around its cyano group is created. Moreover, this structure can also effectively promote the adsorption and activation of CO2 while firmly anchoring *CO intermediates, facilitating their subsequent hydrogenation and coupling reactions. Consequently, using H2O as a reducing agent, CN-g-C3N4 achieves efficient and selective photocatalytic CO2 reduction to CH4 and C2H4 activity, with maximum rates of 6.64 and 1.35 µmol g-1 h-1, respectively, 69.3 and 53.8 times higher than bulk g-C3N4 and g-C3N4 nanosheets. In short, this work illustrates the importance of constructing a reduction site with high local electron density for efficient and selective CO2 photoreduction to hydrocarbons.

9.
Chemistry ; 30(36): e202401238, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38655832

RESUMO

The imidonitridosilicate Rb3Si6N5(NH)6, being only the second representative of this compound class, was synthesized ammonothermally at 870 K and 230 MPa. Its crystal structure was solved from single-crystal X-ray diffraction data. The imidonitridosilicate crystallizes isotypically with the respective potassium compound in space group P4132 with the lattice parameter a=10.9422(4) Šforming a three-dimensional imidonitridosilicate tetrahedra network with voids for the rubidium ions. The structure model and the presence of the imide groups were verified by Fourier-Transform infrared (FTIR) and magic-angle spinning (MAS) NMR spectroscopy, using cross polarization 15N{1H} and 29Si{1H} MAS NMR experiments. Rb3Si6N5(NH)6 represents a possible intermediate during the ammonothermal synthesis of nitridosilicates. The characterization of such intermediates improves the understanding of the reaction pathway from ammonothermal solutions to nitrides. Thus, the ammonothermal synthesis is an alternative approach to the well-established high-temperature synthesis leading to the compound class of nitridosilicates.

10.
Chemistry ; 30(41): e202401428, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38717583

RESUMO

Sn3P8N16 combines the structural versatility of nitridophosphates and Sn within one compound. It was synthesized as dark gray powder in a high-pressure high-temperature reaction at 800 °C and 6 GPa from Sn3N4 and P3N5. The crystal structure was elucidated from single-crystal diffraction data (space group C2/m (no. 12), a=12.9664(4), b=10.7886(4), c=4.8238(2) Å, ß=109.624(1)°) and shows a 3D-network of PN4 tetrahedra, incorporating Sn in oxidation states +II and +IV. The Sn cations are located within eight-membered rings of vertex-sharing PN4 tetrahedra, stacked along the [001] direction. A combination of solid-state nuclear magnetic resonance spectroscopy, 119Sn Mössbauer spectroscopy and density functional theory calculations was used to confirm the mixed oxidation of Sn. Temperature-dependent powder X-ray diffraction measurements reveal a low thermal expansion of 3.6 ppm/K up to 750 °C, beyond which Sn3P8N16 starts to decompose.

11.
Chemistry ; : e202403235, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412196

RESUMO

Realizing efficient and durable non-precious metal-based electrocatalysts for oxygen evolution reaction (OER) still remains a great challenge. Here, a multi-component composite of Co2P2O7-MoN/NC containing pyrophosphate, nitride, and nitrogen-doped carbon is successfully prepared via a facile two-step synthesis method. Combining the structural regulation between the active metal- and non-metal-based species, Co2P2O7-MoN/NC demonstrates superior activity and durability for OER, requiring an overpotential of 278 mV at a current density of 10 mA cm-2, a Tafel slope of 83.3 mV dec-1, and long-term stability over 100 h in an alkaline solution. Post-characterizations reveal that synergistic effect among stable Co2P2O7, partially dissolved MoN, N-doped carbon, and new-formed CoOOH nanosheets enable structural reconstruction, fast charge transfer, and formation of oxygen-containing intermediates, promoting the OER performance significantly. This work provides a promising pathway to tune multi-components to fabricate efficient transition-metal-based electrocatalysts in energy conversion applications.

12.
Chemistry ; : e202402741, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196605

RESUMO

Nitridophosphates are subject of current research, as they have a broad spectrum of properties and potential applications, such as ion conductors or luminescent materials. Yet, the subclass of imidonitridophosphates has been studied less extensively. The primary reason is that the controlled N-H functionalization of nitridophosphates is not straight forward, making targeted synthesis more challenging. Inspired by the high-pressure (HP) post-synthetic modification of nitridophosphates, we present the topochemical HP deprotonation of phosphorus nitride imides using the high-pressure polymorph ß-PN(NH) as an example. Additional incorporation of Zn2+ results in the first quaternary transition metal imidonitridophosphate ZnH2P4N8. The crystal structure was elucidated by single-crystal X-ray diffraction (SCXRD), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (PXRD) and solid-state magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). In addition, the presence of H as part of an imide group was confirmed by IR spectroscopy. The potential of this defunctionalization approach for controlling the N-H content is demonstrated by the preparation of partially deprotonated intermediates ZnxH4-2xP4N8 (x≈0.5, 0.85). This topochemical high-pressure reaction represents a promising way to prepare, control and manipulate new imide-based materials without altering their overall anionic framework.

13.
Chemistry ; 30(29): e202400766, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38483015

RESUMO

A series of isostructural imidonitridophosphates AE2AlP8N15(NH) (AE=Ca, Sr, Ba) was synthesized at high-pressure/high-temperature conditions (1400 °C and 5-9 GPa) from alkaline-earth metal nitrides or azides Ca3N2/Sr(N3)2/Ba(N3)2 and the binary nitrides AlN and P3N5. NH4F served as a hydrogen source and mineralizing agent. The crystal structures were determined by single-crystal X-ray diffraction and feature a three-dimensional network of vertex-sharing PN4-tetrahedra forming diverse-sized rings that are occupied by aluminum and alkaline earth ions. These structures represent another example of nitridophosphate-based networks that simultaneously incorporate AlN6-octahedra and alkaline-earth-centered polyhedra, with aluminum not participating in the tetrahedra network. They differ from previously reported ones by incorporating non-condensed octahedra instead of strongly condensed octahedra units and contribute to the diversity of multicationic nitridophosphate network structures. The results are supported by atomic resolution EDX mapping, solid-state NMR and FTIR measurements. Eu2+-doped samples show strong luminescence with narrow emissions in the range of green to blue under UV excitation, marking another instance of Eu2+-luminescence within imidonitridophosphates.

14.
Nanotechnology ; 35(25)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38484394

RESUMO

We have investigated the optical properties of heterostructured InGaN platelets aiming at red emission, intended for use as nano-scaled light-emitting diodes. The focus is on the presence of non-radiative emission in the form of dark line defects. We have performed the study using hyperspectral cathodoluminescence imaging. The platelets were grown on a template consisting of InGaN pyramids, flattened by chemical mechanical polishing. These templates are defect free, whereas the dark line defects are introduced in the lower barrier and tend to propagate through all the subsequent layers, as revealed by the imaging of different layers in the structure. We conclude that the dark line defects are caused by stacking mismatch boundaries introduced by multiple seeding and step bunching at the edges of the as-polished, dome shaped templates. To avoid these defects, we suggest that the starting material must be flat rather than dome shaped.

15.
Nanotechnology ; 36(2)2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39366403

RESUMO

This study examines the exciton dynamics in InGaN/GaN core-shell nanorods using time-resolved cathodoluminescence (TRCL), which provides nanometer-scale lateral spatial and tens of picoseconds temporal resolutions. The focus is on thick (>20 nm) InGaN layers on the non-polar, semi-polar and polar InGaN facets, which are accessible for study due to the unique nanorod geometry. Spectrally integrated TRCL decay transients reveal distinct recombination behaviours across these facets, indicating varied exciton lifetimes. By extracting fast and slow lifetime components and observing their temperature trends along with those of the integrated and peak intensity, the differences in behaviour were linked to variations in point defect density and the degree and density of localisation centres in the different regions. Further analysis shows that the non-polar and polar regions demonstrate increasing lifetimes with decreasing emission energy, attributed to an increase in the depth of localisation. This investigation provides insights into the intricate exciton dynamics in InGaN/GaN nanorods, offering valuable information for the design and development of optoelectronic devices.

16.
Nanotechnology ; 35(40)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38981449

RESUMO

Vertically grown nanowires (NWs) are a research interest in optoelectronics and photovoltaic applications due to their high surface to volume ratio and good light trapping capabilities. This study presents the effects of process and design parameters on self-catalyzed GaAsSbN NWs grown by plasma-assisted molecular beam epitaxy on patterned silicon substrates using electron beam lithography. Vertical alignment of the patterned NWs examined via scanning electron microscopy show the sensitivity of patterned NW growth to the parameters of NW diameter, pitch, dose time, etching techniques and growth plan. Diameters range from 90 nm to 250 nm. Pitch lengths of 200 nm, 400 nm, 600 nm, 800 nm, 1000 nm, and 1200 nm were examined. Dry etching of the oxide layer of the silicon substrate and PMMA coating is performed using reactive ion etching (RIE) for 20 s and 120 s respectively. Comparisons of different HF etch durations performed pre and post PMMA removal are presented. Additionally, the report of an observed surfactant effect in dilute nitride GaAsSbN NWs in comparison to non-nitride GaAsSb is presented. Optimizations to patterning, RIE, and HF etching are presented to obtain higher vertical yield of patterned GaAsSbN NWs, achieving ∼80% of the expected NWµm2. Room temperature and 4 K photoluminescence results show the effect of nitride incorporation for further bandgap tuning, and patterned pitch on the optical characteristics of the NWs which gives insights to the compositional homogeneity for NWs grown at each pitch length.

17.
Sci Technol Adv Mater ; 25(1): 2396276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315332

RESUMO

Nitrides and oxynitrides isostructural to α-Si3N4 (M-α-SiAlON, M = Sr, Ca, Li) possess superb thermally stable photoluminescence (PL) properties, making them reliable phosphors for high-power solid-state lighting. However, the synthesis of phase-pure Sr-α-SiAlON still remains a great challenge and has only been reported for Sr below 1.35 at.% as the large size of Sr2+ ions tends to destabilize the α-SiAlON structure. Here, we succeeded to synthesize the single-phase powders of a unique 'Sr-rich' polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor with three distinctive Sr/Eu luminescence sites using a solid-state remixing-reannealing process. The Sr content of this polytypoid structure exceeds those of a few previously reported structures by over 200%. The phase purity, composition, structure, and PL properties of this phosphor were investigated. A single phase can be obtained by firing the stoichiometric mixtures of all-nitride precursors at 2050°C under a 0.92 MPa N2 atmosphere. The Sr3Si24Al6N40:Eu2+ shows an intense orange-yellow emission, with the emission maximum of 590 nm and internal/external quantum efficiency of 66%/52% under 400 nm excitation. It also has a quite small thermal quenching, maintaining 93% emission intensity at 150°C. In comparison to Ca-α-SiAlON:Eu2+, this Sr counterpart shows superior quantum efficiency and thermal stability, enabling it to be an interesting orange-yellow down-conversion luminescent material for white LEDs. The experimental confirmation of the existence of such 'Sr-rich' SiAlON systems, in a single-phase powder form, paves the way for the design and synthesis of novel 'Sr-rich' SiAlON-based phosphor powders with unparalleled properties.


A distinctive orange-yellow-emitting 'Sr-rich' α-SiAlON-based phosphor with quite small thermal quenching (93% PL intensity at 150°C) that can surprisingly be synthesized in a single-phase powder form for white LEDs.

18.
Sensors (Basel) ; 24(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39275377

RESUMO

Developing long-lasting humidity sensors is essential for sustainable advancements in nanotechnology. Prolonged exposure to high humidity can cause sensors to drift from their calibration points, leading to long-term accuracy issues. Our research aims to develop a fabrication method that produces stable sensors capable of withstanding the environmental challenges faced by humidity sensors. Traditional iron-based nanoparticles often require complex treatments, such as chemical modification or thermal annealing, to maintain their properties. This study introduces a novel, one-step synthesis method for iron-based thin films with exceptional stability. The synthesized films were thoroughly characterized using X-ray photoelectron spectroscopy (XPS) to evaluate their phase stability and nitride formation. The method proposed in this study employs an electrical sparking discharge process within a pure nitrogen atmosphere under a 0.2 T magnetic field, producing thin films composed of nanoparticles approximately 20 nm in size. The resulting films demonstrate superior performance in humidity sensing applications compared to conventional methods. This straightforward and efficient approach offers a promising path toward robust and sustainable humidity sensors.

19.
Nano Lett ; 23(1): 107-115, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541945

RESUMO

In comparison to the well-developed proton-exchange-membrane fuel cells, anion-exchange-membrane fuel cells (AEMFCs) permit adoption of platinum-group-metal (PGM)-free catalysts due to the alkaline environment, giving a substantial cost reduction. However, previous AEMFCs have generally shown unsatisfactory performances due to the lack of effective PGM-free catalysts that can endure harsh fuel cell conditions. Here we report a plasma-assisted synthesis of high-quality nickel nitride (Ni3N) and zirconium nitride (ZrN) employing dinitrogen as the nitrogen resource, exhibiting exceptional catalytic performances toward hydrogen oxidation and oxygen reduction in an alkaline enviroment, respectively. A PGM-free AEMFC assembled by using Ni3N as the anode and ZrN as the cathode delivers power densities of 256 mW cm-2 under an H2-O2 condition and 151 mW cm-2 under an H2-air condition. Furthermore, the fuel cell shows no evidence of degradation after 25 h of operation. This work creates opportunities for developing high-performance and durable AEMFCs based on metal nitrides.


Assuntos
Níquel , Platina , Membranas , Membrana Celular , Ânions , Prótons
20.
Angew Chem Int Ed Engl ; 63(18): e202316431, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38012084

RESUMO

Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa