Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Exp Child Psychol ; 202: 104970, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33096369

RESUMO

Does number-word structure have a long-lasting impact on transcoding? Contrary to English, German number words comprise decade-unit inversion (e.g., vierundzwanzig is literally translated as four-and-twenty). To investigate the mental representation of numbers, we tested the effect of visual and linguistic-morphological characteristics on the development of verbal-visual transcoding. In a longitudinal cross-linguistic design, response times (RTs) in a number-matching experiment were analyzed in Grade 2 (119 German-speaking and 179 English-speaking children) and in Grade 3 (131 German-speaking and 160 English-speaking children). To test for long-term effects, the same experiment was given to 38 German-speaking and 42 English-speaking adults. Participants needed to decide whether a spoken number matched a subsequent visual Arabic number. Systematic variation of digits in the nonmatching distractors allowed comparison of three different transcoding accounts (lexicalization, visual, and linguistic-morphological). German speakers were generally slower in rejecting inverted number distractors than English speakers. Across age groups, German speakers were more distracted by Arabic numbers that included the correct unit digit, whereas English speakers showed stronger distraction when the correct decade digit was included. These RT patterns reflect differences in number-word morphology. The individual cost of rejecting an inverted distractor (inversion effect) predicted arithmetic skills in German-speaking second-graders only. The moderate relationship between the efficiency to identify a matching number and arithmetic performance could be observed cross-linguistically in all age groups but was not significant in German-speaking adults. Thus, findings provide consistent evidence of a persistent impact of number-word structure on number processing, whereas the relationship with arithmetic performance was particularly pronounced in young children.


Assuntos
Linguística , Matemática , Tempo de Reação , Criança , Feminino , Humanos , Masculino , Orientação Espacial , Adulto Jovem
2.
J Exp Child Psychol ; 178: 184-197, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30388483

RESUMO

Nonsymbolic numerical magnitude processing skills are assumed to be fundamental to mathematical learning. Recent findings suggest that visual-spatial skills account for associations between children's performance in visually presented nonsymbolic numerical magnitude comparison tasks and their performance in visually presented arithmetic tasks. The aim of the current study was to examine whether associations between children's performance in visually presented tasks assessing nonsymbolic numerical magnitude processing skills and their performance in tasks assessing early mathematical skills, which do not involve visual stimulation, may also be mediated by visual-spatial skills. This line of reasoning is based on the assumption that children make use of mental visualization processes when working on tasks assessing early mathematical skills, such as knowledge of the sequence of number words, even when these tasks do not involve visual stimulation. We assessed 4- to 6-year-old children's performance in a nonsymbolic numerical magnitude comparison task, in tasks concerning knowledge of the sequence of number words, and in a developmental test to assess visual-spatial skills. Children's nonsymbolic numerical magnitude processing skills were found to be associated with their number word sequence skills. This association was fully mediated by interindividual differences in visual-spatial skills. The effect size of this mediation effect was small. We assume that the ability to construct mental visualizations constitutes the key factor underlying this mediation effect.


Assuntos
Desenvolvimento Infantil , Matemática , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estimulação Luminosa , Resolução de Problemas
3.
J Exp Child Psychol ; 150: 207-226, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27348475

RESUMO

Children can represent number in at least two ways: by using their non-verbal, intuitive approximate number system (ANS) and by using words and symbols to count and represent numbers exactly. Furthermore, by the time they are 5years old, children can map between the ANS and number words, as evidenced by their ability to verbally estimate numbers of items without counting. How does the quality of the mapping between approximate and exact numbers relate to children's math abilities? The role of the ANS-number word mapping in math competence remains controversial for at least two reasons. First, previous work has not examined the relation between verbal estimation and distinct subtypes of math abilities. Second, previous work has not addressed how distinct components of verbal estimation-mapping accuracy and variability-might each relate to math performance. Here, we addressed these gaps by measuring individual differences in ANS precision, verbal number estimation, and formal and informal math abilities in 5- to 7-year-old children. We found that verbal estimation variability, but not estimation accuracy, predicted formal math abilities, even when controlling for age, expressive vocabulary, and ANS precision, and that it mediated the link between ANS precision and overall math ability. These findings suggest that variability in the ANS-number word mapping may be especially important for formal math abilities.


Assuntos
Aptidão/fisiologia , Matemática , Vocabulário , Criança , Pré-Escolar , Discriminação Psicológica , Feminino , Humanos , Individualidade , Testes Neuropsicológicos
4.
Neuroimage ; 122: 33-43, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26226086

RESUMO

Complex number words (e.g., "twenty two") are formed by merging together several simple number words (e.g., "twenty" and "two"). In the present study, we explored the neural correlates of this operation and investigated to what extent it engages brain areas involved processing numerical quantity and linguistic syntactic structure. Participants speaking two typologically distinct languages, French and Chinese, were required to read aloud sequences of simple number words while their cerebral activity was recorded by functional magnetic resonance imaging. Each number word could either be merged with the previous ones (e.g., 'twenty three') or not (e.g., 'three twenty'), thus forming four levels ranging from lists of number words to complex numerals. When a number word could be merged with the preceding ones, it was named faster than when it could not. Neuroimaging results showed that the number of merges correlated with activation in the left inferior frontal gyrus and in the left inferior parietal lobule. Consistent findings across Chinese and French participants suggest that these regions serve as the neural bases for forming complex number words in different languages.


Assuntos
Encéfalo/fisiologia , Linguística , Conceitos Matemáticos , Leitura , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tempo de Reação , Adulto Jovem
5.
Cogn Psychol ; 83: 1-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26413888

RESUMO

Young children typically take between 18 months and 2 years to learn the meanings of number words. In the present study, we investigated this developmental trajectory in bilingual preschoolers to examine the relative contributions of two factors in number word learning: (1) the construction of numerical concepts, and (2) the mapping of language specific words onto these concepts. We found that children learn the meanings of small number words (i.e., one, two, and three) independently in each language, indicating that observed delays in learning these words are attributable to difficulties in mapping words to concepts. In contrast, children generally learned to accurately count larger sets (i.e., five or greater) simultaneously in their two languages, suggesting that the difficulty in learning to count is not tied to a specific language. We also replicated previous studies that found that children learn the counting procedure before they learn its logic - i.e., that for any natural number, n, the successor of n in the count list denotes the cardinality n+1. Consistent with past studies, we found that children's knowledge of successors is first acquired incrementally. In bilinguals, we found that this knowledge exhibits item-specific transfer between languages, suggesting that the logic of the positive integers may not be stored in a language-specific format. We conclude that delays in learning the meanings of small number words are mainly due to language-specific processes of mapping words to concepts, whereas the logic and procedures of counting appear to be learned in a format that is independent of a particular language and thus transfers rapidly from one language to the other in development.


Assuntos
Formação de Conceito , Desenvolvimento da Linguagem , Conceitos Matemáticos , Multilinguismo , Pré-Escolar , Cognição , Feminino , Humanos , Masculino , Aprendizagem Verbal
6.
J Exp Child Psychol ; 119: 17-25, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24269580

RESUMO

Specific language influences have been observed in basic numerical tasks such as magnitude comparison, transcoding, and the number line estimation task. However, so far language influences in more complex calculations have not been reported in children. In this translingual study, 7- to 9-year-old German- and Italian-speaking children were tested on a symbolic addition task. Whereas the order of tens and units in Italian number words follows the order of the Arabic notation, the order is inverted in German number words. For both language groups, addition problems were more difficult when a carry operation was needed, that is, when a manipulation within the place-value structure of the Arabic number system was particularly important. Most important, this carry effect was more pronounced in response latencies for children speaking German, a language with inverted verbal mapping of the place-value structure. In addition, independent of language group, the size of the carry effect was significantly related to verbal working memory. The current study indicates that symbolic arithmetic and the carry effect in particular are modulated by language-specific characteristics. Our results underline the fact that the structure of the language of instruction is an important factor in children's mathematical education and needs to be taken into account even for seemingly nonverbal symbolic Arabic tasks.


Assuntos
Idioma , Matemática , Simbolismo , Áustria , Criança , Comparação Transcultural , Feminino , Humanos , Itália , Estudos Longitudinais , Masculino , Memória de Curto Prazo/fisiologia , Psicolinguística/métodos , Semântica , Análise e Desempenho de Tarefas
7.
Q J Exp Psychol (Hove) ; 77(4): 856-872, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37246891

RESUMO

Some number-naming systems are less transparent than others. For example, in Dutch, 49 is named "negenenveertig," which translates to "nine and forty," i.e., the unit is named first, followed by the decade. This is known as the "inversion property," where the morpho-syntactic representation of the number name is incongruent with its written Arabic form. Number word inversion can hamper children's developing mathematical skills. But little is known about its effects on adults' numeracy, the underlying mechanism, and how a person's bilingual background influences its effects. In the present study, Dutch-English bilingual adults performed an audiovisual matching task, where they heard a number word and simultaneously saw two-digit Arabic symbols and had to determine whether these matched in quantity. We experimentally manipulated the morpho-syntactic structure of the number words to alter their phonological (dis)similarities and numerical congruency with the target Arabic two-digit number. Results showed that morpho-syntactic (in)congruency differentially influenced quantity match and non-match decisions. Although participants were faster when hearing traditional non-transparent Dutch number names, they made more accurate decisions when hearing artificial, but morpho-syntactically transparent number words. This pattern was partly influenced by the participants' bilingual background, i.e., their L2 proficiency in English, which involves more transparent number names. Our findings suggest that, within inversion number-naming systems, multiple associations are formed between two-digit Arabic symbols and number names, which can influence adults' numerical cognition.


Assuntos
Cognição , Nomes , Adulto , Criança , Humanos , Linguística , Audição , Matemática
8.
Dev Cogn Neurosci ; 51: 101011, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562794

RESUMO

The ability to map number words to their corresponding quantity representations is a gatekeeper for children's future math success (Spaepen et al., 2018). Without number word knowledge at school entry, children are at greater risk for developing math learning difficulties (Chu et al., 2019). In the present study, we used functional magnetic resonance imaging (fMRI) to examine the neural basis for processing the meaning of spoken number words and its developmental trajectory in 4- to 10-year-old children, and in adults. In a number word-quantity mapping paradigm, participants listened to number words while simultaneously viewing quantities that were congruent or incongruent to the number word they heard. Whole brain analyses revealed that adults showed a neural congruity effect with greater neural activation for incongruent relative to congruent trials in anterior cingulate cortex (ACC) and left intraparietal sulcus (LIPS). In contrast, children did not show a significant neural congruity effect. However, a region of interest analysis in the child sample demonstrated age-related increases in the neural congruity effect, specifically in the LIPS. The positive correlation between neural congruity in LIPS and age was stronger in children who were already attending school, suggesting that developmental changes in LIPS function are experience-dependent.


Assuntos
Mapeamento Encefálico , Processamento de Texto , Adulto , Encéfalo , Criança , Pré-Escolar , Cognição , Humanos , Imageamento por Ressonância Magnética
9.
Q J Exp Psychol (Hove) ; 73(5): 726-738, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31747829

RESUMO

The linguistic structure of number words can influence performance in basic numerical tasks such as mental calculation, magnitude comparison, and transcoding. Especially the presence of ten-unit inversion in number words seems to affect number processing. Thus, at the beginning of formal math education, young children speaking inverted languages tend to make relatively more errors in transcoding. However, it remains unknown whether and how inversion affects transcoding in older children and adults. Here we addressed this question by assessing two-digit number transcoding in adults and fourth graders speaking French and German, that is, using non-inverted and inverted number words, respectively. We developed a novel transcoding paradigm during which participants listened to two-digit numbers and identified the heard number among four Arabic numbers. Critically, the order of appearance of units and tens in Arabic numbers was manipulated mimicking the "units-first" and "tens-first" order of German and French. In a third "simultaneous" condition, tens and units appeared at the same time in an ecological manner. Although language did not affect overall transcoding speed in adults, we observed that German-speaking fourth graders were globally slower than their French-speaking peers, including in the "simultaneous" condition. Moreover, French-speaking children were faster in transcoding when the order of digit appearance was congruent with their number-word system (i.e., "tens-first" condition) while German-speaking children appeared to be similarly fast in the "units-first" and "tens-first" conditions. These findings indicate that inverted languages still impose a cognitive cost on number transcoding in fourth graders, which seems to disappear by adulthood. They underline the importance of language in numerical cognition and suggest that language should be taken into account during mathematics education.


Assuntos
Desenvolvimento Infantil/fisiologia , Conceitos Matemáticos , Reconhecimento Visual de Modelos/fisiologia , Psicolinguística , Tempo de Reação/fisiologia , Percepção da Fala/fisiologia , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem
10.
Q J Exp Psychol (Hove) ; 73(1): 91-103, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31561743

RESUMO

In some languages the order of tens and units in number words is inverted compared with the symbolic digital notation (e.g., German 23 → "dreiundzwanzig," literally: "three-and-twenty"). In other languages only teen-numbers are inverted (e.g., English 17 → "seventeen"; Polish 17 → "siedemnascie" literally "seventeen"). Previous studies have focused on between group comparisons of inverted and non-inverted languages and showed that number word inversion impairs performance on basic numerical tasks and arithmetic. In two independent experiments, we investigated whether number word inversion affects addition performance within otherwise non-inverted languages (Exp. 1: English, Exp. 2: Polish). In particular, we focused on the influence of inverted (I; English: teen-numbers ⩾ 13, Polish: numbers 11-19) and non-inverted (N) summands with sums between 13 and 39. Accordingly, three categories of addition problems were created: N + N, N + I, and I + I with problem size matched across categories. Across both language groups, we observed that problems with results in the 20 and 30 number range were responded to faster when only non-inverted summands were part of the problems as opposed to problems with one or two inverted summands. In line with this, the cost of a carry procedure was the largest for two inverted summands. The results support the notion that both language-specific and language-invariant aspects contribute to addition problem-solving. In particular though, regarding language-specific aspects, the results indicate that inverted number word formation of teens influences place-value processing of Arabic digits even in otherwise non-inverted languages.


Assuntos
Idioma , Matemática , Resolução de Problemas , Adolescente , Feminino , Humanos , Masculino , Adulto Jovem
11.
Front Psychol ; 9: 1024, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988596

RESUMO

Research on associations between language and number processing has seen growing interest in the last years - in particular with respect to place-value processing in multi-digit numbers. Recently, Dowker and Nuerk (2016) proposed a taxonomy of linguistic influences on number processing. However, this taxonomy does not address the generality or specificity of linguistic influences across different levels of number processing. In contrast, Nuerk et al. (2015) proposed different levels of place-value processing in multi-digit numbers. However, the authors did not specify if and how linguistic factors influence these levels of place-value processing. The present perspective aims at addressing this conceptual gap by suggesting an integrated taxonomy representing how different linguistic factors may influence different levels of place-value processing. We show that some effects of different linguistic levels have already been observed on different levels of place-value processing. Moreover, while some linguistic influences (e.g., lexical influences) have been studied for all levels of place-value processing, other influences have been studied for only one level or even none. Beyond categorizing existing research, we argue that the explicit consideration of research gaps may inspire new research paradigms complementing the picture of language influences on place-value processing. We conclude by outlining the importance of a differential approach for levels of both linguistic and number processing to evaluate linguistic obstacles and facilitators of different languages and their relevance for numerical development.

12.
Front Psychol ; 6: 740, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113827

RESUMO

Superior early numerical competencies of children in several Asian countries have (amongst others) been attributed to the higher transparency of their number word systems. Here, we directly investigated this claim by evaluating whether Japanese children's transcoding performance when writing numbers to dictation (e.g., "twenty five" → 25) was less error prone than that of German-speaking children - both in general as well as when considering language-specific attributes of the German number word system such as the inversion property, in particular. In line with this hypothesis we observed that German-speaking children committed more transcoding errors in general than their Japanese peers. Moreover, their error pattern reflected the specific inversion intransparency of the German number-word system. Inversion errors in transcoding represented the most prominent error category in German-speaking children, but were almost absent in Japanese-speaking children. We conclude that the less transparent German number-word system complicates the acquisition of the correspondence between symbolic Arabic numbers and their respective verbal number words.

13.
Cognition ; 136: 150-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25497523

RESUMO

Reading/writing direction or number word formation influence performance even in basic numerical tasks such as magnitude comparison. However, so far the interaction of these language properties has not been evaluated systematically. In this study we tested English, German, Hebrew, and Arab participants realizing a natural 2 × 2 design of reading/writing direction (left-to-right vs. right-to-left) and number word formation (non-inverted vs. inverted, i.e., forty-seven vs. seven-and-forty). Symbolic number magnitude comparison was specifically influenced by the interaction of reading/writing direction and number word formation: participants from cultures where reading direction and the order of tens and units in number words are incongruent (i.e., German and Hebrew) exhibited more pronounced unit interference in place-value integration. A within-group comparison indicated that this effect was not due to differences in education. Thus, basic cultural differences in numerical cognition were driven by natural language variables and their specific combination.


Assuntos
Cognição/fisiologia , Idioma , Matemática , Multilinguismo , Feminino , Humanos , Masculino , Psicolinguística , Leitura , Adulto Jovem
14.
Br J Dev Psychol ; 33(1): 92-105, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25403910

RESUMO

Although everyone perceives approximate numerosities, some people make more accurate estimates than others. The accuracy of this estimation is called approximate number system (ANS) acuity. Recently, several studies have reported that individual differences in young children's ANS acuity are correlated with their knowledge of exact numbers such as the word 'six' (Mussolin et al., 2012, Trends Neurosci. Educ., 1, 21; Shusterman et al., 2011, Connecting early number word knowledge and approximate number system acuity; Wagner & Johnson, 2011, Cognition, 119, 10; see also Abreu-Mendoza et al., 2013, Front. Psychol., 4, 1). This study argues that this correlation should not be trusted. It seems to be an artefact of the procedure used to assess ANS acuity in children. The correlation arises because (1) some experimental designs inadvertently allow children to answer correctly based on the size (rather than the number) of dots in the display and/or (2) young children with little exact-number knowledge may not understand the phrase 'more dots' to mean numerically more. When the task is modified to make sure that children respond on the basis of numerosity, the correlation between ANS acuity and exact-number knowledge in normally developing children disappears.


Assuntos
Desenvolvimento Infantil/fisiologia , Conceitos Matemáticos , Testes Psicológicos/normas , Pré-Escolar , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa