Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 22(7): 3377-3387, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654647

RESUMO

Hirschsprung disease (HSCR) is a severe multifactorial genetic disorder. Microarray studies indicated GAL, GAP43 and NRSN1 might contribute to the altered risk in HSCR. Thus, we focused on genetic variations in GAL, GAP43 and NRSN1, and the gene-gene interactions involved in HSCR susceptibility. We recruited a strategy combining case-control study and MassArray system with interaction network analysis. For GAL, GAP43 and NRSN1, a total of 18 polymorphisms were assessed in 104 subjects with sporadic HSCR and 151 controls of Han Chinese origin. We found statistically significant differences between HSCR and control groups at 5 genetic variants. For each gene, the haplotypes combining all polymorphisms were the most significant. Based on SNPsyn, MDR and GeneMANIA analyses, we observed significant gene-gene interactions among GAL, GAP43, NRSN1 and our previous identified RELN, GABRG2 and PTCH1. Our study for the first time indicates that genetic variants within GAL, GAP43 and NRSN1 and related gene-gene interaction networks might be involved in the altered susceptibility to HSCR in the Han Chinese population, which might shed more light on HSCR pathogenesis.


Assuntos
Proteína GAP-43/genética , Galanina/genética , Doença de Hirschsprung/genética , Proteínas de Membrana/genética , Povo Asiático/genética , Estudos de Casos e Controles , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Feminino , Frequência do Gene , Redes Reguladoras de Genes , Predisposição Genética para Doença , Haplótipos , Humanos , Lactente , Masculino , Proteínas do Tecido Nervoso/genética , Receptor Patched-1/genética , Polimorfismo de Nucleotídeo Único , Receptores de GABA-A/genética , Proteína Reelina , Serina Endopeptidases/genética
2.
Brain ; 139(Pt 10): 2792-2803, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27343255

RESUMO

Literacy learning depends on the flexibility of the human brain to reconfigure itself in response to environmental influences. At the same time, literacy and disorders of literacy acquisition are heritable and thus to some degree genetically predetermined. Here we used a multivariate non-parametric genetic model to relate literacy-associated genetic variants to grey and white matter volumes derived by voxel-based morphometry in a cohort of 141 children. Subsequently, a sample of 34 children attending grades 4 to 8, and another sample of 20 children, longitudinally followed from kindergarten to first grade, were classified as dyslexics and controls using linear binary support vector machines. The NRSN1-associated grey matter volume of the 'visual word form area' achieved a classification accuracy of ~ 73% in literacy-experienced students and distinguished between later dyslexic individuals and controls with an accuracy of 75% at kindergarten age. These findings suggest that the cortical plasticity of a region vital for literacy might be genetically modulated, thereby potentially preconstraining literacy outcome. Accordingly, these results could pave the way for identifying and treating the most common learning disorder before it manifests itself in school.

3.
Cell Rep ; 43(7): 114514, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39002126

RESUMO

The regenerative potential of injured axons displays considerable heterogeneity. However, the molecular mechanisms underlying the heterogeneity have not been fully elucidated. Here, we establish a method that can separate spinal motor neurons (spMNs) with low and high regenerative capacities and identify a set of transcripts revealing differential expression between two groups of neurons. Interestingly, oligodendrocyte transcription factor 1 (Olig1), which regulates the differentiation of various neuronal progenitors, exhibits recurrent expression in spMNs with enhanced regenerative capabilities. Furthermore, overexpression of Olig1 (Olig1 OE) facilitates axonal regeneration in various models, and down-regulation or deletion of Olig1 exhibits an opposite effect. By analyzing the overlapped differentially expressed genes after expressing individual Olig factor and functional validation, we find that the role of Olig1 is at least partially through the neurite extension factor 1 (Nrsn1). We therefore identify Olig1 as an intrinsic factor that promotes regenerative capacity of injured axons.


Assuntos
Axônios , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Perfilação da Expressão Gênica , Regeneração Nervosa , Animais , Axônios/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Camundongos , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos Endogâmicos C57BL , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa