Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
New Phytol ; 242(4): 1614-1629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594212

RESUMO

Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.


Assuntos
Biodiversidade , Carbono , Micorrizas , Nitrogênio , Fósforo , Folhas de Planta , Solo , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Fósforo/metabolismo , Solo/química , Nitrogênio/metabolismo , Carbono/metabolismo , Biomassa , Microbiologia do Solo , Elementos Químicos , Especificidade da Espécie
2.
Environ Res ; 243: 117752, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008202

RESUMO

Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).


Assuntos
Azadirachta , Solo , Solo/química , Árvores , Ecossistema , Carbono/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Nitrogênio/análise , Folhas de Planta
3.
J Anim Ecol ; 92(7): 1388-1403, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248620

RESUMO

The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American Alligator Alligator mississippiensis is an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond-like basins, but its role in influencing community structure and nutrient dynamics is less appreciated. We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of 'alligator ponds' compared to the surrounding phosphorus (P)-limited oligotrophic marsh. We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food-web resources and quantitative community analyses, and stoichiometric analyses on plants and animals. Our findings demonstrate that alligators act as ecosystem engineers and enhance food-web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom-up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats. Alligator-engineered habitats are ecologically important by providing nutrient-enriched 'hotspots' in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal-mediated bottom-up processes like ecosystem engineering.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Cadeia Alimentar , Invertebrados , Plantas , Peixes , Nutrientes
4.
J Environ Manage ; 330: 117141, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603251

RESUMO

Occurrences of freshwater harmful algal blooms (HABs) are increasing on a global scale, largely in part due to increased nutrient input and changing climate patterns. While reservoir management strategies that can influence phytoplankton are known, there is no published guideline or protocol for the management of harmful algal blooms. There is a need to establish what factors are the predominant drivers of blooms, and how common reservoir management strategies specifically influence each factor. The following literature review seeks to establish the benefits and drawbacks of operational management strategies that currently exist. The main focus is altering hydrodynamic conditions (hypolimnetic withdrawals, surface flushing, pulsed inflow, artificial mixing), in order to induce environmental changes within the reservoir itself. Since excess nutrients are one of the biggest contributors to worsening bloom conditions, internal nutrient dynamics and reduction are also discussed. Additionally, we review the predominant seasonal factors (stratification, light, temperature, and wind) that affect likelihood of bloom occurrence and duration. The ultimate objective of this review is to increase understanding of the relationships between HAB drivers and reservoir operations in order to inform the development of data, modeling, and management strategies for the prevention and mitigation of blooms.


Assuntos
Água Doce , Proliferação Nociva de Algas , Clima , Temperatura , Mudança Climática
5.
J Environ Manage ; 301: 113933, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731951

RESUMO

The long-alkanes biodegradation rate was generally found slow during widely used pre-oxidation combined with biodegradation for oil contamination treatment, resulting in long and unsustainable removal. In this study, different chitosan content was used to produce iron catalysts for pre-oxidation, and nutrients were added for the long-alkanes biodegradation experiment. Mechanism of Fenton pre-oxidation and improvement in the biodegradation rate of long-alkanes were studied by analyzing the change in organic matter and bacterial community structure, the amount and activity of bacteria in the biological stage, and the degradation amount long-alkanes hydrocarbon before and after pre-oxidation. Results showed that the destruction of bacteria greatly reduced when hydroxyl radical intensity decreased to 4.40 a.u.. Also, the proportion of humic acid-like was high (40.88%), and the community structure was slightly changed with the pre-oxidation for the fast biodegradation (FB) group. In the subsequent biodegradation, it was found that the degradation rate of each long-alkanes in the FB group increased significantly (C30: 4.18-8.32 mg/(kg·d)) with the increase of the degradation of long-alkanes (10-50%). Further studies showed that the high nutrient dynamics (6.05 mg/(kg·d)) of the FB group resulted in high bacteria performance rate (0.53 mol CO2 × log CFU/(104 g2 d)), which further accelerated the substrate transformation(41%). Therefore, the biodegradation rate of long-alkanes was increased (43.8 mg/(kg·d)) with the removal rate of long-alkanes of 76%. The half-life of long-alkanes for the FB group (64 d) was 33 d shorter than the slow biodegradation group (99 d). These results exhibited that pre-oxidation regulation can shorten the bioremediation cycle by improving the biodegradation rate of long-alkanes. This research has good engineering application value.


Assuntos
Alcanos , Petróleo , Bactérias , Biodegradação Ambiental , Hidrocarbonetos
6.
Arch Microbiol ; 203(5): 2393-2409, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661314

RESUMO

Harnessing the benefits of plant-microbe interactions towards better nutrient mobilization and plant growth is an important challenge for agriculturists globally. In our investigation, the focus was towards analyzing the soil-plant-environment interactions of cyanobacteria-based formulations (Anabaena-Nostoc consortium, BF1-4 and Anabaena-Trichoderma biofilm, An-Tr) as inoculants for ten maize genotypes (V1-V10). Field experimentation using seeds treated with the formulations illustrated a significant increase of 1.3- to 3.8-fold in C-N mobilizing enzyme activities in plants, along with more than five- to six-fold higher values of nitrogen fixation in rhizosphere soil samples. An increase of 22-30% in soil available nitrogen was also observed at flag leaf stage, and 13-16% higher values were also recorded in terms of cob yield of V6 with An-Tr biofilm inoculation. Savings of 30 kg N ha-1 season-1 was indicative of the reduced environmental pollution, due to the use of microbial options. The use of cyanobacterial formulations also enhanced the economic, environmental and energy use efficiency. This was reflected as 37-41% reduced costs lowered GHG emission by 58-68 CO2 equivalents and input energy requirement by 3651-4296 MJ, over the uninoculated control, on hectare basis. This investigation highlights the superior performance of these formulations, not only in terms of efficient C-N mobilization in maize, but also making maize cultivation a more profitable enterprise. Such interactions can be explored as resource-conserving options, for future evaluation across ecologies and locations, particularly in the global climate change scenario.


Assuntos
Inoculantes Agrícolas/fisiologia , Carbono/metabolismo , Cianobactérias/fisiologia , Nitrogênio/metabolismo , Zea mays/crescimento & desenvolvimento , Anabaena/fisiologia , Biofilmes/crescimento & desenvolvimento , Genótipo , Fixação de Nitrogênio , Nostoc/fisiologia , Nutrientes/metabolismo , Desenvolvimento Vegetal , Folhas de Planta , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Trichoderma/fisiologia , Zea mays/microbiologia
7.
Glob Chang Biol ; 26(4): 2060-2071, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012421

RESUMO

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.

8.
Oecologia ; 188(4): 1133-1144, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30343403

RESUMO

Animals can play important roles in cycling nutrients [hereafter consumer-driven nutrient dynamics (CND)], but researchers typically simplify animal communities inhabiting dynamic environments into single groups that are tested under relatively static conditions. We propose a conceptual framework and present empirical evidence for CND that considers the potential effects of spatially overlapping animal groups within dynamic ecosystems. Because streams can maintain high biomass of mussels and fish, we were able to evaluate this framework by testing if biogeochemical hotspots generated by stable aggregations of mussels attract fishes. We predicted that spatial overlap between these groups may increase the flux of mineralized nutrients. We quantified how different fish assemblage biomass was between mussel bed reaches and reaches without mussels. We compared fish and mussel biomass at mussel beds to test whether differences in animal biomass mediate their contributions to nutrient cycling through nitrogen and phosphorous excretion. We estimated areal excretion rates for each group by combining biomass estimates with measured excretion rates. Fish biomass was homogeneously distributed, except following a period of low flow when fish were more concentrated at mussel beds. Mussel biomass was consistently an order of magnitude greater than fish biomass and mussel areal excretion rates exceeded fish excretion rates. However, the magnitude of those differences varied spatially and temporally. Mussel excretion stoichiometry varied with changes in assemblage composition, while fish excretion stoichiometry varied little. Biogeochemical hotspots associated with mussels did not generally overlap with fish aggregations, thus, under these conditions, animal processes appear to exert additive ecosystem effects.


Assuntos
Bivalves , Rios , Animais , Biomassa , Ecossistema , Peixes , Nutrientes
9.
J Fish Biol ; 92(4): 944-960, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516515

RESUMO

The isotopic (δ13 C and δ15 N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ13 C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ15 N-enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources.


Assuntos
Tamanho Corporal , Isótopos de Carbono/análise , Cyprinidae , Isótopos de Nitrogênio/análise , Fósforo/análise , Rios , Animais , North Carolina , Urbanização
10.
J Environ Manage ; 216: 89-95, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412057

RESUMO

Biochar can be produced from several organic sources with varying nutrients and metal concentrations. Four commercial grade biochars were evaluated as peat substitute. Biochars were characterised for plant nutrients and for biological stability. The results showed that there were negligible quantities of N and P and generally high levels of K and high biological stability. When these materials were mixed with peat at 10, 25 and 50% and nutrients were added to bring them to the same level of nutrients as in fertilized peat, it was found that biochar mixtures considerably reduced the levels of calcium chloride/DTPA (CAT) extractable N (including nitrate), P, and electrical conductivity- greater extent with higher rates of biochar addition except for K. The pH and K levels were increased with biochar addition. The drop in EC has important implications regarding the use of other materials used to dilute peat, for example, composted green waste, the rate of dilution is limited due to high EC and biochar addition gives the potential for higher peat dilution of these materials. Nitrate and phosphorus are very vulnerable to leaching of these nutrients in the environment in peat substrates and the binding of these by biochar has implication for leaching and nutrient application strategy. Root development using Cress test and tomato plant height and biomass using containers, were in some cases better than peat indicating that biochar could be used to dilute peat e.g. for seedling production where root development and rapid growth are very important. Application of biochars resulted in a marked reduction of N (and P) in the plant. There were significant correlation between CAT extractable N and P and corresponding plant concentration, indicating the standard growing media test, CAT, would be suitable for assessing the nutrient status of peat biochar mixes.


Assuntos
Carvão Vegetal , Desenvolvimento Vegetal , Fósforo , Solo
11.
Artigo em Inglês | MEDLINE | ID: mdl-29303410

RESUMO

The relationships between nutrient dynamics and the bacterial community at the water-sediment interface were investigated using the results of nutrient release fluxes, bacterial communities examined by 16S rRNA pyrosequencing and canonical correlation analysis (CCA) accompanied by lab-scale benthic chamber experiment. The nutrient release fluxes from the sediments into the water were as follows: -3.832 to 12.157 mg m-2 d-1 for total phosphorus, 0.049 to 9.993 mg m-2 d-1 for PO4-P, -2.011 to 41.699 mg m-2 d-1 for total nitrogen, -7.915 to -0.074 mg m-2 d-1 for NH3-N, and -17.940 to 1.209 mg m-2 d-1 for NO3-N. To evaluate the relationship between the bacterial communities and environmental variables, CCA was conducted in three representative conditions: in the overlying water, in the sediment at a depth of 0-5 cm, and in the sediment at a depth of 5-15 cm. CCA results showed that environmental variables such as nutrient release fluxes (TN, NH4, NO3, TP, and PO4) and water chemical parameters (pH, DO, COD, and temperature) were highly correlated with the bacterial communities. From the results of the nutrient release fluxes and the bacterial community, this study proposed the hypothesis for bacteria involved in the nutrient dynamics at the interface between water and sediment. In the sediment, sulfate-reducing bacteria (SRB) such as Desulfatibacillum, Desulfobacterium, Desulfomicrobium, and Desulfosalsimonas are expected to contribute to the decomposition of organic matter, and release of ammonia (NH4+) and phosphate (PO43-). The PO43- released into the water layer was observed by the positive fluxes of PO43-. The NH4+ released from the sediment was rapidly oxidized by the methane-oxidizing bacteria (MOB). This study observed in the water layer dominantly abundant MOB of Methylobacillus, Methylobacter, Methylocaldum, and Methylophilus. The nitrate (NO3-) accumulation caused by the oxidation environment of the water layer moved back to the sediment, which led to the relatively large negative fluxes of NO3-, compared to the small negative fluxes of NH4+.


Assuntos
Bactérias , Alimentos , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Microbiologia da Água , Água/química , Amônia/análise , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biota/genética , Biota/fisiologia , Methylococcaceae/genética , Methylococcaceae/crescimento & desenvolvimento , Nitratos/análise , Nitrogênio/análise , Fosfatos/análise , Fósforo/análise , RNA Ribossômico 16S/análise , Água/análise , Poluentes Químicos da Água/análise
12.
New Phytol ; 211(3): 803-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27322844

RESUMO

803 I. 803 II. 804 III. 804 IV. 805 V. 805 VI. 806 References 807 SUMMARY: Rather than direct plant-plant interactions, research on the community-scale influence of mistletoes reveals hitherto unappreciated roles of animals in mediating facilitation. Lacking roots and reliant upon animal vectors, mistletoes represent model systems with which to understand mechanisms underlying interaction networks. In addition to direct effects on nutrient dynamics via enriched litter-fall, mistletoes are visited by pollinators, seed dispersers and natural enemies, complementing increased heterogeneity in nutrient returns reallocated from infected hosts with increased external inputs. These amplified bottom-up effects are coupled with top-down influences of insectivores attracted to infected hosts and stands by increased availability of favoured prey. Simultaneously influencing nutrient dynamics and plant-plant interactions from below and above, visiting animals help explain variation in the context dependence of facilitation.


Assuntos
Ecossistema , Animais , Florestas , Erva-de-Passarinho/fisiologia , Clima Tropical
13.
Glob Chang Biol ; 21(4): 1407-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25363193

RESUMO

Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as well as mean annual precipitation. While our understanding of dryland ecosystems is improving, there is still a great need for longer term in situ manipulations of precipitation regime to test our model.


Assuntos
Biodiversidade , Mudança Climática , Clima Desértico , Invertebrados/fisiologia , Chuva , Microbiologia do Solo , Solo/química , Animais , Biomassa
14.
Sci Total Environ ; 915: 169830, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190920

RESUMO

Anthropogenic pressures considerably affect coastal areas, increasing nitrogen and phosphorous loads that lead to eutrophication. Eutrophication sometimes results in hypoxic and/or anoxic conditions near the bottom water. Dissolved oxygen (DO) concentrations influence redox-sensitive nutrients, which can alter the benthic flux of nutrients. We retrieved sediment cores from two sites in the eastern and western parts of Elefsis Bay, a semi-enclosed area of the Eastern Mediterranean, Greece, during winter and summer. In the western part, seasonally hypoxic or anoxic conditions occurred. We analysed pore-water samples under normoxic, hypoxic and anoxic bottom water conditions to study the pore-water nutrient concentrations variability under different oxygen regimes. Ex situ incubation experiments were conducted at the site experiencing oxygen deficiency by manipulating the DO concentrations. The pore-water nutrient concentrations showed higher variability at the site experiencing oxygen deficiency. Notably, elevated ammonium concentrations were observed in the pore water during anoxic conditions, in the 2-20-cm sediment layer. However, the benthic fluxes of ammonium and phosphate at the 0-2-cm sediment layer were comparable under hypoxic and anoxic conditions. The results of the incubation experiments demonstrate a direct decrease in nitrate concentrations as the DO concentrations diminished in the overlying water. The incubations after re-oxygenating the overlying water show that phosphate was more efficiently scavenged when anoxic conditions prevailed in the bottom water. The incubation experiments indicate the rapid response of the seafloor to oxygen availability, particularly concerning processes that influence nitrate and phosphate concentrations. These observations highlight the dynamic nature of nutrient cycling in shallow, seasonally anoxic environments, such as Elefsis Bay, and emphasise the sensitivity of the seafloor ecosystem to changes in bottom water oxygen availability.

15.
J Fungi (Basel) ; 10(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786665

RESUMO

This study investigates the effects of forest aging on ectomycorrhizal (EcM) fungal community and foraging behavior and their interactions with plant-soil attributes. We explored EcM fungal communities and hyphal exploration types via rDNA sequencing and investigated their associations with plant-soil traits by comparing younger (~120 years) and older (~250 years) temperate forest stands in Northeast China. The results revealed increases in the EcM fungal richness and abundance with forest aging, paralleled by plant-soil feedback shifting from explorative to conservative nutrient use strategies. In the younger stands, Tomentella species were prevalent and showed positive correlations with nutrient availability in both the soil and leaves, alongside rapid increases in woody productivity. However, the older stands were marked by the dominance of the genera Inocybe, Hymenogaster, and Otidea which were significantly and positively correlated with soil nutrient contents and plant structural attributes such as the community-weighted mean height and standing biomass. Notably, the ratios of longer-to-shorter distance EcM fungal exploration types tended to decrease along with forest aging. Our findings underscore the integral role of EcM fungi in the aging processes of temperate forests, highlighting the EcM symbiont-mediated mechanisms adapting to nutrient scarcity and promoting sustainability in plant-soil consortia.

16.
J Anim Ecol ; 82(6): 1192-202, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23730871

RESUMO

1. The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in ecosystems around the world, but there remain important questions regarding the contexts in which such changes are most likely and the mechanisms through which they occur, particularly in marine ecosystems. 2. We used long-term exclusion cages to examine the effects of large grazers (sea cows, Dugong dugon; sea turtles Chelonia mydas) on seagrass community structure, biomass and nutrient dynamics. Experiments were conducted in habitats with high risk of predation (interior of shallow banks) and lower risk (edges of banks) to elucidate whether nonconsumptive (risk) effects of tiger sharks (Galeocerdo cuvier), a roving predator, structure herbivore impacts on seagrasses. 3. In lower-risk habitats, excluding large herbivores resulted in increased leaf length for Cymodocea angustata and Halodule uninervis. C. angustata shoot densities nearly tripled when released from herbivory, while H. uninervis nearly disappeared from exclusion cages over the course of the study. 4. We found no support for the hypothesis that grazing increases seagrass nutrient content. Instead, phosphorus content was higher in seagrasses within exclosures. This pattern is consistent with decreased light availability in the denser C. angustata canopies that formed in exclosures, and may indicate that competition for light led to the decrease in H. uninervis. 5. Impacts of large grazers were consistent with a behaviour-mediated trophic cascade (BMTC) initiated by tiger sharks and mediated by risk-sensitive foraging by large grazers. 6, Our results suggest that large-bodied grazers likely played important roles in seagrass ecosystem dynamics historically and that roving predators are capable of initiating a BMTC. Conservation efforts in coastal ecosystems must account for such interactions or risk unintended consequences.


Assuntos
Comportamento Animal/fisiologia , Biota , Ecossistema , Comportamento Alimentar , Cadeia Alimentar , Animais , Biomassa , Dugong/fisiologia , Poaceae/fisiologia , Comportamento Predatório , Tubarões/fisiologia , Tartarugas/fisiologia , Austrália Ocidental
17.
Sci Total Environ ; 873: 162272, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801321

RESUMO

Temporary pans are susceptible to various anthropogenic effects such as pollution, resource extraction, and land use intensification. However, given their small endorheic nature, they are almost entirely influenced by activities close to their internally drained catchments. Human-mediated nutrient enrichment within the pans can lead to eutrophication, resulting in increased primary productivity and decreased associated alpha diversity. The Khakhea-Bray Transboundary Aquifer region and the pan systems that characterise the area are understudied area with no records available of the biodiversity therein. Additionally, the pans are a major water source for the people in these areas. This study assessed differences in nutrients (i.e., ammonium, phosphates) and their effect on chlorophyll-a (chl-a) concentrations in pans along a disturbance gradient in the Khakhea-Bray Transboundary Aquifer region, South Africa. Physicochemical variables, nutrients, and chl-a were measured from 33 pans representing variable anthropogenic exposure during the cool-dry season in May 2022. Five environmental variables (i.e., temperature, pH, dissolved oxygen, ammonium, and phosphates) showed significant differences between the undisturbed and disturbed pans. The disturbed pans generally had elevated pH, ammonium, phosphates and dissolved oxygen compared to the undisturbed pans. A strong positive relationship was observed between chl-a and temperature, pH, dissolved oxygen, phosphates and ammonium. Chlorophyll-a concentration increased as surface area, and the distance from kraals, buildings and latrines decreased. Anthropogenic activities were found to have an overall effect on the pan water quality within the Khakhea-Bray Transboundary Aquifer region. Therefore, continuous monitoring strategies should be established to better understand the nutrient dynamics through time and the effect that this may have on productivity and diversity in these small endorheic systems.


Assuntos
Compostos de Amônio , Qualidade da Água , Humanos , Clorofila A/análise , Monitoramento Ambiental/métodos , Clorofila/análise , Fosfatos/análise , Eutrofização , Oxigênio/análise , Nitrogênio/análise , Fósforo/análise
18.
J Contam Hydrol ; 253: 104127, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587423

RESUMO

Large deep lakes in plateau regions provide crucial ecosystem services but are susceptible to eutrophication due to their long water residence time. To date, the water quality of deep lakes has not received as much attention as that of shallow lakes owing to logistical challenges. This study investigated the seasonal variation and vertical distribution of phosphorus and related environmental variables in a large deep lake in the Yunnan Plateau, China (Fuxian Lake). Generally, the concentrations of total phosphorus (TP, R2 = 0.862), total dissolved phosphorus (TDP, R2 = 0.922), and dissolved inorganic phosphorus (DIP, R2 = 0.889) exhibited a linear increase with the greater water depth, whereas the pH and dissolved oxygen (DO) showed decreasing trends. The TP, TDP, and DIP values were 0.012, 0.006, and 0.004 mg/L, respectively, in surface waters (0.5 m depth), and increased to 0.074, 0.065, and 0.062 mg/L, respectively, at 140.0 m depth. The averaged over ordering method demonstrated that DO and air temperature accounted for a higher proportion of the explained variance of TP, TDP, and DIP in the shallow water layer (0.5-20.0 m). In contrast, DO and pH accounted for a higher proportion of the explained variance of TP, TDP, and DIP in deeper water layers (40.0-150.0 m). As a warm monomictic lake, the higher observed phosphorus concentrations in deeper water and sediment potentially pose a risk of future eutrophication in the Fuxian Lake. Our findings demonstrate that more efficient technical and management measures should be taken to reduce the external phosphorus load to Fuxian Lake, so that the load to and from the sediment will decrease eventually.


Assuntos
Lagos , Fósforo , Ecossistema , China , Eutrofização , Proteínas de Ligação a DNA , Monitoramento Ambiental , Nitrogênio/análise
19.
Sci Total Environ ; 883: 163606, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100149

RESUMO

A comprehensive understanding of pollutant delivery processes during storm events is essential for developing strategies to minimize adverse impacts on receiving water bodies. In this paper, hysteresis analysis and principal component analysis were coupled with identified nutrient dynamics to determine different pollutant export forms and transport pathways and analyze the impact of precipitation characteristics and hydrological conditions on pollutant transport processes through continuous sampling between different storm events (4 events) and hydrological years (2018-wet, 2019-dry) in a semi-arid mountainous reservoir watershed. Results showed pollutant dominant forms and primary transport pathways were inconsistent between different storm events and hydrological years. Nitrogen (N) was mainly exported in the form of nitrate-N(NO3-N). Particle phosphorous (PP) was the dominant P form in wet years, but total dissolved P (TDP) in dry year. Ammonia-N (NH4-N), total P (TP), total dissolved P(TDP) and PP had prominent flushing responses to storm events and were delivered mainly from overland sources by surface runoff; while the concentrations of total N(TN) and nitrate-N(NO3-N) were mainly diluted during storm events. Rainfall intensity and amount had significant control over P dynamics and extreme events played a key role in TP exports, accounting for >90 % of the total TP load exports. However, the cumulative rainfall and runoff regime during rainy season exerted significant control over N exports than individual rainfall features. In the dry year, NO3-N and TN were delivered primarily through soil water flow paths during storm events; nevertheless, wet year registered complex control on TN exports via soil water release, followed by surface runoff transport. Relative to dry year, wet year registered higher N concentration and more N load exports. These findings could provide scientific basis for determining effective pollution mitigation strategies in Miyun Reservoir basin and provide important references for other semi-arid mountain watersheds.

20.
Mar Environ Res ; 185: 105884, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701826

RESUMO

Macroalgae canopies are common in tropical coastlines, and can be feeding grounds for coral reef fishes. We investigated whether fish transfer algal material from Sargassum-dominated macroalgae habitats to coral reefs by collecting gut contents of two herbivorous fish species (Naso elegans and N. unicornis) from coral reefs in the central Red Sea. On inshore reefs close to macroalgae canopies, Sargassum accounted for up to 41% of these species' gut contents while almost no Sargassum was found in the stomachs of fish on offshore reefs farther from macroalgae canopies. Using consumption and excretion rates from literature, we estimate that these fish consume up to 6.0 mmol C/m2 reef/day and excrete up to 10.8 µmol N/m2 reef/day and 1.0 µmol P/m2 reef/day across inshore reefs as a result of Sargassum consumption. Examining fish-mediated connections between habitats illuminates the role of fish as a vector of nutrition to nutrient-poor coral reefs.


Assuntos
Antozoários , Alga Marinha , Animais , Recifes de Corais , Oceano Índico , Ecossistema , Peixes , Herbivoria , Nutrientes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa