Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Environ Sci Technol ; 58(20): 8803-8814, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38686747

RESUMO

Mixed community microalgal wastewater treatment technologies have the potential to advance the limits of technology for biological nutrient recovery while producing a renewable carbon feedstock, but a deeper understanding of their performance is required for system optimization and control. In this study, we characterized the performance of a 568 m3·day-1 Clearas EcoRecover system for tertiary phosphorus removal (and recovery as biomass) at an operating water resource recovery facility (WRRF). The process consists of a (dark) mix tank, photobioreactors (PBRs), and a membrane tank with ultrafiltration membranes for the separation of hydraulic and solids residence times. Through continuous online monitoring, long-term on-site monitoring, and on-site batch experiments, we demonstrate (i) the importance of carbohydrate storage in PBRs to support phosphorus uptake under dark conditions in the mix tank and (ii) the potential for polyphosphate accumulation in the mixed algal communities. Over a 3-month winter period with limited outside influences (e.g., no major upstream process changes), the effluent total phosphorus (TP) concentration was 0.03 ± 0.03 mg-P·L-1 (0.01 ± 0.02 mg-P·L-1 orthophosphate). Core microbial community taxa included Chlorella spp., Scenedesmus spp., and Monoraphidium spp., and key indicators of stable performance included near-neutral pH, sufficient alkalinity, and a diel rhythm in dissolved oxygen.


Assuntos
Microalgas , Fósforo , Águas Residuárias , Microalgas/metabolismo , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Biomassa , Purificação da Água/métodos
2.
Environ Res ; 245: 117953, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128599

RESUMO

This study explores the integration of fertilizer informatics into the circular economy, with a focus on enhancing nutrient recovery from anaerobic digestate. It utilizes advanced algorithms and data analytics to develop new nutrient management strategies essential for sustainable agriculture. This research provides a detailed assessment of current nutrient recovery technologies, evaluating their environmental impact, cost efficiency, and adaptability. Our findings highlight the importance of merging circular economy principles with fertilizer informatics, showcasing the potential for transforming waste into environmentally friendly fertilizers. This approach has significant implications for improving agricultural practices towards sustainability. The methodologies and insights presented are relevant for ongoing research in environmental stewardship and sustainable resource management. This study describes practical solutions and new perspectives, making it a valuable reference for future research.


Assuntos
Agricultura , Fertilizantes , Fertilizantes/análise , Anaerobiose , Agricultura/métodos , Meio Ambiente , Nutrientes
3.
J Dairy Sci ; 107(4): 1967-1979, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863286

RESUMO

The prediction of the cheese yield (%CY) traits for curd, solids, and retained water and the amount of fat, protein, solids, and energy recovered from the milk into the curd (%REC) by Bayesian models, using Fourier-transform infrared spectroscopy (FTIR), can be of significant economic interest to the dairy industry and can contribute to the improvement of the cheese process efficiency. The yields give a quantitative measure of the ratio between weights of the input and output of the process, whereas the nutrient recovery allows to assess the quantitative transfer of a component from milk to cheese (expressed in % of the initial weight). The aims of this study were: (1) to investigate the feasibility of using bulk milk spectra to predict %CY and %REC traits, and (2) to quantify the effect of the dairy industry and the contribution of single-spectrum wavelengths on the prediction accuracy of these traits using vat milk samples destined to the production of Grana Padano Protected Designation of Origin cheese. Information from 72 cheesemaking days (in total, 216 vats) from 3 dairy industries were collected. For each vat, the milk was weighed and analyzed for composition (total solids [TS], lactose, protein, and fat). After 48 h from cheesemaking, each cheese was weighed, and the resulting whey was sampled for composition as well (TS, lactose, protein, and fat). Two spectra from each milk sample were collected in the range between 5,011 and 925 cm-1 and averaged before the data analysis. The calibration models were developed via a Bayesian approach by using the BGLR (Bayesian Generalized Linear Regression) package of R software. The performance of the models was assessed by the coefficient of determination (R2VAL) and the root mean squared error (RMSEVAL) of validation. Random cross-validation (CVL) was applied [80% calibration and 20% validation set] with 10 replicates. Then, a stratified cross-validation (SCV) was performed to assess the effect of the dairy industry on prediction accuracy. The study was repeated using a selection of informative wavelengths to assess the necessity of using whole spectra to optimize prediction accuracy. Results showed the feasibility of using FTIR spectra and Bayesian models to predict cheesemaking traits. The R2VAL values obtained with the CVL procedure were promising in particular for the %CY and %REC for protein, ranging from 0.44 to 0.66 with very low RMSEVAL (from 0.16 to 0.53). Prediction accuracy obtained with the SCV was strongly influenced by the dairy factory industry. The general low values gained with the SCV do not permit a practical application of this approach, but they highlight the importance of building calibration models with a dataset covering the largest possible sample variability. This study also demonstrated that the use of the full FTIR spectra may be redundant for the prediction of the cheesemaking traits and that a specific selection of the most informative wavelengths led to improved prediction accuracy. This could lead to the development of dedicated spectrometers using selected wavelengths with built-in calibrations for the online prediction of these innovative traits.


Assuntos
Queijo , Leite , Animais , Leite/química , Queijo/análise , Teorema de Bayes , Lactose/análise , Tilacoides , Espectroscopia de Infravermelho com Transformada de Fourier/veterinária
4.
Int J Phytoremediation ; 26(4): 481-492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37626022

RESUMO

This study was carried out to evaluate the effects of humic acid (HA) on the nutrient removal efficiencies of aquatic duckweed plant (Lemna minor) from a water recirculating system used to culture Nile tilapia (Oreochromis niloticus) fish for 30 days. The HA was added to water at three concentrations of 0 (Control), 1.5, and 3 mg/L in triplicate. Water quality parameters, growth performance, and some hemato-biochemical parameters of the fish in variable HA concentrations were compared. The total ammonia nitrogen (TAN) and total phosphorous (TP) removal efficiency of L. minor increased with increasing the HA concentration from 0 mg/L to 3 mg/L (p < 0.05). The concentration of nitrate (NO3-) in the HA-3 mg/L was higher than that in the other groups on days 20 and 30 of the fish cultivation period (p < 0.05). The growth performance of fish improved in the HA-3 mg/L compared to the other groups. The addition of different concentrations of HA to water had no adverse effect on the hematological properties of the Nile tilapia. The plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels in the HA-0 mg/L and HA-1.5 mg/L groups were higher than in the HA-3 mg/L (p < 0.05). No significant differences in the plasma glucose and cholesterol levels were observed between the HA-groups (p > 0.05), while the triglyceride level increased in the HA-3 mg/L compared to the control (p < 0.05). These results indicated that adding HA to water could be an effective method to enhance the bioremediation performance of the aquatic duckweed plants as biofilter and thus improve water quality, subsequently, fish growth performance in RASs.


The current study applied aquatic duckweed plant (Lemna minor) as a new biofilter in a water recirculating system used to culture Nile tilapia (Oreochromis niloticus) fish. The effects of three concentrations of humic acid (HA) as water additive on the nutrient removal efficiency of L. minor from water were investigated. HA improved bioremediation performance of the aquatic duckweed plant.


Assuntos
Araceae , Ciclídeos , Animais , Substâncias Húmicas , Biodegradação Ambiental
5.
J Environ Manage ; 366: 121712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003898

RESUMO

This work describes a comprehensive assessment of operating parameters of a bench-scale electrodialysis (ED) plant for nutrient concentration from an Anaerobic Membrane BioReactor (AnMBR) effluent. The ED bench-scale plant serves a dual purpose. Firstly, to generate a concentrated stream with a high nutrient content, and secondly, to produce high-quality reclaimed water in the diluted stream, both sourced from real wastewater coming from the effluent of an AnMBR. Two sets of experiments were conducted: 1) short-term experiments to study the effect of some parameters such as the applied current and the type of anionic exchange membrane (AEM), among others, and 2) a long-term experiment to verify the feasibility of the process using the selected parameters. The results showed that ED produced concentrated ammonium and phosphate streams using a 10-cell pair stack with 64 cm2 of unitary effective membrane area, working in galvanostatic mode at 0.24 A, and operating with an Acid-100-OT anionic exchange membrane. Concentrations up to 740 mg/L and 50 mg/L for NH4-N and PO4-P, respectively, were achieved in the concentrated stream along with removal efficiencies of 70% for ammonium and 60% for phosphate in the diluted stream. The average energy consumption was around 0.47 kWh·m-3.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Fosfatos/química , Nutrientes , Compostos de Amônio/química , Anaerobiose , Diálise/métodos , Membranas Artificiais
6.
J Environ Manage ; 351: 119847, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142597

RESUMO

Solid waste leachate (SWL) requires dilution with water to offset the negative effects of high nutrient concentration and organic compounds for its microalgae-based treatment. Among attached cultivation systems, twin layer is a technology in which limited information is available on treatment of high strength wastewater using microalgae. Moreover, widespread application of twin layer technology is limited due to cost of substrate and source layer used. In the present study, potential of Scenedesmus sp. for the treatment of SWL was assessed on horizontal twin layer system (HTLS). Novel and cost-effective substrate layers were tested as attachment material. Wetland treated municipal wastewater (WMW) was used to prepare SWL dilutions viz, 5%, 10%, 15%, 20% and 25% SWL. Recycled printing paper showed maximum biomass productivity of 5.19 g m-2 d-1. Among all the SWL dilutions, Scenedesmus sp. achieved maximum growth of 103.05 g m-2 in 5% SWL which was 16% higher than WMW alone. The maximum removal rate of NH4+ -N, TKN, and PO43- P was obtained in 20% SWL which was 1371, 1588 and 153 mg m-2 d-1 respectively. Varying concentrations of nutrients in different SWL dilutions significantly affected lipid biosynthesis, with enhanced productivity of 2.28 g m-2 d-1 achieved in 5% SWL compared to 0.97 g m-2 d-1 in 20% SWL. Hence, it can be concluded that 5% SWL dilution was good for biomass and lipid production, while the highest nutrient removal rates were obtained at 20% SWL mainly attributed to biotic and abiotic processes. Based on these results HTLS can be a promising technology for pilot scale to explore industrialized application of wastewater treatment and algal production.


Assuntos
Microalgas , Scenedesmus , Águas Residuárias , Resíduos Sólidos , Nutrientes , Biomassa , Scenedesmus/química , Lipídeos , Nitrogênio/análise
7.
J Environ Manage ; 369: 122225, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216350

RESUMO

This paper focuses on the role of fertilizers within regional nutrient cycles. Bio-based fertilizers can contribute to regional nutrient circularity, but the question remains whether production and consumption of bio-based fertilizers is beneficial to the farmer and the environment. Therefore, both farmers' private costs and environmental externalities should be taken into account. We formulate a farm-level multi-objective optimization model by considering a range of fertilizers, their costs and the environmental consequences associated with their production and use. The cost-minimization approach is applied to a conceptualized Flemish leek farmer aiming to safeguard nutrient uptake while being constrained by nutrient standards and the availability of on-farm residues. Our results suggest that mineral fertilizers have an important role in the fertilizer mix despite their environmental externalities. Nevertheless, there is also a role for bio-based fertilizers. These results have implications for farmers and policymakers wishing to internalize fertilizer externalities.

8.
J Environ Manage ; 356: 120458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479286

RESUMO

The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.


Assuntos
Clorofila , Óleos de Plantas , Polifenóis , Temperatura , Biomassa , Clorofila A
9.
J Environ Manage ; 354: 120360, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377758

RESUMO

The efficiency of mixotrophic microalgae in enhancing the recovery of waste nutrients has been well established; however, the recovery rate is crucial in meeting the needs of field applications. This study evaluated the impact of media characteristics on nutrient recovery under mixotrophic conditions. The mixotrophic N recovery rate with S. acuminatus in modified BG-11 reached 2.59 mg L-1h-1. A mixotrophic growth optimization strategy was applied to achieve a high-rate nutrient recovery from municipal wastewater treatment plant effluents. The contribution of waste chemical oxygen demand (COD) to nutrient recovery was assessed using secondary effluent (SE) under heterotrophy. The results highlighted a significant increase in total nitrogen (TN) and total phosphorus (TP) recovery rates when glucose was supplied, indicating the additional carbon requirements for efficient nutrient recovery. The TN and TP recovery rates under mixotrophic conditions with the addition of trace metals and high cell density were enhanced by 91.94% and 92.53%, respectively, resulting in recovery rates of 3.43 mg L-1h-1 and 0.30 mg L-1h-1. The same conditions were used for nutrient recovery from primary effluent (PE), and the results were more satisfactory as the TN and TP recovery rates reached 4.79 and 0.55 mg L-1h-1, respectively. Additionally, the study estimated the carbon footprints (C-footprints) and areal footprints of mixotrophy-based nitrogen recovery. The findings revealed carbon footprints and areal footprints of -15.93 ± 4.57 tCO2e t-1 N recovery and 0.53 ± 0.19 m3 m-2d-1 wastewater, respectively. This high-rate nutrient recovery, achieved under a carbon-negative (C-negative) budget through mixotrophy, presents a novel strategy for efficiently recovering resources from municipal wastewater, thus facilitating resource recycling and ensuring environmental sustainability.


Assuntos
Microalgas , Scenedesmus , Águas Residuárias , Carbono , Biomassa , Fósforo , Nutrientes , Nitrogênio
10.
J Environ Manage ; 352: 119960, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38198838

RESUMO

Nutrient recovery from wastewater treatment plants (WWTPs) for hydroponic cultivation holds promise for closing the nutrient loop and meeting rising food demands. However, most studies focus on solid products for soil-based agriculture, thus raising questions about their suitability for hydroponics. In this study, we address these questions by performing the first in-depth assessment of the extent to which state-of-the-art nutrient recovery processes can generate useful products for hydroponic application. Our results indicate that less than 11.5% of the required nutrients for crops grown hydroponically can currently be recovered. Potassium nitrate (KNO3), calcium nitrate (Ca(NO3)2), and magnesium sulfate (MgSO4), constituting over 75% of the total nutrient demand for hydroponics, cannot be recovered in appropriate form due to their high solubility, hindering their separated recovery from wastewater. To overcome this challenge, we outline a novel nutrient recovery approach that emphasizes the generation of multi-nutrient concentrates specifically designed to meet the requirements of hydroponic cultivation. Based on a theoretical assessment of nutrient and contaminant flows in a typical municipal WWTP, utilizing a steady-state model, we estimated that this novel approach could potentially supply up to 56% of the nutrient requirements of hydroponic systems. Finally, we outline fundamental design requirements for nutrient recovery systems based on this new approach. Achieving these nutrient recovery potentials could be technically feasible through a combination of activated sludge processes for nitrification, membrane-based desalination processes, and selective removal of interfering NaCl. However, given the limited investigation into such treatment trains, further research is essential to explore viable system designs for effective nutrient recovery for hydroponics.


Assuntos
Águas Residuárias , Purificação da Água , Hidroponia , Fertilizantes , Nutrientes , Purificação da Água/métodos
11.
J Environ Manage ; 353: 120116, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280251

RESUMO

Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.


Assuntos
Compostos de Amônio , Purificação da Água , Esgotos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Desnitrificação , Fósforo , Reatores Biológicos , Nitrificação , Nutrientes , Nitrogênio
12.
J Environ Manage ; 351: 119839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104464

RESUMO

Photo-enhanced Biological Phosphorus Removal (PEBPR) systems, promising wastewater treatment technology, offer efficient phosphorus removal without external oxygen. However, comprehending the impact of sludge retention time (SRT) on the system is crucial for successful implementation. This study investigated the SRT effect on nutrient fate, microbial community, and bacterial phototolerance in PEBPR systems. PEBPR systems exhibited good bacterial phototolerance at SRT of 10, 15, and 20 d, with optimal phosphorus-accumulation metabolism observed at SRT of 10 and 15d. However, at SRT of 5d, increased light sensitivity and glycogen-accumulating organisms (GAOs) growth resulted in poor P removal (71.9%). Accumulibacter-IIC were the dominant P accumulating organisms (PAOs) at SRT of 10, 15, and 20 d. Accumulibacter-I, IIC and IIF were the major PAOs at SRT of 5 d. The decrease in SRT promoted the microalgal population diversity, and Dictyosphaerium and Chlorella were the major microalgal species in this study. Flow cytometry results revealed high light intensity triggered intracellular Fe2+ efflux, limiting translation activity and metabolism. Moreover, PAOs had lower phototolerance than GAOs due to Poly-P bound intracellular Mg2+ affecting enzyme activity. This study provides an in-depth understanding of PEBPR systems operation strategy toward environmentally sustainable wastewater treatment.


Assuntos
Chlorella , Microbiota , Esgotos , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Nutrientes
13.
Water Sci Technol ; 90(1): 238-255, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007317

RESUMO

Human urine, which is high in nutrients, acts as a resource as well as a contaminant. Indiscriminate urine discharge causes environmental pollution and wastes resources. To elucidate the research status and developmental trajectory of source-separated urine (SSU) treatment and recovery, this study was based on the Web of Science Core Collection (WOSCC) database and used the bibliometric software VOSviewer and CiteSpace to conduct a comprehensive and in-depth bibliometric analysis of the related literature in this field. The findings revealed a general upward trend in SSU treatment and recovery from 2000 to 2023. The compendium of 894 scholarly articles predominantly focused on the disciplines of Environmental Sciences, Environmental Engineering, and Water Resources. China and the USA emerged as the foremost contributors. Keyword co-occurrence mapping, clustering, and burst analysis have shown that the recovery of nitrogen and phosphorus from urine is currently the main focus, with future prospects leaning toward the retrieval of biochemicals and chemical energy. This study systematically categorizes and compares the developmental status, current advancements, and research progress in this field. The findings of this study provide a valuable reference for understanding developmental pathways in this field of research.


Assuntos
Bibliometria , Urina , Urina/química , Humanos , Eliminação de Resíduos Líquidos/métodos
14.
Water Sci Technol ; 90(3): 1082-1098, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141053

RESUMO

Anaerobic co-digestion of source-separated blackwater (BW) and food and kitchen waste (FW) offers decentralized circular economy solutions by enabling local production of biogas and nutrient-rich byproducts. In this study, a 2 m3 pilot-scale continuously stirred tank reactor (CSTR) operated under mesophilic conditions was utilized for co-digestion of BW and FW. The process obtained a CH4 yield of 0.7 ± 0.2 m3/kg influent-volatile solid (VS), reaching a maximum yield of 1.1 ± 0.1 m3/kg influent-VS, with an average organic loading rate of 0.6 ± 0.1 kg-VS/m3/d and HRT of 25 days. The CH4 production rate averaged 0.4 ± 0.1 m3/m3/d, peaking at 0.6 ± 0.1 m3/m3/d. Treatment of digestate through flocculation followed by sedimentation recovered over 90% of ammonium nitrogen and potassium, and 80-85% of total phosphorus in the liquid fraction. This nutrient-rich liquid was used to cultivate Chlorella vulgaris, achieving a biomass concentration of 1.2 ± 0.1 g/L and 85 ± 3% and 78 ± 5% ammonium nitrogen and phosphorus removal efficiency, respectively. These findings not only highlight the feasibility of anaerobic co-digestion of source-separated BW and FW in local biogas production but also demonstrate the potential of microalgae cultivation as a sustainable approach to converting digestate into nutrient-rich algae biomass.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Nutrientes/metabolismo , Eliminação de Resíduos Líquidos/métodos , Alimentos , Águas Residuárias/química , Fósforo/metabolismo , Perda e Desperdício de Alimentos
15.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095589

RESUMO

Fermentation technology is a biorefining tool that has been used in various industrial processes to recover valuable nutrients from different side streams. One promising application of this technique is in the reclamation of nutritional components from seafood side streams. Seafood processing generates significant amounts of waste, including heads, shells, and other side streams. These side streams contain high quantities of valued nutritional components that can be extracted using fermentation technology. The fermentation technology engages the application of microorganisms to convert the side stream into valuable products like biofuels, enzymes, and animal feed. Natural polymers such as chitin and chitosan have various purposes in the food, medicinal, and agricultural industry. Another example is the fish protein hydrolysates (FPH) from seafood side streams. FPHs are protein-rich powders which could be used in animal nutrition and nutraceutical industry. The resulting hydrolysate is further filtered and dried resulting in a FPH powder. Fermentation technology holds great possibility in the recovery of valuable nutrients from seafood side streams. The process can help reduce waste and generate new value-added products from what would otherwise be considered a waste product. With further research and development, fermentation technology can become a key tool in the biorefining industry.

16.
Environ Res ; 231(Pt 3): 116277, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263468

RESUMO

This study aimed to evaluate the possibility of P precipitation as struvite from real anaerobic digestion (AD) effluent of tapioca starch processing. The results showed that at a pH of 9, and without Mg:P molar adjustment, P recovery was at 85%. The percentage of P recovery was increased to 90% and P contained in precipitates was at 11.80-14.70 wt% P, which is higher than commercial single superphosphate fertilizer (SSP, 18-22 wt% P2O5). This was achieved by controlling mixing at 200-400 rpm and upflow velocity at 50-200 cm min-1 inside a fluidized bed reactor (FBR). Based on SEM-EDX, powder XRD, phase identification by profile matching, and FT-IR analysis, the results demonstrated that recovered precipitates formed struvite predominantly. In addition, results of the woodchip ash additions and the one-way ANOVA based-RSM analysis revealed that mixing, the solution pH, and the woodchip ash intensely affected P recovery with the optimum condition found at 400 rpm, pH9, 4 g L-1, respectively. Ash addition enhanced P recovery efficiency but decreased the product's purity. Total costs of P recovery varied considerably from 0.28 to 7.82 USD∙(kg P)-1 depending on chemical consumption and %P content in recovered products. Moreover, the total cost was reduced by 57% from 7.82 USD∙(kg P)-1 (profit margin: -4.30 to -2.82) by a single mixing operation to 3.35 USD∙(kg P)-1 (profit margin: +0.17 to +1.65) employing coupling effect of mixing and Vup. The results indicate that P recovery from tapioca starch AD effluent not only provides a good-quality alternative slow-release P fertilizer, but also helps to curtail environmental problems due to excessive P and nitrogen discharge. These findings also demonstrate the ways of recovering nutrients from an abundant renewable resource that are relevant to simultaneous waste utilization during pollution controls.


Assuntos
Manihot , Fósforo , Eliminação de Resíduos Líquidos , Anaerobiose , Fertilizantes , Compostos de Magnésio , Fosfatos , Espectroscopia de Infravermelho com Transformada de Fourier , Amido , Estruvita , Eliminação de Resíduos Líquidos/métodos
17.
Environ Res ; 237(Pt 1): 116691, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574097

RESUMO

Conductive agro-industrial wastes as accelerants in the anaerobic digestion (AD) of organic waste is a good technique for developing a rural circular economy, such as producing bioenergy and biofertilizer. This study disclosed the a role of sugar cane bagasse ash (SCBA) in enhancing the bioenergy (biogas) yield and digestate fertility via anaerobic co-digestion (AcoD) of buffalo dung (BD) and vegetable residue (VR) under mesophilic conditions (37 á´¼C). Firstly, an optimal BD/VR ratio (1:3) was determined based on biogas yield by introducing five different BD/VR ratios (1:0, 3:1, 1:1, 1:3, and 0:1) into AcoD systems. Secondly, the biogas yield was increased further by adding SCBA at five different concentrations (0, 0.5, 1, 1.5, and 2 wt%). Experimental results disclosed that the 1.5 wt% of SCBA gave the highest cumulative biogas yield (153.67 mL/g VS), COD removal rate (31.18%), and fertility (5.08%). Moreover, a framework is suggested to understand the role of SCBA in the enhanced DIET mechanism. This work documents an environmentally friendly and economical technique for developing a rural circular bioeconomy via the AD of organic agro-waste.

18.
J Environ Manage ; 348: 119266, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844400

RESUMO

The circular bio-based economy offers great untapped potential for the food industry as possible valuable products and energy can be recovered from food waste. This can promote more sustainable and resilient food systems in Europe in follow-up of the European Commission's Farm to Fork strategy and support the global transition to more sustainable agri-food systems with the common agricultural and fisheries policies. With its high nutrient content, waste and by-products originating from fish and seafood industry (including aquaculture) are one of the most promising candidates to produce alternative fertilising products which can play a crucial role to replace synthetic mineral fertilisers. Whereas several studies highlighted the opportunities to recover valuable compounds from fishery waste, study towards their potential for the production of fertilising products is still scarce. This study presents an extensive overview of the characteristics of fishery waste and by-products (i.e., fish processing waste, fish sludge, seafood waste/by-products), the state-of-the-art nutrient recovery technologies and recovered nutrients as fertilising products from these waste streams. The European Commission has already adopted a revised Fertilising Products Regulation (EU) 2019/1009 providing opportunities for fertilising products from various bio-based origins. In frame of this opportunity, we address the quality and safety aspects of the fishery waste-derived fertilising products under these criteria and highlight possible obstacles on their way to the market in the future. Considering its high nutrient content and vast abundance, fish sludge has a great potential but should be treated/refined before being applied to soil. In addition to the parameters currently regulated, it is crucial to consider the salinity levels of such fertilising products as well as the possible presence of other micropollutants especially microplastics to warrant their safe use in agriculture. The agronomic performance of fishery waste-derived fertilisers is also compiled and reported in the last section of this review paper, which in most cases perform equally to that of conventional synthetic fertilisers.


Assuntos
Pesqueiros , Eliminação de Resíduos , Alimentos , Esgotos , Fertilizantes , Plásticos , Resíduos , Nutrientes , Reciclagem
19.
J Environ Manage ; 339: 117860, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086642

RESUMO

Food waste is rich in nutrients, such as nitrogen and phosphorus, and can be integrated with bioponics, a closed-loop agricultural system that combines hydroponics with biological nutrient recovery. Vermicompost leachate (VCL) supplementation has been shown to improve the co-composting of organic waste (i.e., compost quality) and the biodegradation of organic compounds. Thus, VCL has high potential for enhancing nutrient availability in bioponics from food waste. However, the understanding of nitrogen and phosphorus availability in food waste-based bioponics is limited, both with and without VCL. In this study, food waste derived from cafeteria vegetable waste was used as the substrate (500 g dry wt./system) in bioponics to grow lettuce (Lactuca sativa L.) for two consecutive cycles (35 days/cycle) without substrate replacement. VCL was applied weekly (1-5% v/v) and compared to the control without VCL. The results showed that the food waste in bioponics provided nitrogen and phosphorus for plant growth (15.5-65.8 g/lettuce head). Organic-degrading and nutrient-transforming bacteria (Hydrogenispora, Clostridium_sensu_stricto_1, Ruminiclostridium_1, Cellvibrio, Thauera, Hydrogenophaga, and Bacillus) were predominantly found in plant roots and residual food waste. VCL addition significantly increased nitrate, phosphate, and chemical oxygen demand levels in bioponics, owing to the nutrients in VCL and the enhancement of keystone microorganisms responsible for organic degradation and nutrient cycling (e.g., Ellin6067, Actinomyces, and Pirellula). These findings suggest that nitrogen, phosphorus, and organic carbon concentrations in an ecosystem of nutrient-transforming and organic-degrading microbes are key in managing nutrient recovery from food waste in bioponics.


Assuntos
Microbiota , Eliminação de Resíduos , Fósforo/metabolismo , Alimentos , Nitrogênio/análise , Solo/química
20.
J Environ Manage ; 344: 118383, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348306

RESUMO

Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.


Assuntos
Fosfatos , Águas Residuárias , Estruvita/química , Fósforo/química , Cristalização , Ecossistema , Nutrientes , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa