Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 76: 225-231, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36828231

RESUMO

Bioproduction of natural products via microbial cell factories is a promising alternative to traditional plant extraction. Recently, nonconventional microorganisms have emerged as attractive chassis hosts for biomanufacturing. One such microorganism, Ogataea polymorpha is an industrial yeast used for protein expression with numerous advantages, such as thermal-tolerance, a wide substrate spectrum and high-density fermentation. Here, we systematically rewired the cellular metabolism of O. polymorpha to achieve high-level production of the sesquiterpenoid ß-elemene by optimizing the mevalonate pathway, enhancing the supply of NADPH and acetyl-CoA, and downregulating competitive pathways. The engineered strain produced 509 mg/L and 4.7 g/L of ß-elemene under batch and fed-batch fermentation, respectively. Therefore, this study identified the potential industrial application of O. polymorpha as a good microbial platform for producing sesquiterpenoids.


Assuntos
Saccharomycetales , Sesquiterpenos , Pichia/genética , Saccharomycetales/metabolismo , Sesquiterpenos/metabolismo , Engenharia Metabólica
2.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893808

RESUMO

Genome-editing toolboxes are essential for the exploration and exploitation of nonconventional yeast species as cell factories, as they facilitate both genome studies and metabolic engineering. The nonconventional yeast Candida intermedia is a biotechnologically interesting species due to its capacity to convert a wide range of carbon sources, including xylose and lactose found in forestry and dairy industry waste and side-streams, into added-value products. However, possibilities of genetic manipulation have so far been limited due to lack of molecular tools for this species. We describe here the development of a genome editing method for C. intermedia, based on electroporation and gene deletion cassettes containing the Candida albicans NAT1 dominant selection marker flanked by 1000 base pair sequences homologous to the target loci. Linear deletion cassettes targeting the ADE2 gene originally resulted in <1% targeting efficiencies, suggesting that C. intermedia mainly uses nonhomologous end joining for integration of foreign DNA fragments. By developing a split-marker based deletion technique for C. intermedia, we successfully improved the homologous recombination rates, achieving targeting efficiencies up to 70%. For marker-less deletions, we also employed the split-marker cassette in combination with a recombinase system, which enabled the construction of double deletion mutants via marker recycling. Overall, the split-marker technique proved to be a quick and reliable method for generating gene deletions in C. intermedia, which opens the possibility to uncover and enhance its cell factory potential.


Assuntos
Edição de Genes , Saccharomycetales , Saccharomycetales/genética , Recombinação Homóloga , Candida albicans/genética , Sistemas CRISPR-Cas
3.
FEMS Yeast Res ; 22(1)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35521744

RESUMO

Kluyveromyces marxianus is an interesting and important yeast because of particular traits such as thermotolerance and rapid growth, and for applications in food and industrial biotechnology. For both understanding its biology and developing bioprocesses, it is important to understand how K. marxianus responds and adapts to changing environments. For this, a full suite of omics tools to measure and compare global patterns of gene expression and protein synthesis is needed. We report here the development of a ribosome profiling method for K. marxianus, which allows codon resolution of translation on a genome-wide scale by deep sequencing of ribosome locations on mRNAs. To aid in the analysis and sharing of ribosome profiling data, we added the K. marxianus genome as well as transcriptome and ribosome profiling data to the publicly accessible GWIPS-viz and Trips-Viz browsers. Users are able to upload custom ribosome profiling and RNA-Seq data to both browsers, therefore allowing easy analysis and sharing of data. We also provide a set of step-by-step protocols for the experimental and bioinformatic methods that we developed.


Assuntos
Kluyveromyces , Ribossomos , Genoma , Kluyveromyces/genética , Kluyveromyces/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
4.
Biotechnol Bioeng ; 119(12): 3623-3631, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36042688

RESUMO

Yarrowia lipolytica is a metabolic engineering host of growing industrial interest due to its ability to metabolize hydrocarbons, fatty acids, glycerol, and other renewable carbon sources. This dimorphic yeast undergoes a stress-induced transition to a multicellular hyphal state, which can negatively impact biosynthetic activity, reduce oxygen and nutrient mass transfer in cell cultures, and increase culture viscosity. Identifying mutations that prevent the formation of hyphae would help alleviate the bioprocess challenges that they create. To this end, we conducted a genome-wide CRISPR screen to identify genetic knockouts that prevent the transition to hyphal morphology. The screen identified five mutants with a null-hyphal phenotype-ΔRAS2, ΔRHO5, ΔSFL1, ΔSNF2, and ΔPAXIP1. Of these hits, only ΔRAS2 suppressed hyphal formation in an engineered lycopene production strain over a multiday culture. The RAS2 knockout was also the only genetic disruption characterized that did not affect lycopene production, producing more than 5 mg L-1 OD-1 from a heterologous pathway with enhanced carbon flux through the mevalonate pathway. These data suggest that a ΔRAS2 mutant of Y. lipolytica could prove useful in engineering a metabolic engineering host of the production of carotenoids and other biochemicals.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Hifas , Licopeno/metabolismo , Sistemas CRISPR-Cas , Engenharia Metabólica , Carotenoides/metabolismo , Fenótipo
5.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35348703

RESUMO

Nonconventional yeasts have an untapped potential to expand biotechnology and enable process development necessary for a circular economy. They are especially convenient for the field of lipid and hydrocarbon biotechnology because they offer faster growth than plants and easier scalability than microalgae and exhibit increased tolerance relative to some bacteria. The ability of industrial organisms to import and metabolically transform lipids and hydrocarbons is crucial in such applications. Here, we assessed the ability of 14 yeasts to utilize 18 model lipids and hydrocarbons from six functional groups and three carbon chain lengths. The studied strains covered 12 genera from nine families. Nine nonconventional yeasts performed better than Saccharomyces cerevisiae, the most common industrial yeast. Rhodotorula toruloides, Candida maltosa, Scheffersomyces stipitis, and Yarrowia lipolytica were observed to grow significantly better and on more types of lipids and lipid molecules than other strains. They were all able to utilize mid- to long-chain fatty acids, fatty alcohols, alkanes, alkenes, and dicarboxylic acids, including 28 previously unreported substrates across the four yeasts. Interestingly, a phylogenetic analysis showed a short evolutionary distance between the R. toruloides, C. maltosa, and S. stipitis, even though R. toruloides is classified under a different phylum. This work provides valuable insight into the lipid substrate range of nonconventional yeasts that can inform species selection decisions and viability of lipid feedstocks.


Assuntos
Yarrowia , Leveduras , Biotecnologia , Ácidos Graxos , Humanos , Hidrocarbonetos , Filogenia , Saccharomyces cerevisiae , Yarrowia/genética , Leveduras/genética
6.
FEMS Yeast Res ; 21(5)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34100921

RESUMO

All known facultatively fermentative yeasts require molecular oxygen for growth. Only in a small number of yeast species, these requirements can be circumvented by supplementation of known anaerobic growth factors such as nicotinate, sterols and unsaturated fatty acids. Biosynthetic oxygen requirements of yeasts are typically small and, unless extensive precautions are taken to minimize inadvertent entry of trace amounts of oxygen, easily go unnoticed in small-scale laboratory cultivation systems. This paper discusses critical points in the design of anaerobic yeast cultivation experiments in anaerobic chambers and laboratory bioreactors. Serial transfer or continuous cultivation to dilute growth factors present in anaerobically pre-grown inocula, systematic inclusion of control strains and minimizing the impact of oxygen diffusion through tubing are identified as key elements in experimental design. Basic protocols are presented for anaerobic-chamber and bioreactor experiments.


Assuntos
Reatores Biológicos , Leveduras , Anaerobiose , Fermentação , Oxigênio
7.
FEMS Yeast Res ; 21(8)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875055

RESUMO

Nowadays, biotechnological applications are emphasized to ensure sustainable development by reutilizing waste materials to prevent ecological problems and to produce or recover compounds that may have positive effects on health. Yeasts are fascinating microorganisms that play a key role in several traditional and innovative processes. Although Saccharomyces is the most important genus of yeasts, and they are major producers of biotechnological products worldwide, a variety of other yeast genera and species than Saccharomyces that are called 'non-Saccharomyces' or 'nonconventional' yeasts also have important potential for use in biotechnological applications. Some of the nonconventional yeast strains offer a unique potential for biotechnological applications to produce valuable secondary metabolites due to their characteristics of surviving and growing in such extreme conditions, e.g. wide substrate range, rapid growth, thermotolerance, etc. In this review, we aimed to summarize potential biotechnological applications of some nonconventional yeasts (Kluyveromyces spp., Yarrowia spp., Pichia spp., Candida spp., etc.) to produce industrially important aroma compounds (phenylethyl alcohol, phenylethyl acetate, isobutyl acetate, diacetyl, etc.) by reutilizing agri-food waste materials in order to prevent ecological problems and to produce or recover compounds that may have positive effects on health.


Assuntos
Eliminação de Resíduos , Saccharomyces , Yarrowia , Alimentos , Odorantes , Leveduras
8.
Yeast ; 36(12): 711-722, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31414502

RESUMO

The so-called nonconventional yeasts are becoming increasingly attractive in food and industrial biotechnology. Among them, Zygosaccharomyces rouxii is known to be halotolerant, osmotolerant, petite negative, and poorly Crabtree positive. These traits and the high fermentative vigour make this species very appealing for industrial and food applications. Nevertheless, the biotechnological exploitation of Z. rouxii has been biased by the low availability of genetic engineering tools and the recalcitrance of this yeast towards the most conventional transformation procedures. Centromeric and episomal Z. rouxii plasmids have been successfully constructed with prototrophic markers, which limited their usage to auxotrophic strains, mainly derived from the Z. rouxii haploid type strain Centraalbureau voor Schimmelcultures (CBS) 732T . By contrast, the majority of industrially promising Z. rouxii yeasts are prototrophic and allodiploid/aneuploid strains. In order to expand the genetic tools for manipulating these strains, we developed two centromeric and two episomal vectors harbouring KanMXR and ClonNATR as dominant drug resistance markers, respectively. We also constructed the plasmid pGRCRE that allows the Cre recombinase-mediated marker recycling during multiple gene deletions. As proof of concept, pGRCRE was successfully used to rescue the kanMX-loxP module in Z. rouxii ATCC 42981 G418-resistant mutants previously constructed by replacing the MATαP expression locus with the loxP-kanMX-loxP cassette.


Assuntos
Farmacorresistência Fúngica/genética , Integrases/genética , Plasmídeos/genética , Zygosaccharomyces/genética , Antibacterianos/farmacologia , Centrômero/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Engenharia Genética , Marcadores Genéticos , Zygosaccharomyces/efeitos dos fármacos , Zygosaccharomyces/metabolismo
9.
ACS Synth Biol ; 12(10): 3082-3091, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37768786

RESUMO

Yarrowia lipolytica is an industrial host with a high fatty acid flux. Even though CRISPR-based tools have accelerated its metabolic engineering, there remains a need to develop tools for rapid multiplexed strain engineering to accelerate the design-build-test-learn cycle. Base editors have the potential to perform high-efficiency multiplexed gene editing because they do not depend upon double-stranded DNA breaks. Here, we identified that base editors are less toxic than CRISPR-Cas9 for multiplexed gene editing. We increased the editing efficiency by removing the extra nucleotides between tRNA and gRNA and increasing the base editor and gRNA copy number in a Ku70 deficient strain. We achieved five multiplexed gene editing in the ΔKu70 strain at 42% efficiency. Initially, we were unsuccessful at performing multiplexed base editing in NHEJ competent strain; however, we increased the editing efficiency by using a co-selection approach to enrich base editing events. Base editor-mediated canavanine gene (CAN1) knockout provided resistance to the import of canavanine, which enriched the base editing in other unrelated genetic loci. We performed multiplexed editing of up to three genes at 40% efficiency in the Po1f strain through the CAN1 co-selection approach. Finally, we demonstrated the application of multiplexed cytosine base editor for rapid multigene knockout to increase naringenin production by 2-fold from glucose or glycerol as a carbon source.


Assuntos
Sistemas CRISPR-Cas , Yarrowia , Sistemas CRISPR-Cas/genética , Yarrowia/genética , Yarrowia/metabolismo , Citosina/metabolismo , Canavanina/genética , Canavanina/metabolismo , Edição de Genes
10.
ACS Synth Biol ; 11(6): 2098-2107, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35575690

RESUMO

Bioactive plant-based secondary metabolites such as stilbenoids, flavonoids, and benzylisoquinoline alkaloids (BIAs) are produced from l-tyrosine (l-Tyr) and have a wide variety of commercial applications. Therefore, building a microorganism with high l-Tyr productivity (l-Tyr chassis) is of immense value for large-scale production of various aromatic compounds. The aim of this study was to develop an l-Tyr chassis in the nonconventional yeast Pichia pastoris (Komagataella phaffii) to produce various aromatic secondary metabolites (resveratrol, naringenin, norcoclaurine, and reticuline). Overexpression of feedback-inhibition insensitive variants of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (ARO4K229L) and chorismate mutase (ARO7G141S) enhanced l-Tyr titer from glycerol in P. pastoris. These engineered P. pastoris strains increased the titer of resveratrol, naringenin, and norcoclaurine by 258, 244, and 3400%, respectively, after expressing the corresponding heterologous pathways. The titer of resveratrol and naringenin further increased by 305 and 249%, resulting in yields of 1825 and 1067 mg/L, respectively, in fed-batch fermentation, which is the highest titer from glycerol reported to date. Furthermore, the resveratrol-producing strain accumulated intermediates in the shikimate pathway. l-Tyr-derived aromatic compounds were produced using crude glycerol byproducts from biodiesel fuel (BDF) production. Constructing an l-Tyr chassis is a promising strategy to increase the titer of various aromatic secondary metabolites and P. pastoris is an attractive host for high-yield production of l-Tyr-derived aromatic compounds from glycerol.


Assuntos
Glicerol , Engenharia Metabólica , Glicerol/metabolismo , Engenharia Metabólica/métodos , Pichia/genética , Pichia/metabolismo , Resveratrol/metabolismo , Saccharomycetales , Tirosina/metabolismo
11.
J Agric Food Chem ; 70(38): 12085-12094, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103687

RESUMO

Issatchenkia orientalis, exhibiting high tolerance against harsh environmental conditions, is a promising metabolic engineering host for producing fuels and chemicals from cellulosic hydrolysates containing fermentation inhibitors under acidic conditions. Although genetic tools for I. orientalis exist, they require auxotrophic mutants so that the selection of a host strain is limited. We developed a drug resistance gene (cloNAT)-based genome-editing method for engineering any I. orientalis strains and engineered I. orientalis strains isolated from various sources for xylose fermentation. Specifically, xylose reductase, xylitol dehydrogenase, and xylulokinase from Scheffersomyces stipitis were integrated into an intended chromosomal locus in four I. orientalis strains (SD108, IO21, IO45, and IO46) through Cas9-based genome editing. The resulting strains (SD108X, IO21X, IO45X, and IO46X) efficiently produced ethanol from cellulosic and hemicellulosic hydrolysates even though the pH adjustment and nitrogen source were not provided. As they presented different fermenting capacities, selection of a host I. orientalis strain was crucial for producing fuels and chemicals using cellulosic hydrolysates.


Assuntos
Engenharia Metabólica , Xilose , Aldeído Redutase/genética , Sistemas CRISPR-Cas , D-Xilulose Redutase/genética , Etanol/metabolismo , Fermentação , Engenharia Metabólica/métodos , Nitrogênio/metabolismo , Pichia , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
12.
ACS Synth Biol ; 6(1): 29-38, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27600996

RESUMO

The shikimate pathway serves an essential role in many organisms. Not only are the three aromatic amino acids synthesized through this pathway, but many secondary metabolites also derive from it. Decades of effort have been invested into engineering Saccharomyces cerevisiae to produce shikimate and its derivatives. In addition to the ability to express cytochrome P450, S. cerevisiae is generally recognized as safe for producing compounds with nutraceutical and pharmaceutical applications. However, the intrinsically complicated regulations involved in central metabolism and the low precursor availability in S. cerevisiae has limited production levels. Here we report the development of a new platform based on Scheffersomyces stipitis, whose superior xylose utilization efficiency makes it particularly suited to produce the shikimate group of compounds. Shikimate was produced at 3.11 g/L, representing the highest level among shikimate pathway products in yeasts. Our work represents a new exploration toward expanding the current collection of microbial factories.


Assuntos
Saccharomycetales/metabolismo , Ácido Chiquímico/metabolismo , Aminoácidos Aromáticos/biossíntese , Perfilação da Expressão Gênica , Genes Fúngicos , Genes Reporter , Engenharia Metabólica , Redes e Vias Metabólicas , Regiões Promotoras Genéticas , Saccharomycetales/genética , Biologia Sintética , Regiões Terminadoras Genéticas , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa