Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.299
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 81(7): 1425-1438.e10, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662272

RESUMO

Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo , Elongação Traducional da Cadeia Peptídica , Fator 2 de Elongação de Peptídeos/metabolismo , Receptores de Glutamato Metabotrópico/biossíntese , Animais , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fator 2 de Elongação de Peptídeos/genética , Fosforilação , Receptores de Glutamato Metabotrópico/genética
2.
Proc Natl Acad Sci U S A ; 121(17): e2400086121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621132

RESUMO

Vision can provide useful cues about the geometric properties of an object, like its size, distance, pose, and shape. But how the brain merges these properties into a complete sensory representation of a three-dimensional object is poorly understood. To address this gap, we investigated a visual illusion in which humans misperceive the shape of an object due to a small change in one eye's retinal image. We first show that this illusion affects percepts of a highly familiar object under completely natural viewing conditions. Specifically, people perceived their own rectangular mobile phone to have a trapezoidal shape. We then investigate the perceptual underpinnings of this illusion by asking people to report both the perceived shape and pose of controlled stimuli. Our results suggest that the shape illusion results from distorted cues to object pose. In addition to yielding insights into object perception, this work informs our understanding of how the brain combines information from multiple visual cues in natural settings. The shape illusion can occur when people wear everyday prescription spectacles; thus, these findings also provide insight into the cue combination challenges that some spectacle wearers experience on a regular basis.


Assuntos
Ilusões , Humanos , Encéfalo , Sinais (Psicologia)
3.
Proc Natl Acad Sci U S A ; 121(12): e2322149121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470925

RESUMO

Individuals differ in where they fixate on a face, with some looking closer to the eyes while others prefer the mouth region. These individual biases are highly robust, generalize from the lab to the outside world, and have been associated with social cognition and associated disorders. However, it is unclear, whether these biases are specific to faces or influenced by domain-general mechanisms of vision. Here, we juxtaposed these hypotheses by testing whether individual face fixation biases generalize to inanimate objects. We analyzed >1.8 million fixations toward faces and objects in complex natural scenes from 405 participants tested in multiple labs. Consistent interindividual differences in fixation positions were highly inter-correlated across faces and objects in all samples. Observers who fixated closer to the eye region also fixated higher on inanimate objects and vice versa. Furthermore, the inter-individual spread of fixation positions scaled with target size in precisely the same, non-linear manner for faces and objects. These findings contradict a purely domain-specific account of individual face gaze. Instead, they suggest significant domain-general contributions to the individual way we look at faces, a finding with potential relevance for basic vision, face perception, social cognition, and associated clinical conditions.


Assuntos
Reconhecimento Facial , Fixação Ocular , Humanos , Individualidade , Olho , Face
4.
Proc Natl Acad Sci U S A ; 120(35): e2302654120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603741

RESUMO

The affordance of an object refers to its functional properties. For example, a bowl has the affordance of holding water, but a sieve does not. Here, we report that ants learn the affordance of a novel object without this attribute being rewarded, and use the memory of this affordance to avoid predicted, but never experienced, crowding. Ants were trained to feeders, which could support either only one ant or many. Two feeders were encountered, each of identical design but differently scented. After training, on the outward journey, half the ants encounter nestmates, which had fed on food matching one of the training feeders. Encountering returning nestmates reduced preference for the feeder matching the scent of the encountered nestmates, but only for ants trained on a limited-access feeder; ants trained on an unlimited feeder were unaffected. In other words, only if ants know that the food access is limited, and receive information that this feeder is heavily visited, do they reduce their preference for this feeder. To achieve this, the ants had to combine memories of the feeders' affordance with the presence of nestmates. Then they had to use semantic knowledge that restricted food access combined with nestmate presence predicts a likelihood of crowding, or a rule such as "if the food is restricted and there are nestmates on the path, go to another food source." Regardless of the mechanism, these results demonstrate that ants latently learn the affordance of their surroundings, an unexpected cognitive ability for an invertebrate.


Assuntos
Formigas , Animais , Aprendizagem , Cognição , Alimentos , Conhecimento , Feromônios
5.
Proc Natl Acad Sci U S A ; 120(51): e2312752120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091292

RESUMO

Somatostatin-expressing interneurons (SOMIs) in the mouse dentate gyrus (DG) receive feedforward excitation from granule cell (GC) mossy fiber (MF) synapses and provide feedback lateral inhibition onto GC dendrites to support environment representation in the DG network. Although this microcircuitry has been implicated in memory formation, little is known about activity-dependent plastic changes at MF-SOMI synapses and their influence on behavior. Here, we report that the metabotropic glutamate receptor 1α (mGluR1α) is required for the induction of associative long-term potentiation (LTP) at MF-SOMI synapses. Pharmacological block of mGluR1α, but not mGluR5, prevented synaptic weight changes. LTP at MF-SOMI synapses was postsynaptically induced, required increased intracellular Ca2+, involved G-protein-mediated and Ca2+-dependent (extracellular signal-regulated kinase) ERK1/2 pathways, and the activation of NMDA receptors. Specific knockdown of mGluR1α in DG-SOMIs by small hairpin RNA expression prevented MF-SOMI LTP, reduced SOMI recruitment, and impaired object location memory. Thus, postsynaptic mGluR1α-mediated MF-plasticity at SOMI input synapses critically supports DG-dependent mnemonic functions.


Assuntos
Fibras Musgosas Hipocampais , Plasticidade Neuronal , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/metabolismo , Somatostatina/metabolismo , Giro Denteado/metabolismo , Transmissão Sináptica
6.
J Neurosci ; 44(36)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39138001

RESUMO

Acetylation of histone proteins by histone acetyltransferases (HATs), and the resultant change in gene expression, is a well-established mechanism necessary for long-term memory (LTM) consolidation, which is not required for short-term memory (STM). However, we previously demonstrated that the HAT p300/CBP-associated factor (PCAF) also influences hippocampus (HPC)-dependent STM in male rats. In addition to their epigenetic activity, HATs acetylate nonhistone proteins involved in nongenomic cellular processes, such as estrogen receptors (ERs). Given that ERs have rapid, nongenomic effects on HPC-dependent STM, we investigated the potential interaction between ERs and PCAF for STM mediated by the dorsal hippocampus (dHPC). Using a series of pharmacological agents administered directly into the dHPC, we reveal a functional interaction between PCAF and ERα in the facilitation of short-term object-in-place memory in male but not female rats. This interaction was specific to ERα, while ERß agonism did not enhance STM. It was further specific to dHPC STM, as the effect was not present in the dHPC for LTM or in the perirhinal cortex. Further, while STM required local (i.e., dHPC) estrogen synthesis, the facilitatory interaction effect appeared independent of estrogens. Finally, western blot analyses demonstrated that PCAF activation in the dHPC rapidly (5 min) activated downstream estrogen-related cell signaling kinases (c-Jun N-terminal kinase and extracellular signal-related kinase). Collectively, these findings indicate that PCAF, which is typically implicated in LTM through epigenetic processes, also influences STM in the dHPC, possibly via nongenomic ER activity. Critically, this novel PCAF-ER interaction might exist as a male-specific mechanism supporting STM.


Assuntos
Receptor alfa de Estrogênio , Hipocampo , Memória de Curto Prazo , Fatores de Transcrição de p300-CBP , Animais , Masculino , Feminino , Ratos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Memória de Curto Prazo/efeitos dos fármacos , Ratos Sprague-Dawley , Caracteres Sexuais
7.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38670806

RESUMO

Visual crowding refers to the phenomenon where a target object that is easily identifiable in isolation becomes difficult to recognize when surrounded by other stimuli (distractors). Many psychophysical studies have investigated this phenomenon and proposed alternative models for the underlying mechanisms. One prominent hypothesis, albeit with mixed psychophysical support, posits that crowding arises from the loss of information due to pooled encoding of features from target and distractor stimuli in the early stages of cortical visual processing. However, neurophysiological studies have not rigorously tested this hypothesis. We studied the responses of single neurons in macaque (one male, one female) area V4, an intermediate stage of the object-processing pathway, to parametrically designed crowded displays and texture statistics-matched metameric counterparts. Our investigations reveal striking parallels between how crowding parameters-number, distance, and position of distractors-influence human psychophysical performance and V4 shape selectivity. Importantly, we also found that enhancing the salience of a target stimulus could alleviate crowding effects in highly cluttered scenes, and this could be temporally protracted reflecting a dynamical process. Thus, a pooled encoding of nearby stimuli cannot explain the observed responses, and we propose an alternative model where V4 neurons preferentially encode salient stimuli in crowded displays. Overall, we conclude that the magnitude of crowding effects is determined not just by the number of distractors and target-distractor separation but also by the relative salience of targets versus distractors based on their feature attributes-the similarity of distractors and the contrast between target and distractor stimuli.


Assuntos
Macaca mulatta , Neurônios , Estimulação Luminosa , Córtex Visual , Animais , Masculino , Feminino , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Neurônios/fisiologia , Humanos , Reconhecimento Visual de Modelos/fisiologia , Psicofísica
8.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38429107

RESUMO

The human medial temporal lobe (MTL) plays a crucial role in recognizing visual objects, a key cognitive function that relies on the formation of semantic representations. Nonetheless, it remains unknown how visual information of general objects is translated into semantic representations in the MTL. Furthermore, the debate about whether the human MTL is involved in perception has endured for a long time. To address these questions, we investigated three distinct models of neural object coding-semantic coding, axis-based feature coding, and region-based feature coding-in each subregion of the human MTL, using high-resolution fMRI in two male and six female participants. Our findings revealed the presence of semantic coding throughout the MTL, with a higher prevalence observed in the parahippocampal cortex (PHC) and perirhinal cortex (PRC), while axis coding and region coding were primarily observed in the earlier regions of the MTL. Moreover, we demonstrated that voxels exhibiting axis coding supported the transition to region coding and contained information relevant to semantic coding. Together, by providing a detailed characterization of neural object coding schemes and offering a comprehensive summary of visual coding information for each MTL subregion, our results not only emphasize a clear role of the MTL in perceptual processing but also shed light on the translation of perception-driven representations of visual features into memory-driven representations of semantics along the MTL processing pathway.


Assuntos
Córtex Perirrinal , Lobo Temporal , Humanos , Masculino , Feminino , Cognição , Imageamento por Ressonância Magnética/métodos , Hipocampo , Mapeamento Encefálico/métodos
9.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38267257

RESUMO

Visual and haptic perceptions of 3D shape are plagued by distortions, which are influenced by nonvisual factors, such as gravitational vestibular signals. Whether gravity acts directly on the visual or haptic systems or at a higher, modality-independent level of information processing remains unknown. To test these hypotheses, we examined visual and haptic 3D shape perception by asking male and female human subjects to perform a "squaring" task in upright and supine postures and in microgravity. Subjects adjusted one edge of a 3D object to match the length of another in each of the three canonical reference planes, and we recorded the matching errors to obtain a characterization of the perceived 3D shape. The results show opposing, body-centered patterns of errors for visual and haptic modalities, whose amplitudes are negatively correlated, suggesting that they arise in distinct, modality-specific representations that are nevertheless linked at some level. On the other hand, weightlessness significantly modulated both visual and haptic perceptual distortions in the same way, indicating a common, modality-independent origin for gravity's effects. Overall, our findings show a link between modality-specific visual and haptic perceptual distortions and demonstrate a role of gravity-related signals on a modality-independent internal representation of the body and peripersonal 3D space used to interpret incoming sensory inputs.


Assuntos
Percepção do Tato , Vestíbulo do Labirinto , Humanos , Masculino , Feminino , Percepção Visual , Tecnologia Háptica , Cognição , Percepção Espacial
10.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39077919

RESUMO

The unit of visual working memory is a fundamental issue under debate in the fields of cognitive psychology and neuroscience, with some traditional research suggesting that it is an object, while other recent studies demonstrating that a Boolean map offers a better account. The controversy surrounding the unit of visual working memory often centers on the representation of objects consist of same dimensional features (e.g. bicolor objects). For 2 colors in a bicolor object, some behavioral studies have suggested that they need to be represented by separate units, while some other studies using electrophysiological measures have found that they can be represented within a single unit. This apparent conflict hints that Boolean map and object may reconcile as the unit of visual working memory. Adopting the contralateral delay activity as an electrophysiological marker of visual working memory, experiments 1 and 2 consistently found that the contralateral delay activity amplitude for memorizing bicolor circles at P7/P8 conformed the Boolean map-based storage throughout the whole maintenance, while the contralateral delay activity amplitude at P3/P4 just conformed the object-based storage during the early period. It suggests though Boolean map got stronger supporting evidence than object, they 2 may coexist as the unit of visual working memory.


Assuntos
Memória de Curto Prazo , Memória de Curto Prazo/fisiologia , Humanos , Masculino , Feminino , Adulto Jovem , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos
11.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38879816

RESUMO

Observers can selectively deploy attention to regions of space, moments in time, specific visual features, individual objects, and even specific high-level categories-for example, when keeping an eye out for dogs while jogging. Here, we exploited visual periodicity to examine how category-based attention differentially modulates selective neural processing of face and non-face categories. We combined electroencephalography with a novel frequency-tagging paradigm capable of capturing selective neural responses for multiple visual categories contained within the same rapid image stream (faces/birds in Exp 1; houses/birds in Exp 2). We found that the pattern of attentional enhancement and suppression for face-selective processing is unique compared to other object categories: Where attending to non-face objects strongly enhances their selective neural signals during a later stage of processing (300-500 ms), attentional enhancement of face-selective processing is both earlier and comparatively more modest. Moreover, only the selective neural response for faces appears to be actively suppressed by attending towards an alternate visual category. These results underscore the special status that faces hold within the human visual system, and highlight the utility of visual periodicity as a powerful tool for indexing selective neural processing of multiple visual categories contained within the same image sequence.


Assuntos
Atenção , Eletroencefalografia , Atenção/fisiologia , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Periodicidade , Reconhecimento Facial/fisiologia , Estimulação Luminosa/métodos , Reconhecimento Visual de Modelos/fisiologia , Encéfalo/fisiologia , Percepção Visual/fisiologia
12.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38314581

RESUMO

Neural circuits support behavioral adaptations by integrating sensory and motor information with reward and error-driven learning signals, but it remains poorly understood how these signals are distributed across different levels of the corticohippocampal hierarchy. We trained rats on a multisensory object-recognition task and compared visual and tactile responses of simultaneously recorded neuronal ensembles in somatosensory cortex, secondary visual cortex, perirhinal cortex, and hippocampus. The sensory regions primarily represented unisensory information, whereas hippocampus was modulated by both vision and touch. Surprisingly, the sensory cortices and the hippocampus coded object-specific information, whereas the perirhinal cortex did not. Instead, perirhinal cortical neurons signaled trial outcome upon reward-based feedback. A majority of outcome-related perirhinal cells responded to a negative outcome (reward omission), whereas a minority of other cells coded positive outcome (reward delivery). Our results highlight a distributed neural coding of multisensory variables in the cortico-hippocampal hierarchy. Notably, the perirhinal cortex emerges as a crucial region for conveying motivational outcomes, whereas distinct functions related to object identity are observed in the sensory cortices and hippocampus.


Assuntos
Córtex Perirrinal , Ratos , Animais , Hipocampo/fisiologia , Percepção Visual/fisiologia , Lobo Parietal , Recompensa
13.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38185997

RESUMO

Semantic knowledge includes understanding of objects and their features and also understanding of the characteristics of events. The hub-and-spoke theory holds that these conceptual representations rely on multiple information sources that are integrated in a central hub in the ventral anterior temporal lobes. The dual-hub theory expands this framework with the claim that the ventral anterior temporal lobe hub is specialized for object representation, while a second hub in angular gyrus is specialized for event representation. To test these ideas, we used representational similarity analysis, univariate and psychophysiological interaction analyses of fMRI data collected while participants processed object and event concepts (e.g. "an apple," "a wedding") presented as images and written words. Representational similarity analysis showed that angular gyrus encoded event concept similarity more than object similarity, although the left angular gyrus also encoded object similarity. Bilateral ventral anterior temporal lobes encoded both object and event concept structure, and left ventral anterior temporal lobe exhibited stronger coding for events. Psychophysiological interaction analysis revealed greater connectivity between left ventral anterior temporal lobe and right pMTG, and between right angular gyrus and bilateral ITG and middle occipital gyrus, for event concepts compared to object concepts. These findings support the specialization of angular gyrus for event semantics, though with some involvement in object coding, but do not support ventral anterior temporal lobe specialization for object concepts.


Assuntos
Mapeamento Encefálico , Lobo Temporal , Humanos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Lobo Parietal/fisiologia , Semântica , Imageamento por Ressonância Magnética/métodos
14.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38244576

RESUMO

Obtaining valuable objects motivates many of our daily decisions. However, the neural underpinnings of object processing based on human value memory are not yet fully understood. Here, we used whole-brain functional magnetic resonance imaging (fMRI) to examine activations due to value memory as participants passively viewed objects before, minutes after, and 1-70 days following value training. Significant value memory for objects was evident in the behavioral performance, which nevertheless faded over the days following training. Minutes after training, the occipital, ventral temporal, interparietal, and frontal areas showed strong value discrimination. Days after training, activation in the frontal, temporal, and occipital regions decreased, whereas the parietal areas showed sustained activation. In addition, days-long value responses emerged in certain subcortical regions, including the caudate, ventral striatum, and thalamus. Resting-state analysis revealed that these subcortical areas were functionally connected. Furthermore, the activation in the striatal cluster was positively correlated with participants' performance in days-long value memory. These findings shed light on the neural basis of value memory in humans with implications for object habit formation and cross-species comparisons.


Assuntos
Mapeamento Encefálico , Lobo Occipital , Humanos , Corpo Estriado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
15.
Proc Natl Acad Sci U S A ; 119(18): e2123239119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482916

RESUMO

Infants begin learning the visual referents of nouns before their first birthday. Despite considerable empirical and theoretical effort, little is known about the statistics of the experiences that enable infants to break into object­name learning. We used wearable sensors to collect infant experiences of visual objects and their heard names for 40 early-learned categories. The analyzed data were from one context that occurs multiple times a day and includes objects with early-learned names: mealtime. The statistics reveal two distinct timescales of experience. At the timescale of many mealtime episodes (n = 87), the visual categories were pervasively present, but naming of the objects in each of those categories was very rare. At the timescale of single mealtime episodes, names and referents did cooccur, but each name­referent pair appeared in very few of the mealtime episodes. The statistics are consistent with incremental learning of visual categories across many episodes and the rapid learning of name­object mappings within individual episodes. The two timescales are also consistent with a known cortical learning mechanism for one-episode learning of associations: new information, the heard name, is incorporated into well-established memories, the seen object category, when the new information cooccurs with the reactivation of that slowly established memory.


Assuntos
Nomes , Vocabulário , Humanos , Lactente , Idioma , Desenvolvimento da Linguagem , Aprendizagem
16.
Proc Natl Acad Sci U S A ; 119(34): e2203165119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969775

RESUMO

Memory consolidation is promoted by sleep. However, there is also evidence for consolidation into long-term memory during wakefulness via processes that preferentially affect nonhippocampal representations. We compared, in rats, the effects of 2-h postencoding periods of sleep and wakefulness on the formation of long-term memory for objects and their associated environmental contexts. We employed a novel-object recognition (NOR) task, using object exploration and exploratory rearing as behavioral indicators of these memories. Remote recall testing (after 1 wk) confirmed significant long-term NOR memory under both conditions, with NOR memory after sleep predicted by the occurrence of EEG spindle-slow oscillation coupling. Rats in the sleep group decreased their exploratory rearing at recall testing, revealing successful recall of the environmental context. By contrast, rats that stayed awake after encoding showed equally high levels of rearing upon remote testing as during encoding, indicating that context memory was lost. Disruption of hippocampal function during the postencoding interval (by muscimol administration) suppressed long-term NOR memory together with context memory formation when animals slept, but enhanced NOR memory when they were awake during this interval. Testing remote recall in a context different from that during encoding impaired NOR memory in the sleep condition, while exploratory rearing was increased. By contrast, NOR memory in the wake rats was preserved and actually superior to that after sleep. Our findings indicate two distinct modes of long-term memory formation: Sleep consolidation is hippocampus dependent and implicates event-context binding, whereas wake consolidation is impaired by hippocampal activation and strengthens context-independent representations.


Assuntos
Consolidação da Memória , Memória de Longo Prazo , Sono , Vigília , Animais , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Rememoração Mental/fisiologia , Ratos , Sono/fisiologia , Vigília/fisiologia
17.
Proc Natl Acad Sci U S A ; 119(17): e2115302119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439063

RESUMO

The human visual ability to recognize objects and scenes is widely thought to rely on representations in category-selective regions of the visual cortex. These representations could support object vision by specifically representing objects, or, more simply, by representing complex visual features regardless of the particular spatial arrangement needed to constitute real-world objects, that is, by representing visual textures. To discriminate between these hypotheses, we leveraged an image synthesis approach that, unlike previous methods, provides independent control over the complexity and spatial arrangement of visual features. We found that human observers could easily detect a natural object among synthetic images with similar complex features that were spatially scrambled. However, observer models built from BOLD responses from category-selective regions, as well as a model of macaque inferotemporal cortex and Imagenet-trained deep convolutional neural networks, were all unable to identify the real object. This inability was not due to a lack of signal to noise, as all observer models could predict human performance in image categorization tasks. How then might these texture-like representations in category-selective regions support object perception? An image-specific readout from category-selective cortex yielded a representation that was more selective for natural feature arrangement, showing that the information necessary for natural object discrimination is available. Thus, our results suggest that the role of the human category-selective visual cortex is not to explicitly encode objects but rather to provide a basis set of texture-like features that can be infinitely reconfigured to flexibly learn and identify new object categories.


Assuntos
Córtex Visual , Vias Visuais , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Reconhecimento Visual de Modelos , Estimulação Luminosa , Percepção Visual
18.
Nano Lett ; 24(32): 9937-9945, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39092599

RESUMO

The processing of multicolor noisy images in visual neuromorphic devices requires selective absorption at specific wavelengths; however, it is difficult to achieve this because the spectral absorption range of the device is affected by the type of material. Surprisingly, the absorption range of perovskite materials can be adjusted by doping. Herein, a CdCl2 co-doped CsPbBr3 nanocrystal-based photosensitive synaptic transistor (PST) is reported. By decreasing the doping concentration, the response of the PST to short-wavelength light is gradually enhanced, and even weak light of 40 µW·cm-2 can be detected. Benefiting from the excellent color selectivity of the PST device, the device array is applied to feature extraction of target blue items and removal of red and green noise, which results in the recognition accuracy of 95% for the noisy MNIST data set. This work provides new ideas for the application of novel transistors integrating sensors and storage computing.

19.
J Neurosci ; 43(4): 621-634, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36639892

RESUMO

Humans can label and categorize objects in a visual scene with high accuracy and speed, a capacity well characterized with studies using static images. However, motion is another cue that could be used by the visual system to classify objects. To determine how motion-defined object category information is processed by the brain in the absence of luminance-defined form information, we created a novel stimulus set of "object kinematograms" to isolate motion-defined signals from other sources of visual information. Object kinematograms were generated by extracting motion information from videos of 6 object categories and applying the motion to limited-lifetime random dot patterns. Using functional magnetic resonance imaging (fMRI) (n = 15, 40% women), we investigated whether category information from the object kinematograms could be decoded within the occipitotemporal and parietal cortex and evaluated whether the information overlapped with category responses to static images from the original videos. We decoded object category for both stimulus formats in all higher-order regions of interest (ROIs). More posterior occipitotemporal and ventral regions showed higher accuracy in the static condition, while more anterior occipitotemporal and dorsal regions showed higher accuracy in the dynamic condition. Further, decoding across the two stimulus formats was possible in all regions. These results demonstrate that motion cues can elicit widespread and robust category responses on par with those elicited by static luminance cues, even in ventral regions of visual cortex that have traditionally been associated with primarily image-defined form processing.SIGNIFICANCE STATEMENT Much research on visual object recognition has focused on recognizing objects in static images. However, motion is a rich source of information that humans might also use to categorize objects. Here, we present the first study to compare neural representations of several animate and inanimate objects when category information is presented in two formats: static cues or isolated dynamic motion cues. Our study shows that, while higher-order brain regions differentially process object categories depending on format, they also contain robust, abstract category representations that generalize across format. These results expand our previous understanding of motion-derived animate and inanimate object category processing and provide useful tools for future research on object category processing driven by multiple sources of visual information.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Humanos , Feminino , Masculino , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Encéfalo/fisiologia , Córtex Visual/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Estimulação Luminosa
20.
J Neurosci ; 43(25): 4697-4708, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37221094

RESUMO

Previous work has demonstrated that performance in an auditory selective attention task can be enhanced or impaired, depending on whether a task-irrelevant visual stimulus is temporally coherent with a target auditory stream or with a competing distractor. However, it remains unclear how audiovisual (AV) temporal coherence and auditory selective attention interact at the neurophysiological level. Here, we measured neural activity using EEG while human participants (men and women) performed an auditory selective attention task, detecting deviants in a target audio stream. The amplitude envelope of the two competing auditory streams changed independently, while the radius of a visual disk was manipulated to control the AV coherence. Analysis of the neural responses to the sound envelope demonstrated that auditory responses were enhanced largely independently of the attentional condition: both target and masker stream responses were enhanced when temporally coherent with the visual stimulus. In contrast, attention enhanced the event-related response evoked by the transient deviants, largely independently of AV coherence. These results provide evidence for dissociable neural signatures of bottom-up (coherence) and top-down (attention) effects in AV object formation.SIGNIFICANCE STATEMENT Temporal coherence between auditory stimuli and task-irrelevant visual stimuli can enhance behavioral performance in auditory selective attention tasks. However, how audiovisual temporal coherence and attention interact at the neural level has not been established. Here, we measured EEG during a behavioral task designed to independently manipulate audiovisual coherence and auditory selective attention. While some auditory features (sound envelope) could be coherent with visual stimuli, other features (timbre) were independent of visual stimuli. We find that audiovisual integration can be observed independently of attention for sound envelopes temporally coherent with visual stimuli, while the neural responses to unexpected timbre changes are most strongly modulated by attention. Our results provide evidence for dissociable neural mechanisms of bottom-up (coherence) and top-down (attention) effects on audiovisual object formation.


Assuntos
Percepção Auditiva , Potenciais Evocados , Masculino , Humanos , Feminino , Potenciais Evocados/fisiologia , Percepção Auditiva/fisiologia , Atenção/fisiologia , Som , Estimulação Acústica , Percepção Visual/fisiologia , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa