Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754781

RESUMO

OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 µM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 µM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 µM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.


Assuntos
Cardiotônicos , Miócitos Cardíacos , Animais , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/química , Inflamassomos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Lipopolissacarídeos/farmacologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , Sirtuína 1/metabolismo , Anti-Inflamatórios/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/química , Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo
2.
Int J Cardiol Heart Vasc ; 29: 100573, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32685659

RESUMO

We designed a placebo controlled, double-blind, randomized, dose-finding phase II study on OMT-28 in the maintenance of sinus rhythm after electrical cardioversion (DCC) in patients with persistent atrial fibrillation (PROMISE-AF). OMT-28 is a first-in-class, synthetic analog of 17,18-epoxyeicosatetetraenoic acid, a bioactive lipid mediator generated by cytochrome P450 enzymes from the omega-3 fatty acid eicosapentaenoic acid. OMT-28 improves Ca2+-handling and mitochondrial function in cardiomyocytes and reduces pro-inflammatory signaling. This unique mode of action may provide a novel approach to target key mechanism contributing to AF pathophysiology. In a recent phase I study, OMT-28 was safe and well tolerated and showed favorable pharmacokinetics. The PROMISE-AF study (NCT03906799) is designed to assess the efficacy (primary objective), safety, and population pharmacokinetics (secondary objectives) of three different doses of OMT-28, administered once daily, versus placebo until the end of the follow-up period. Recruitment started in March 2019 and the study will include a total of 120 patients. The primary efficacy endpoint is the AF burden (% time with any AF), evaluated over a 13-week treatment period after DCC. AF burden is calculated based on continuous ECG monitoring using an insertable cardiac monitor (ICM). The primary efficacy analysis will be conducted on the modified intention-to-treat (mITT) population, whereas the safety analysis will be done on the safety population. Although ICMs have been used in other interventional studies to assess arrhythmia, PROMISE-AF will be the first study to assess antiarrhythmic efficacy and safety of a novel rhythm-stabilizing drug after DCC by using ICMs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa