Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(10): 2848-2866, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412416

RESUMO

The oxidative pentose-phosphate pathway (OPPP) retrieves NADPH from glucose-6-phosphate, which is important in chloroplasts at night and in plastids of heterotrophic tissues. We previously studied how OPPP enzymes may transiently locate to peroxisomes, but how this is achieved for the third enzyme remained unclear. By extending our genetic approach, we demonstrated that Arabidopsis isoform 6-phosphogluconate dehydrogenase 2 (PGD2) is indispensable in peroxisomes during fertilization, and investigated why all PGD-reporter fusions show a mostly cytosolic pattern. A previously published interaction of a plant PGD with thioredoxin m was confirmed using Trxm2 for yeast two-hybrid (Y2H) and bimolecular fluorescent complementation (BiFC) assays, and medial reporter fusions (with both ends accessible) proved to be beneficial for studying peroxisomal targeting of PGD2. Of special importance were phosphomimetic changes at Thr6, resulting in a clear targeting switch to peroxisomes, while a similar change at position Ser7 in PGD1 conferred plastid import. Apparently, efficient subcellular localization can be achieved by activating an unknown kinase, either early after or during translation. N-terminal phosphorylation of PGD2 interfered with dimerization in the cytosol, thus allowing accessibility of the C-terminal peroxisomal targeting signal (PTS1). Notably, we identified amino acid positions that are conserved among plant PGD homologues, with PTS1 motifs first appearing in ferns, suggesting a functional link to fertilization during the evolution of seed plants.


Assuntos
Arabidopsis , Fosfogluconato Desidrogenase , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfogluconato Desidrogenase/metabolismo , Fosfogluconato Desidrogenase/genética , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Peroxissomos/metabolismo , Isoenzimas/metabolismo , Isoenzimas/genética
2.
Plant Cell Physiol ; 55(8): 1395-403, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24793748

RESUMO

Studies have demonstrated that photosynthetic limitations and starch degradation are responses to stress; however, the relationship between the two is seldom described in detail. In this article, the effects of salt stress on photosynthesis, the levels of NADPH and total RNA, the starch content and the activities of glucose-6-phosphate dehydrogenase (G6PDH) and ribulose-5-phosphate kinase (RPK) were evaluated. In thalli that underwent salt treatments, the cyclic electron flow through PSI showed greater stress tolerance than the flow through PSII. Even though the linear electron flow was suppressed by DCMU, the cyclic electron flow still operated. The electron transport rate I (ETRI) increased as the salinity increased when the thalli recovered in seawater containing DCMU. These results suggested that PSI receives electrons from a source other than PSII. Furthermore, the starch content and RPK activity decreased, while the content of NADPH and total RNA, and the activity of G6PDH increased under salt stress. Soluble sugar from starch degradation may enter the oxidative pentose phosphate pathway (OPPP) to produce NADPH and ribose 5-phosphate. Data analysis suggests that NADPH provides electrons for PSI in Ulva prolifera during salt stress, the OPPP participates in the stress response and total RNA is synthesized in excess to assist recovery.


Assuntos
NADP/metabolismo , Via de Pentose Fosfato/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Estresse Fisiológico , Ulva/fisiologia , Carboidratos/análise , Transporte de Elétrons , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Salinidade , Sais , Amido/análise , Ulva/genética
3.
Microorganisms ; 12(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38257875

RESUMO

Molecular typing techniques are utilized to determine genetic similarities between bacterial isolates. However, the use of environmental DNA profiling to assess epidemiologic links between patients and their environment has not been fully explored. This work reports the development and validation of two high-throughput short sequence typing (HiSST) schemes targeting the opportunistic pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia, along with a modified SM2I selective medium for the specific isolation of S. maltophilia. These HiSST schemes are based on four discriminative loci for each species and demonstrate high discriminating power, comparable to pairwise whole-genome comparisons. Each scheme includes species-specific PCR primers for precise differentiation from closely related taxa, without the need for upstream culture-dependent methods. For example, the primers targeting the bvgS locus make it possible to distinguish P. aeruginosa from the very closely related Pseudomonas paraeruginosa sp. nov. The selected loci included in the schemes are adapted to massive parallel amplicon sequencing technology. An R-based script implemented in the DADA2 pipeline was assembled to facilitate HiSST analyses for efficient and accurate genotyping of P. aeruginosa and S. maltophilia. We demonstrate the performance of both schemes through in silico validations, assessments against reference culture collections, and a case study involving environmental samples.

4.
Plant Physiol Biochem ; 169: 190-202, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34801973

RESUMO

Low temperatures (0-10 °C) represent a major physiological stress for plants, negatively affecting both their growth rates and overall growth. Cold stress may induce a wide range of negative physiological effects, from oxidative stress to photosynthetic damage. We investigated the effects of low temperatures in two different model plants, Arabidopsis thaliana and Hordeum vulgare. We tested whether the oxidative pentose phosphate pathway (OPPP) is involved in the increase of reductants' levels needed to counteract oxidative stress induced by cold. The expression, occurrence, and activity of different glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) isoforms during cold stress and plant recovery from low temperatures, were measured at different growth stages from early germinated to mature pot-grown plants. Our results showed plants exhibited changes in different stress markers; ascorbate peroxidase - APX, catalase - CAT, proline, malondialdehyde, H2O2, NADPH/NADP+. We found that a major role in cold acclimation for cytosolic- and peroxisome-located G6PDHs, and different roles for plastidial/chloroplastic isoforms. This suggests that G6PDH isoforms may regulate redox homeostasis in low temperatures, in order to support the increased and continued demand of reductants during both cold stress and recovery stages. Furthermore, we found a significant involvement of (6PGDH), strengthening the idea that the contribution of the whole oxidative pentose phosphate pathway (OPPP) is required to sustain reductant supply under cold stress.


Assuntos
Arabidopsis , Hordeum , Aclimatação , Resposta ao Choque Frio , Glucosefosfato Desidrogenase , Isoformas de Proteínas
5.
Plant Signal Behav ; 11(10): e1207034, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27366940

RESUMO

We recently described that all three 6-phosphogluconate dehydrogenase (6PGDH) isoforms of Arabidopsis (PGD) with similar length show dual localization: PGD1 and PGD3 in the cytosol and in plastids, and PGD2 in the cytosol and in peroxisomes. We set out to investigate heterodimer formation, however due to only weak homodimerization of all Arabidopsis PGD isoforms in yeast cells, we conducted further protein-protein interaction studies in planta to investigate homomer versus heteromer formation and their sub-cellular localization. Bimolecular fluorescence complementation (BiFC) analyses in co-transfected Arabidopsis protoplasts demonstrated that all PGD isoforms may form homo- and heterodimers. Notably, with free N-terminal ends, PGD1-PGD3 heterodimers were detected both in the cytosol and in the plastid stroma, but heterodimers with PGD2 only in the cytosol. This independently confirmed that PGD2 cannot enter plastids. On the other hand, with free C-terminal ends, PGD1-PGD2 and PGD3-PGD2 heterodimers were confined to the cytosol, indicating that only PGD2 homodimers are imported by peroxisomes. Together these findings suggest functional redundancy of PGD1 and PGD3 inside plastids, and relevance of PGD1-PGD2 or PGD3-PGD2 heterodimer formation in the cytosol: this could retain sufficient 6PGDH activity needed for NADPH provision, especially during stress defense and initiation of developmental responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfogluconato Desidrogenase/metabolismo , Isoformas de Proteínas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dimerização , Fosfogluconato Desidrogenase/química , Fosfogluconato Desidrogenase/genética , Plastídeos/enzimologia , Plastídeos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
6.
Plant Physiol Biochem ; 73: 266-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161756

RESUMO

In plant cells, the plastidial glucose 6-phosphate dehydrogenase (P2-G6PDH, EC 1.1.1.49) represents one of the most important sources of NADPH. However, previous studies revealed that both native and recombinant purified P2-G6PDHs show a great instability and a rapid loss of catalytic activity. Therefore it has been difficult to describe accurately the catalytic and physico-chemical properties of these isoforms. The plastidial G6PDH encoding sequence from barley roots (Hordeum vulgare cv. Nure), devoid of a long plastidial transit peptide, was expressed as recombinant protein in Escherichia coli, either untagged or with an N-terminal his-tag. After purification from both the soluble fraction and inclusion bodies, we have explored its kinetic parameters, as well as its sensitivity to reduction. The obtained results are consistent with values determined for other P2-G6PDHs previously purified from barley roots and from other land plants. Overall, these data shed light on the catalytic mechanism of plant P2-G6PDH, summarized in a proposed model in which the sequential mechanism is very similar to the mammalian cytosolic G6PDH. This study provides a rational basis to consider the recombinant barley root P2-G6PDH as a good model for further kinetic and structural studies.


Assuntos
Genes de Plantas , Glucosefosfato Desidrogenase/genética , Hordeum/genética , NADP/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plastídeos/genética , Sequência de Aminoácidos , Animais , Escherichia coli , Glucosefosfato Desidrogenase/metabolismo , Hordeum/enzimologia , Hordeum/metabolismo , Mamíferos , Dados de Sequência Molecular , NADP/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Isoformas de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
J Plant Physiol ; 170(13): 1165-75, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23608744

RESUMO

In the present study we aimed to investigate the relevance of either N, P or K supply for herb and leaf yield and for centelloside concentrations in Centella asiatica L. Urban leaves. In this regard, we elucidated the causal relationship between assimilation rate, leaf N, P and K concentrations, herb and leaf production, and centelloside accumulation. The experiments were conducted consecutively in a greenhouse where C. asiatica was grown in hydroponic culture and fertigated with nutrient solutions at either 0, 30, 60, 100 or 150% of the N, P or K amount in a standard Hoagland solution. In general, the increase in N, P or K supply enhanced assimilation rate and herb and leaf yield. However, exceeding specific thresholds, the high availability of one single nutrient caused lower leaf N concentrations and a decline in assimilation rate and plant growth. Irrespective of N, P and K supply, the leaf centelloside concentrations were negatively associated with herb and leaf yield, which is in accordance with the assumptions of the carbon/nutrient balance and the growth differentiation balance hypotheses. Moreover, we found strong negative correlations between saponins and leaf N concentrations, while the respective sapogenins were negatively correlated with K concentrations. Using C. asiatica as model system, our experiments reveal for the first time that the accumulation of saponins and sapogenins is affected by resource allocation between primary and secondary metabolism and that besides carbon, also nutrient availability is relevant for the regulation of the centelloside synthesis. Finally, our results highlight the huge potential of optimized and carefully controlled mineral nutrition of medicinal plants for steering the bio-production of high-quality natural products.


Assuntos
Centella/metabolismo , Glicosídeos/metabolismo , Minerais/metabolismo , Fotossíntese , Sapogeninas/metabolismo , Saponinas/metabolismo , Triterpenos/metabolismo , Centella/crescimento & desenvolvimento , Hidroponia , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Potássio/metabolismo , Metabolismo Secundário , Solo/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa