Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Invertebr Pathol ; 206: 108157, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908473

RESUMO

The infection caused by Nosema bombycis often known as pebrine, is a devastating sericulture disease. The infection can be transmitted to the next generation through eggs laid by infected female Bombyx mori moths (transovarial) as well as with N. bombycis contaminated food (horizontal). Most diagnoses were carried out in the advanced stages of infection until the time that infection might spread to other healthy insects. Hence, early diagnosis of pebrine is of utmost importance to quarantine infected larvae from uninfected silkworm batches and stop further spread of the infection. The findings of our study provide an insight into how the silkworm larval host defence system was activated against early N. bombycis transovarial infection. The results obtained from transcriptome analysis of infected 2nd instar larvae revealed significant (adjusted P-value < 0.05) expression of 1888 genes of which 801 genes were found to be upregulated and 1087 genes were downregulated when compared with the control. Pathway analysis indicated activation of the immune deficiency (IMD) pathway, which shows a potential immune defence response against pebrine infection as well as suppression of the melanin synthesis pathway due to lower expression of prophenoloxidase activating enzyme (PPAE). Liquid chromatography mass spectrometry (LC-MS/MS) analysis of haemolymph from infected larvae shows the secretion of serpin binding protein of N. bombycis which might be involved in the suppression of the melanization pathway. Moreover, among the differentially expressed genes, we found that LPMC-61, yellow-y, gasp and osiris 9 can be utilised as potential markers for early diagnosis of transovarial pebrine infection in B. mori. Physiological as well as biochemical roles and functions of many of the essential genes are yet to be established, and enlightened research will be required to characterize the products of these genes.

2.
BMC Genomics ; 24(1): 420, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495972

RESUMO

BACKGROUND: The interaction networks between coding and non-coding RNAs (ncRNAs) including long non-coding RNA (lncRNA), covalently closed circular RNA (circRNA) and miRNA are significant to elucidate molecular processes of biological activities and interactions between host and pathogen. Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-feeding industry. However, little is known about ncRNAs that take place in the microsporidia congenital infection. Here we conducted whole-transcriptome RNA-Seq analyses to identify ncRNAs and regulatory networks for both N. bombycis and host including silkworm embryos and larvae during the microsporidia congenital infection. RESULTS: A total of 4,171 mRNAs, 403 lncRNA, 62 circRNAs, and 284 miRNAs encoded by N. bombycis were identified, among which some differentially expressed genes formed cross-talk and are involved in N. bombycis proliferation and infection. For instance, a lncRNA/circRNA competing endogenous RNA (ceRNA) network including 18 lncRNAs, one circRNA, and 20 miRNAs was constructed to describe 14 key parasites genes regulation, such as polar tube protein 3 (PTP3), ricin-B-lectin, spore wall protein 4 (SWP4), and heat shock protein 90 (HSP90). Regarding host silkworm upon N. bombycis congenital infection, a total of 14,889 mRNAs, 3,038 lncRNAs, 19,039 circRNAs, and 3,413 miRNAs were predicted based on silkworm genome with many differentially expressed coding and non-coding genes during distinct developmental stages. Different species of RNAs form interacting network to modulate silkworm biological processes, such as growth, metamorphosis and immune responses. Furthermore, a lncRNA/circRNA ceRNA network consisting of 140 lncRNAs, five circRNA, and seven miRNAs are constructed hypothetically to describe eight key host genes regulation, such as Toll-6, Serpin-6, inducible nitric oxide synthase (iNOS) and Caspase-8. Notably, cross-species analyses indicate that parasite and host miRNAs play a vital role in pathogen-host interaction in the microsporidia congenital infection. CONCLUSION: This is the first comprehensive pan-transcriptome study inclusive of both N. bombycis and its host silkworm with a specific focus on the microsporidia congenital infection, and show that ncRNA-mediated regulation plays a vital role in the microsporidia congenital infection, which provides a new insight into understanding the basic biology of microsporidia and pathogen-host interaction.


Assuntos
MicroRNAs , Microsporidiose , Nosema , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , Nosema/fisiologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , RNA Mensageiro , Redes Reguladoras de Genes
3.
Parasitol Res ; 123(1): 59, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112902

RESUMO

Nosema bombycis, an obligate intracellular parasite, is a single-celled eukaryote known to infect various tissues of silkworms, leading to the manifestation of pebrine. Trehalase, a glycosidase responsible for catalyzing the hydrolysis of trehalose into two glucose molecules, assumes a crucial role in thermal stress tolerance, dehydration, desiccation stress, and asexual development. Despite its recognized importance in these processes, the specific role of trehalase in N. bombycis remains uncertain. This investigation focused on exploring the functions of trehalase 3 in N. bombycis (NbTre3). Immunofluorescence analysis of mature (dormant) spores indicated that NbTre3 primarily localizes to the spore membrane or spore wall, suggesting a potential involvement in spore germination. Reverse transcription-quantitative polymerase chain reaction results indicated that the transcriptional level of NbTre3 peaked at 6 h post N. bombycis infection, potentially contributing to energy storage for proliferation. Throughout the life cycle of N. bombycis within the host cell, NbTre3 was detected in sporoplasm during the proliferative stage rather than the sporulation stage. RNA interference experiments revealed a substantial decrease in the relative transcriptional level of NbTre3, accompanied by a certain reduction in the relative transcriptional level of Nb16S rRNA. These outcomes suggest that NbTre3 may play a role in the proliferation of N. bombycis. The application of the His pull-down technique identified 28 proteins interacting with NbTre3, predominantly originating from the host silkworm. This finding implies that NbTre3 may participate in the metabolism of the host cell, potentially utilizing the host cell's energy resources.


Assuntos
Bombyx , Microsporidiose , Nosema , Animais , Trealase/genética , Trealase/metabolismo , Esporos Fúngicos/metabolismo , Nosema/genética , Bombyx/parasitologia
4.
J Invertebr Pathol ; 195: 107846, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36283467

RESUMO

Many organisms go through a process of programmed cell death called apoptosis while newer cells are created. This has the effect of protecting the organism from cellular parasites and is a major line of defense against invading organisms. Apoptosis inhibitors, then, play an important role in aiding infectious agents by inhibiting caspase protease and thus the apoptopic pathway. In this study, we identified an inhibitor of apoptosis protein (IAP) in the microsporidian Nosema bombycis (NbIAP). NbIAP a composed of 218 amino acids containing two overlapping domains; the BIR domain and a zf-C3HC domain. We show, through indirect immunofluorescence, that NbIAP is present throughout the life cycle of N. bombycis and is localized in the nucleus of the parasite and therefor does not act on caspase protease directly. qRT-PCR analysis shows that the expression of the NbIAP gene was the highest on the first day of infection, then decreased to a relatively stable level. In addition, we show that the downregulation of the NbIAP gene directly inhibits the proliferation of N. bombycis. These findings suggest that NbIAP plays an important role in the N. bombycis life cycle.


Assuntos
Bombyx , Nosema , Animais , Bombyx/metabolismo , Nosema/fisiologia , Peptídeo Hidrolases , Caspases/metabolismo
5.
Bull Entomol Res ; 112(4): 502-508, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35382911

RESUMO

Nosema bombycis is a destructive and specific intracellular parasite of silkworm, which is extremely harmful to the silkworm industry. N. bombycis is considered as a quarantine pathogen of sericulture because of its long incubation period and horizontal and vertical transmission. Herein, two single-chain antibodies targeting N. bombycis hexokinase (NbHK) were cloned and expressed in fusion with the N-terminal of Slmb (a Drosophila melanogaster FBP), which contains the F-box domain. Western blotting demonstrated that Sf9-III cells expressed NSlmb-scFv-7A and NSlmb-scFv-6H, which recognized native NbHK. Subsequently, the NbHK was degraded by host ubiquitination system. When challenged with N. bombycis, the transfected Sf9-III cells exhibited better resistance relative to the controls, demonstrating that NbHK is a prospective target for parasite controls and this approach represents a potential solution for constructing N. bombycis-resistant Bombyx mori.


Assuntos
Bombyx , Nosema , Animais , Bombyx/genética , Drosophila melanogaster , Hexoquinase/metabolismo , Estudos Prospectivos
6.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36613990

RESUMO

Microsporidia are ubiquitous in the environment, infecting almost all invertebrates, vertebrates, and some protists. The microsporidian Nosema bombycis causes silkworms pébrine disease and leads to huge economic losses. Parasite secreted proteins play vital roles in pathogen-host interactions. Serine protease inhibitors (serpins), belonging to the largest and most broadly distributed protease inhibitor superfamily, are also found in Microsporidia. In this study, we characterized 19 serpins (NbSPNs) in N. bombycis; eight of them were predicted with signal peptides. All NbSPN proteins contain a typical conserved serpin (PF00079) domain. The comparative genomic analysis revealed that microsporidia serpins were only found in the genus Nosema. In addition to N. bombycis, a total of 34 serpins were identified in another six species of Nosema including N. antheraeae (11), N. granulosis (8), Nosema sp. YNPr (3), Nosema sp. PM-1 (3), N. apis (4), and N. ceranae (5). Serpin gene duplications in tandem obviously occurred in Nosema antheranae. Notably, the NbSPNs were phylogenetically clustered with serpins from the Chordopoxvirinae, the subfamily of Poxvirus. All 19 NbSPN transcripts were detected in the infected midgut and fat body, while 19 NbSPN genes except for NbSPN12 were found in the transcriptome of the infected silkworm embryonic cell line BmE-SWU1. Our work paves the way for further study of serpin function in microsporidia.


Assuntos
Bombyx , Nosema , Serpinas , Animais , Abelhas , Nosema/genética , Serpinas/genética , Serpinas/metabolismo , Interações Hospedeiro-Patógeno , Genômica , Bombyx/genética , Bombyx/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499634

RESUMO

Traditional sanitation practices remain the main strategy for controlling Bombyx mori infections caused by microsporidia Nosema bombycis. This actualizes the development of new approaches to increase the silkworm resistance to this parasite. Here, we constructed a mouse scFv library against the outer loops of N. bombycis ATP/ADP carriers and selected nine scFv fragments to the transporter, highly expressed in the early stages of the parasite intracellular growth. Expression of selected scFv genes in Sf9 cells, their infection with different ratios of microsporidia spores per insect cell, qPCR analysis of N. bombycis PTP2 and Spodoptera frugiperda COXI transcripts in 100 infected cultures made it possible to select the scFv fragment most effectively inhibiting the parasite growth. Western blot analysis of 42 infected cultures with Abs against the parasite ß-tubulin confirmed its inhibitory efficiency. Since the VL part of this scFv fragment was identified as a human IgG domain retained from the pSEX81 phagemid during library construction, its VH sequence should be a key antigen-recognizing determinant. Along with the further selection of new recombinant Abs, this suggests the searching for its natural mouse VL domain or "camelization" of the VH fragment by introducing cysteine and hydrophilic residues, as well as the randomization of its CDRs.


Assuntos
Bombyx , Microsporídios não Classificados , Nosema , Parasitos , Anticorpos de Cadeia Única , Humanos , Camundongos , Animais , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Nosema/genética , Nosema/metabolismo , Bombyx/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo
8.
J Invertebr Pathol ; 184: 107646, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256048

RESUMO

The chaperonin-containing t-complex polypeptide 1 (CCT) is a molecular chaperone protein that is widely present in eukaryotic cytoplasm and can assist in the folding of newly synthesized proteins. The CCT complex consists of eight completely different subunits, among which the δ subunit plays an extremely important role in the folding and assembly of cytoskeleton proteins as an individual or complex with other subunits. In this study, we identified the CCTδ in the microsporidian Nosema bombycis (NbCCTδ) for the first time. The NbCCTδ gene contains a complete ORF of 1497 bp in length that encodes a 498 amino acid polypeptide. NbCCTδ is expressed throughout the entire lifecycle of N. bombycis and rather higher in early stage of proliferation. Indirect immunofluorescence results showed that NbCCTδ was colocalized with actin and ß-tubulin during the proliferative and sporogonic phases of N. bombycis. RNA interference down-regulated the expression of the NbCCTδ gene. These results imply that NbCCTδ may participate in cytoskeleton formation and proliferation of N. bombycis.


Assuntos
Chaperonina com TCP-1/genética , Proteínas Fúngicas/genética , Nosema/fisiologia , Actinas/genética , Actinas/metabolismo , Chaperonina com TCP-1/metabolismo , Citoesqueleto/fisiologia , Proteínas Fúngicas/metabolismo , Nosema/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
J Invertebr Pathol ; 183: 107600, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961882

RESUMO

The single-celled pathogen Nosema bombycis, that can infect silkworm Bombyx mori and other lepidoptera including Spodoptera, is the first identified Microsporidia which has diplokaryotic nuclei throughout the life cycle. Septin proteins can form highly ordered filaments, bundles or ring structures related to the cytokinesis in fungi. Here, three septin proteins (NbSeptin1, NbSeptin2 and NbSeptin3) from Nosema bombycis CQ I are described. These proteins, appear to be conserved within the phylum Microsporidia. NbSeptins transcripts were detected throughout the pathogen developmental cycle and were significantly enhanced from second days of infection, which lead to our hypothesis that NbSeptins play a role in merogony. Immunofluorescence assay (IFA) revealed a broad distribution of NbSeptins in meronts and partly co-localization of NbSeptins. Interestingly, in some of meronts, NbSeptin2 and NbSeptin3 showed localization between the nuclei of the diplokaryon. Yeast two-hybrid and co-immunoprecipitation analysis verified that NbSeptins can interact with each other. Our findings suggest that NbSeptins can cooperate in the proliferation stage of Nosema bombycis and contribute towards the understanding of the rols of septins in microsporidia development.


Assuntos
Nosema/fisiologia , Septinas/genética , Esporos Fúngicos/fisiologia , Sequência de Aminoácidos , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Larva/crescimento & desenvolvimento , Larva/microbiologia , Nosema/genética , Nosema/crescimento & desenvolvimento , Filogenia , Septinas/química , Septinas/metabolismo , Alinhamento de Sequência
10.
Parasitol Res ; 120(6): 2125-2134, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33768334

RESUMO

As one of the core framework proteins of nuclear pore complex (NPC), nucleoporin Nupl70 acts as a structural adapter between the nucleolus and nuclear pore membrane and maintains the stability of NPC structure through interaction with other proteins. In this study, we identified a Nup170 protein in the microsporidian Nosema bombycis for the first time and named it as NbNup170. Secondary structure prediction showed that the NbNup170 contains α-helices and random coils. The three-dimensional structure of NbNup170 is elliptical in shape. Phylogenetic analysis based on the Nup170 and homologous sequences showed that N. bombycis clustered together with Vairimorpha ceranae and Vairimorpha apis. The immunofluorescence localization results showed that the NbNup170 was located on the plasma membrane of the dormant spore and transferred to the surface of sporoplasm in a punctate pattern when the dormant spore has finished germination, and that NbNup170 was distributed on the nuclear membrane and both sides of the nuclei of early proliferative phase, and only on the nuclear membrane during sporogonic phase in the N. bombycis. qPCR analysis showed that the relative expression level of NbNup170 maintained at a low level from 30 to 78 h post-infection with N. bombycis, then reached the highest at 102 h, while that of NbNup170 was repressed at a very low level throughout its life cycle by RNA interference. These results suggested that NbNup170 protein is involved in the proliferative phase and active during the sporogonic phase of N. bombycis.


Assuntos
Proteínas Fúngicas/metabolismo , Nosema/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Bombyx , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Nosema/genética , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Filogenia , Estrutura Secundária de Proteína , Esporos Fúngicos/metabolismo
11.
Pestic Biochem Physiol ; 174: 104809, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838710

RESUMO

Energy metabolism is important for the proliferation of microsporidia in infected host cells, but there is limited information on the host response. The energy metabolism response of silkworm (Bombyx mori) to microsporidia may help manage Nosema bombycis infections. We analyzed differentially expressed genes in the B.mori midgut transcriptome at two significant time points of microsporidia infection. A total of 1448 genes were up-regulated, while 315 genes were down-regulated. A high proportion of genes were involved in the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, and glycerolipid metabolism at 48 h post infection (h p.i.), and a large number of genes were involved in the TCA cycle and protein processing at 120 h p.i. These results showed that the early stages of microsporidia infection affected the basic metabolism and biosynthesis processes of the silkworm. Knockout of Bm_nscaf2860_46 (Bombyx mori isocitrate dehydrogenase, BmIDH) and Bm_nscaf3027_062 (Bombyx mori hexokinase, BmHXK) reduced the production of ATP and inhibited microsporidia proliferation. Host fatty acid degradation, glycerol metabolism, glycolysis pathway, and TCA cycle response to microsporidia infection were also analyzed, and their importance to microsporidia proliferation was verified. These results increase our understanding of the molecular mechanisms involved in N. bombycis infection and provide new insights for research on microsporidia control. IMPORTANCE: Nosema bombycis can be vertically transmitted in silkworm eggs. The traditional prevention and control strategies for microsporidia are difficult and time-consuming, and this is a problem in silkworm culture. Research has mainly focused on host gene functions related to microsporidia infection and host immune responses after microsporidia infection. Little is known about the metabolic changes occurring in the host after infection. Understanding the metabolic changes in the silkworm host could aid in the recognition of host genes important for microsporidia infection and growth. We analyzed host metabolic changes and the main participating pathways at two time points after microsporidia infection and screened the microsporidia-dependent host energy metabolism genes BmIDH and BmHXK. The results revealed genes that are important for the proliferation of Nosema bombycis. These results illustrate how microsporidia hijack the host genome for their growth and reproduction.


Assuntos
Bombyx , Nosema , Animais , Bombyx/genética , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Nosema/genética
12.
J Invertebr Pathol ; 174: 107420, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32522660

RESUMO

Microsporidia are obligate intracellular parasites and cannot be cultured in vitro, which limits the use of current genetic engineering technologies on this pathogen. We isolated sporoplasms of Nosema bombycis to attempt to culture the pathogen in vitro. Cell-free medium was designed and successfully maintained the sporoplasms for 5 days. The sporoplasms were able to absorb ATP from the medium and DNA replicated during cultivation, although there was not a significant change in morphology and number of sporoplasms. Our study provides a strategy for in vitro cultivation and genetic manipulation of microsporidia. .


Assuntos
Engenharia Genética/métodos , Nosema/crescimento & desenvolvimento , Técnicas Microbiológicas/métodos
13.
J Invertebr Pathol ; 172: 107350, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32194029

RESUMO

Nosema bombycis, the first identified microsporidium, causes heavy losses to the sericulture industry in China. During infection, microsporidia discharge a long and hollow polar tube, which delivers the sporoplasm into host cells. Polar tube protein 1 was the major component on the polar tube. Previously, we expressed the polar tube protein 1 from Nosema bombycis (NbPTP1) intercellularly in Drosophila S2 cells. Here, the microsporidian protein was expressed in Lepidopteran Sf9 cells. During heterologous expression, NbPTP1 protein was secreted and glycosylated. Microsporidian proliferation decreased in NbPTP1-expressing Sf9 cells. This confirms that NbPTP1 protein can interact with the host cell membrane receptor protein to facilitate microsporidian invasion.


Assuntos
Proteínas Fúngicas/genética , Nosema/fisiologia , Spodoptera/microbiologia , Animais , Proteínas Fúngicas/metabolismo , Nosema/genética , Células Sf9/microbiologia
14.
J Invertebr Pathol ; 172: 107355, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199834

RESUMO

The microsporidium Nosema bombycis is an obligate intracellular parasite of Bombyx mori and causes serious losses in the sericulture industry. The isobaric tags for relative and absolute quantitation (iTRAQ) methods have been used to study numerous pathogen-host interactions. Here, using iTRAQ technology, we explored the quantitative proteomics by gene ontology and KEGG. The proteins in the ovaries of B. mori infected with N. bombycis were identified and compared to those in uninfected ovaries by iTRAQ. A total of 5401 proteins were identified, and 70 of them were differentially expressed. The differentially quantified proteins were involved in a variety of important processes and pathways, such as host development, host metabolism or host defense system. Most proteins involved in basic metabolism were up-regulated following infection, and the expression levels of some proteins related to the host immunity, such as the lipid droplet protein prilipin, 30 K proteins, HDD13, and beta-1,3-glucan recognition protein, were altered after infection with N. bombycis. Juvenile hormone acid methyltransferase, which regulates insect development, and ATG8, which is a key factor in autophagy, were also induced by N. bombycis infection. Our comparative and quantitative proteomic data will provide new insights into the interaction between N. bombycis and B. mori, especially in the host ovary.


Assuntos
Bombyx/microbiologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/análise , Nosema/fisiologia , Proteoma/análise , Animais , Feminino , Ovário/microbiologia , Proteômica
15.
J Invertebr Pathol ; 170: 107322, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901433

RESUMO

Microsporidia are a fascinating phylum of obligate intracellular pathogens with unique infection processes and complicated life cycles. Microsporidian life cycles can be divided roughly into intracellular and extracellular stages. Currently, research on their life cycles were mainly explored by morphology because there are few molecular markers available with which to distinguish the different life stages. In this study, we generated H20, a monoclonal antibody (MAb) to label mature spores of Nosema bombycis. Immunofluorescence assays showed that the target protein of H20, which is highly stable and was barely affected by alkali and sodium dodecyl sulfate (SDS) treatments, was located on the mature spore surface. Western blot analysis showed that spore wall protein 26 (SWP26) was the likely target of H20. This MAb can specifically identify mature spores in a complex biological sample based on immunological detection of the parasite.


Assuntos
Nosema/isolamento & purificação , Esporos Fúngicos/isolamento & purificação , Anticorpos Antifúngicos/análise , Anticorpos Monoclonais/análise , Antígenos de Fungos/análise , Western Blotting , Técnica Indireta de Fluorescência para Anticorpo , Técnicas In Vitro
16.
J Invertebr Pathol ; 174: 107441, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32659232

RESUMO

Splicing factors are important components of RNA editing in eukaryotic organisms and can produce many functional and coding genes, which is an indispensable step for the correct expression of corresponding proteins. In this study, we identified splicing factor arginine/serine-rich 10 protein in the microsporidian Nosema bombycis and named it NbSRSF10. The NbSRSF10 gene contains a complete ORF of 1449 bp in length that encodes a 482-amino acid polypeptide. The isoelectric point (pI) of the protein encoded by NbSRSF10 gene was 4.94. NbSRSF10 has a molecular weight of 54.6 kD and has no signal peptide. NbSRSF10 is comprised of arginine (11.41%), glutamic acid (11.41%) and serine (9.54%) among the total amino acids, and 7 α-helix, 7 ß-sheet and 15 random coils in secondary structure, and contains 71 phosphorylation sites, 22 N-glycosylation sites and 20 O-glycosylation sites. The three-dimensional structure of NbSRSF10 is similar to that of transformer-2 beta of Homo sapiens (hTra2-ß). Indirect immunofluorescence showed that the NbSRSF10 is localized in the cytoplasm of the dormant microsporidian spore and is transferred to the nuclei when N. bombycis develops into the proliferative and sporogonic phase. qPCR revealed that the relative expression of NbSRSF10 increased in the meronts stage and was found at a relatively low level in the sporogonic phase of development of N. bombycis, and was up-regulated again during infection in the host cell and early proliferative phase of second life cycle. These results suggested that the NbSRSF10 may participate in the whole life cycle and play an important role in transcription regulation of N. bombycis.


Assuntos
Proteínas Fúngicas/genética , Nosema/genética , Fatores de Processamento de Serina-Arginina/genética , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Nosema/metabolismo , Fosforilação , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/metabolismo
17.
J Invertebr Pathol ; 169: 107310, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862268

RESUMO

Nosema bombycis is an obligate intracellular pathogen that can be transmitted vertically from infected females to eggs, resulting in congenital infections in embryos. Here we investigated the proliferation characteristics of N. bombycis in silkworm embryos using a histopathological approach and deep RNA sequencing. We found that N. bombycis proliferated mainly around yolk granules at the early stage of the embryonic development, 1-2 days post oviposition (dpo). At 4-6 dpo, a portion of N. bombycis in different stages adjacent to the embryo were packaged into the newly formed intestinal lumen, while the remaining parasites continued to proliferate around yolk granules. In the newly hatched larvae (9 dpo), the newly formed spores accumulated in the gut lumen and immediately were released into the environment via the faeces. Transcriptional profiling of N. bombycis further confirmed multiplication of N. bombycis throughout every stage of embryonic development. Additionally, the increased transcriptional level of spore wall proteins and polar tube proteins from 4 dpo indicated an active formation of mature spores. Taken together, our results have provided a characterization of the proliferation of this intracellular microsporidian pathogen in congenitally infected embryos leading to vertical transmission.


Assuntos
Bombyx/microbiologia , Interações Hospedeiro-Patógeno , Nosema/fisiologia , Animais , Bombyx/embriologia , Bombyx/crescimento & desenvolvimento , Embrião não Mamífero/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , RNA-Seq
18.
J Invertebr Pathol ; 168: 107260, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31622597

RESUMO

Nosema bombycis is a pathogen of the silkworm that belongs to the microsporidia, a group of obligate intracellular parasites related to fungi. N. bombycis infection causes the disease pébrine in silkworms. Insects utilize hemolymph melanization as part of the innate immune response to fight against pathogens, and melanization relies on a serine protease-mediated prophenoloxidase (PPO) activation cascade that is tightly regulated by serine protease inhibitors (serpins). Previous studies showed that N. bombycis infection suppressed silkworm hemolymph melanization, however the mechanism has not been elucidated. We hypothesize that N. bombycis can secret serpins (NbSPNs) to inhibit host serine proteases in the PPO activation cascade, thus suppressing phenoloxidase (PO) activity and the consequent melanization. We demonstrated in this study that N. bombycis infection suppressed silkworm PO activity and melanization and we identified the expression of N. bombycis serpin 6 (NbSPN6) in the hemolymph of the infected host. When recombinant NbSPN6 was added to normal hemolymph, PO activity was inhibited in a dose-dependent manner. Moreover, in vivo analysis by RNA interference technology showed that when NbSPN6 expression is blocked, the inhibitory effects on PO activity can be reversed and the proliferation of N. bombycis within host can be suppressed. These results demonstrated the indispensable role of NbSPN6 in successful pathogen infection. To further elucidate the molecular basis of NbSPN6 suppressing host defense, we determined that the host serine protease prophenoloxidase-activating enzyme (PPAE) is the direct target of NbSPN6 inhibition. Taken together, our novel study is the first to elucidate the molecular mechanism of pathogen-derived serpin inhibiting hemolymph melanization and, thus, regulating host innate immune responses. This study may also provide novel strategies for preventing microsporidia infection.


Assuntos
Bombyx/microbiologia , Nosema/metabolismo , Serina Endopeptidases/metabolismo , Serpinas/metabolismo , Animais , Bombyx/imunologia , Bombyx/metabolismo , Expressão Gênica , Hemolinfa/imunologia , Hemolinfa/metabolismo , Interações Hospedeiro-Parasita , Imunidade Inata , Proteínas de Insetos/metabolismo , Melaninas/imunologia , Melaninas/metabolismo , Nosema/genética , Serina Proteases/metabolismo , Serpinas/genética
19.
J Invertebr Pathol ; 160: 76-86, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550745

RESUMO

An antagonistic effect of a microsporidium (Nosema sp.) infection on the virulence of Phthorimaea operculella granulovirus (PhopGV) was recorded in potato tuber moth (Phthorimaea operculella) larvae with mixed infections. When the P. operculella colony was infected at a high rate (42.8-100%) with the microsporidium, it was less susceptible to the isolate PhopGV-GR1.1. A virus concentration 1.89 × 105 higher was necessary to cause the same level of mortality produced in the P. operculella colony when it was uninfected or had a low level of infection with the microsporidium (0-30%). This antagonistic effect was driven by a Nosema isolate (termed Nosema sp. Phop) that was purified from microsporidian-infected P. operculella individuals. The purified microsporidium was characterised by morphological features, including size, filament coils and different developmental stages using transmission electron microscopy (TEM). On the molecular level, the partial cistron rDNA information of the small ribosomal subunit (SSU), internal transcribed spacer (ITS), and the large ribosomal subunit (LSU) were identified. Phylogenetic analyses revealed that the newly described microsporidium belongs to the "true Nosema" clade. Partial sequence information of the RNA polymerase II largest subunit (RPB1) suggested that Nosema bombycis is the closest relative (98% identity). The morphological and phylogenetic characteristics suggest that it is an isolate of N. bombycis. Interactions of microsporidia and betabaculoviruses are rarely described in the literature, although mixed infections of different pathogens seem to be rather common events, ranging from antagonistic to mutualistic interactions. The observed antagonistic relationship between the Nosema sp. and PhopGV-GR1.1 showed that pathogen interactions need to be considered when single pathogens are applied to insect populations in the context of biological control of insect pests.


Assuntos
Coinfecção , Granulovirus/patogenicidade , Mariposas/parasitologia , Mariposas/virologia , Nosema , Animais , Antibiose , Coinfecção/parasitologia , Coinfecção/virologia , DNA Ribossômico/genética , Larva/parasitologia , Larva/virologia , Nosema/classificação , Nosema/genética , Nosema/ultraestrutura , Filogenia
20.
J Invertebr Pathol ; 164: 59-65, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31039370

RESUMO

Nosema bombycis, the pathogen of silkworm pébrine, causes enormous economic losses to sericulture. As such, quarantine of commercial silkworm eggs represents an important safeguard to the silkworm industry. Here, we established a user-friendly detection system based on a nucleic acid lateral flow strip (NAFLS) that combines polymerase chain reaction (PCR) and a colloidal gold strip. PCR primers were designed based on the sequence of LSU rDNA of N. bombycis and has favourable specificity for common microsporidian isolates in silkworms. The forward and reverse primers were labeled on the 5' end with biotin and carboxyfluorescein (FAM), respectively. Genomic DNA was extracted from egg samples and was used as a template for PCR, followed by subsequent detection by NALFS. The detection limit of purified N. bombycis genomic DNA was 1 pg, 100× more sensitive than that of agarose gel electrophoresis (AGE). Furthermore, the sensitivity of detection of simulated "infected" silkworm eggs was 10-100× higher than that of AGE. NALFS detected infection in 27 of 29 samples of silkworm eggs oviposited by female moths infected in lab; ≥2% infected eggs per batch are detected as positive, while ≥40% infected eggs per batch are required for detection by AGE. Collectively, NALFS is easy to use and has great potential for widespread use in the detection of N. bombycis in silkworm egg production.


Assuntos
Bombyx/microbiologia , Microsporidiose/diagnóstico , Nosema/isolamento & purificação , Animais , Óvulo/microbiologia , Patologia Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa