Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901196

RESUMO

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

2.
Appl Energy ; 279: 115835, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32952266

RESUMO

Being heavily dependent to oil products (mainly gasoline and diesel), the French transport sector is the main emitter of Particulate Matter (PMs) whose critical levels induce harmful health effects for urban inhabitants. We selected three major French cities (Paris, Lyon, and Marseille) to investigate the relationship between the Coronavirus Disease 19 (COVID-19) outbreak and air pollution. Using Artificial Neural Networks (ANNs) experiments, we have determined the concentration of PM2.5 and PM10 linked to COVID-19-related deaths. Our focus is on the potential effects of Particulate Matter (PM) in spreading the epidemic. The underlying hypothesis is that a pre-determined particulate concentration can foster COVID-19 and make the respiratory system more susceptible to this infection. The empirical strategy used an innovative Machine Learning (ML) methodology. In particular, through the so-called cutting technique in ANNs, we found new threshold levels of PM2.5 and PM10 connected to COVID-19: 17.4 µg/m3 (PM2.5) and 29.6 µg/m3 (PM10) for Paris; 15.6 µg/m3 (PM2.5) and 20.6 µg/m3 (PM10) for Lyon; 14.3 µg/m3 (PM2.5) and 22.04 µg/m3 (PM10) for Marseille. Interestingly, all the threshold values identified by the ANNs are higher than the limits imposed by the European Parliament. Finally, a Causal Direction from Dependency (D2C) algorithm is applied to check the consistency of our findings.

3.
Environ Res ; 152: 304-307, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27829205

RESUMO

OBJECTIVE: To investigate the association between short-term changes in ambient pollution (particulate matter <2.5µm in aerodynamic diameter (PM2.5) and ozone (O3)) and the risk of recurrent ischemic stroke among individuals living in a bi-ethnic community. METHODS: We identified recurrent ischemic stroke cases from the population-based Brain Attack Surveillance in Corpus Christi (BASIC) project between 2000 and 2012. Associations between PM2.5 (mean 24-h) and O3 (maximal 8-h) levels, measured on the previous day, and odds of ischemic stroke were assessed using a time-stratified case-crossover design and modeled using conditional logistic regression. RESULTS: There were 317 recurrent ischemic strokes after excluding 41 strokes that occurred on days with missing air pollution data. Mean age was 72 years (SD=12) and median time to stroke recurrence was 1.1 years (IQR: 0.2-2.8 years). Median levels of PM2.5 and O3 over the study period were 7.7µg/m3 (IQR: 5.6-10.7µg/m3) and 35.2 ppb (IQR: 25.0-46.1 ppb), respectively. We observed no associations between previous-day PM2.5 and O3 and odds of recurrent stroke (OR=0.95 per 10µg/m3 of PM2.5, 95% CI: 0.71-1.28 and OR=0.97 per 10ppb of O3, 95% CI: 0.87-1.07) after adjusting for ambient temperature and relative humidity. Co-adjustment of both pollutants did not change the results. CONCLUSION: We found no evidence of associations between previous-day air pollution levels and recurrent ischemic stroke. Research on the influence of air pollutants on risk of stroke recurrence is still in its infancy, and more research is necessary in studies that are adequately powered to understand the relation.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Material Particulado/análise , Acidente Vascular Cerebral/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/toxicidade , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ozônio/toxicidade , Material Particulado/toxicidade , Recidiva , Fatores de Risco , Acidente Vascular Cerebral/induzido quimicamente , Texas/epidemiologia , Fatores de Tempo
4.
JID Innov ; 2(1): 100062, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993502

RESUMO

Atopic eczema is a common and complex disease. Missing genetic hereditability and increasing prevalence in industrializing nations point toward an environmental driver. We investigated the temporal association of weather and pollution parameters with eczema severity. This cross-sectional clinical study was performed between May 2018 and March 2020 and is part of the Tower Hamlets Eczema Assessment. All participants had a diagnosis of eczema, lived in East London, were of Bangladeshi ethnicity, and were aged <31 years. The primary outcome was the probability of having an Eczema Area and Severity Index score > 10 after previous ambient exposure to commonly studied meteorological variables and pollutants. There were 430 participants in the groups with Eczema Area and Severity Index ≤ 10 and 149 in those with Eczema Area and Severity Index > 10. Using logistic generalized additive models and a model selection process, we found that tropospheric ozone averaged over the preceding 270 days was strongly associated with eczema severity alongside the exposure to fine particles with diameters of 2.5 µm or less (fine particulate matter) averaged over the preceding 120 days. In our models and analyses, fine particulate matter appeared to largely act in a supporting role to ozone. We show that long-term exposure to ground-level ozone at high levels has the strongest association with eczema severity.

5.
Ann Med Surg (Lond) ; 78: 103871, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35637884

RESUMO

Ambient air pollution level not only causes respiratory diseases but also cardiovascular diseases, besides, increased visits to the emergency department for asthma, chronic obstructive pulmonary disease (COPD), bronchitis, allergic rhinitis, attention deficit hyperactivity disorder (ADHD) in children and premature deaths in infants. The occurrence of Coronavirus-19 (COVID-19) pandemic is both, a boon and bane. Despite the deplorable situation aroused by the pandemic, strict lockdown measures implemented to curb the drastic spread of the disease, also culminated into astonishing outcomes that were not prioritized. This article illustrates the effects of the ongoing pandemic on air pollution and provides recommendations aimed at limiting it.

6.
Process Saf Environ Prot ; 166: 368-383, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36034108

RESUMO

Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.

7.
World Allergy Organ J ; 14(5): 100538, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025904

RESUMO

BACKGROUND: Asthma is a common pediatric chronic respiratory disease worldwide. Previous studies showed the prevalence of childhood asthma increased in developed countries as well as in Taiwan in the late 20th century. Recently, several reports from different parts of the world showed a reversed trend in this epidemic of childhood asthma prevalence. This study investigated the trend of childhood asthma through serial cross-section questionnaire surveys in the southern part of Taiwan, and identified associated factors related to this trend in elementary school children. METHODS: We used the Chinese version of the International Study of Asthma and Allergies in Childhood (ISAAC)29 questionnaire to assess the asthma status of elementary school students aged 6-12 years in Tainan city in 3 independent study periods, namely, 2008-2009, 2010-2012, and 2017-2018. We assessed the trend of "asthma" and "related respiratory symptoms" across 3 study periods. RESULTS: Of the 19,633 respondents, 17,545 (89.4%) completed the questionnaires. After adjustment for covariates, the prevalence of asthma and related respiratory symptoms was significantly lower in 2017-2018 than in the 2 earlier periods. Among the protective factors, the increasing rate of breastfeeding might be partly responsible for the observed reduced prevalence of current asthma and exercise-induced wheeze, but not physician-diagnosed asthma. The presence of pets in the house was the risk factor that correlated with the prevalence of nocturnal cough. Pearson correlation analysis showed a significant correlation of the prevalence of physician-diagnosed asthma, current asthma, and exercise-induced wheezing with the concentrations of air pollutant particles with aerodynamic diameter ≤10 µM (PM10) (r = 0.84, 0.77 and 0.81, respectively). CONCLUSION: The prevalence of asthma and related respiratory symptoms has declined in elementary school-age children in southern Taiwan. The increased prevalence of breastfeeding, decreased rate of the presence of pets in the house, and improvement in outdoor air pollution seem to be related to this decreasing trend of asthma in school children. Our findings will provide the scientific base to empower prevention policy to reverse the trend of childhood asthma prevalence. TRIAL REGISTRATION: N/A.

8.
World Allergy Organ J ; 14(1): 100499, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33510831

RESUMO

Indoor environments contribute significantly to total human exposure to air pollutants, as people spend most of their time indoors. Household air pollution (HAP) resulting from cooking with polluting ("dirty") fuels, which include coal, kerosene, and biomass (wood, charcoal, crop residues, and animal manure) is a global environmental health problem. Indoor pollutants are gases, particulates, toxins, and microorganisms among others, that can have an impact especially on the health of children and adults through a combination of different mechanisms on oxidative stress and gene activation, epigenetic, cellular, and immunological systems. Air pollution is a major risk factor and contributor to morbidity and mortality from major chronic diseases. Children are significantly affected by the impact of the environment due to biological immaturity, prenatal and postnatal lung development. Poor air quality has been related to an increased prevalence of clinical manifestations of allergic asthma and rhinitis. Health professionals should increase their role in managing the exposure of children and adults to air pollution with better methods of care, prevention, and collective action. Interventions to reduce household pollutants may promote health and can be achieved with education, community, and health professional involvement.

9.
Sustain Cities Soc ; 72: 103051, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099968

RESUMO

With the arrival of the SARS-CoV-2 coronavirus, the scientific academia, as well as policymakers, are striving to conceive solutions as an attempt to contain the spreading of contagion. Among the adopted measures, severe lockdown restrictions were issued to avoid the diffusion of the virus in an uncontrolled way through public spaces. It can be deduced from recent literature that the primary route of transmission is via aerosols, produced mainly in poorly ventilated interior areas where infected people spend a lot of time with other people. Concerning contagion rates, accumulated incidence or number of hospitalizations due to COVID-19, Spain, and Italy have reached very high levels. In this framework, a regression analysis to assess the feasibility of the indoor ventilation measures established in Spain and Italy, with respect to the European framework, is here presented. To this aim, ten cases of housing typology were and analyzed. The results show that the measures established in the applicable regulations to prevent and control the risk of contagion by aerosols are not adequate to guarantee a healthy environment indoors. The current Italian guidelines are more restrictive than in Spain, yet the ventilation levels are still insufficient in times of pandemic.

10.
Urban Clim ; 36: 100802, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36569424

RESUMO

The complete lockdown due to COVID-19 pandemic has contributed to the improvement of air quality across the countries particularly in developing countries including India. This study aims to assess the air quality by monitoring major atmospheric pollutants such as AOD, CO, PM2.5, NO2, O3 and SO2 in 15 major cities of India using Air Quality Zonal Modeling. The study is based on two different data sources; (a) grid data (MODIS- Terra, MERRA-2, OMI and AIRS, Global Modeling and Assimilation Office, NASA) and (b) ground monitoring station data provided by Central Pollution Control Board (CPCB) / State Pollution Control Board (SPCB). The remotely sensed data demonstrated that the concentration of PM2.5 has declined by 14%, about 30% of NO2 in million-plus cities, 2.06% CO, SO2 within the range of 5 to 60%, whereas the concentration of O3 has increased by 1 to 3% in majority of cities compared with pre lockdown. On the other hand, CPCB/SPCB data showed more than 40% decrease in PM2.5 and 47% decrease in PM10 in north Indian cities, more than 35% decrease in NO2 in metropolitan cities, more than 85% decrease in SO2 in Chennai and Nagpur and more than 17% increase in O3 in five cities amid 43 days pandemic lockdown. The restrictions of anthropogenic activities have substantial effect on the emission of primary atmospheric pollutants.

11.
Urban Clim ; 34: 100719, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33083215

RESUMO

In present study, the variation in concentration of key air pollutants such as PM 2.5, PM 10, NO 2, SO 2 and O 3 during the pre-lockdown and post-lockdown phase has been investigated. In addition, the monthly concentration of air pollutants in March, April and May of 2020 is also compared with that of 2019 to unfold the effect of restricted emissions under similar meteorological conditions. To evaluate the global impact of COVID-19 on the air quality, ground-based data from 162 monitoring stations from 12 cities across the globe are analysed for the first time. The concentration of PM 2.5, PM 10 and NO 2 were reduced by 20-34%, 24-47% and 32-64%, respectively, due to restriction on anthropogenic emission sources during lockdown. However, a lower reduction in SO 2 was observed due to functional power plants. O 3 concentration was found to be increased due to the declined emission of NO. Nevertheless, the achieved improvements were temporary as the pollution level has gone up again in cities where lockdown was lifted. The study might assist the environmentalist, government and policymakers to curb down the air pollution in future by implementing the strategic lockdowns at the pollution hotspots with minimal economic loss.

12.
Sustain Cities Soc ; 62: 102382, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32834936

RESUMO

The COVID-19 pandemic elicited a global response to limit associated mortality, with social distancing and lockdowns being imposed. In India, human activities were restricted from late March 2020. This 'anthropogenic emissions switch-off' presented an opportunity to investigate impacts of COVID-19 mitigation measures on ambient air quality in five Indian cities (Chennai, Delhi, Hyderabad, Kolkata, and Mumbai), using in-situ measurements from 2015 to 2020. For each year, we isolated, analysed and compared fine particulate matter (PM2.5) concentration data from 25 March to 11 May, to elucidate the effects of the lockdown. Like other global cities, we observed substantial reductions in PM2.5 concentrations, from 19 to 43% (Chennai), 41-53% (Delhi), 26-54% (Hyderabad), 24-36% (Kolkata), and 10-39% (Mumbai). Generally, cities with larger traffic volumes showed greater reductions. Aerosol loading decreased by 29% (Chennai), 11% (Delhi), 4% (Kolkata), and 1% (Mumbai) against 2019 data. Health and related economic impact assessments indicated 630 prevented premature deaths during lockdown across all five cities, valued at 0.69 billion USD. Improvements in air quality may be considered a temporary lockdown benefit as revitalising the economy could reverse this trend. Regulatory bodies must closely monitor air quality levels, which currently offer a baseline for future mitigation plans.

13.
World Allergy Organ J ; 13(3): 100106, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32256939

RESUMO

Allergic rhinitis affects the quality of life of millions of people worldwide. Air pollution not only causes morbidity, but nearly 3 million people per year die from unhealthy indoor air exposure. Furthermore, allergic rhinitis and air pollution interact. This report summarizes the discussion of an International Expert Consensus on the management of allergic rhinitis aggravated by air pollution. The report begins with a review of indoor and outdoor air pollutants followed by epidemiologic evidence showing the impact of air pollution and climate change on the upper airway and allergic rhinitis. Mechanisms, particularly oxidative stress, potentially explaining the interactions between air pollution and allergic rhinitis are discussed. Treatment for the management of allergic rhinitis aggravated by air pollution primarily involves treating allergic rhinitis by guidelines and reducing exposure to pollutants. Fexofenadine a non-sedating oral antihistamine improves AR symptoms aggravated by air pollution. However, more efficacy studies on other pharmacological therapy of coexisting AR and air pollution are currently lacking.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa