Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.434
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(14): 3079-3094.e17, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321218

RESUMO

Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.


Assuntos
Formigas , Animais , Formigas/genética , Encéfalo/fisiologia , Odorantes , Feromônios , Olfato/fisiologia , Comportamento Animal
2.
Cell ; 185(17): 3104-3123.e28, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35985288

RESUMO

Aedes aegypti mosquitoes are a persistent human foe, transmitting arboviruses including dengue when they feed on human blood. Mosquitoes are intensely attracted to body odor and carbon dioxide, which they detect using ionotropic chemosensory receptors encoded by three large multi-gene families. Genetic mutations that disrupt the olfactory system have modest effects on human attraction, suggesting redundancy in odor coding. The canonical view is that olfactory sensory neurons each express a single chemosensory receptor that defines its ligand selectivity. We discovered that Ae. aegypti uses a different organizational principle, with many neurons co-expressing multiple chemosensory receptor genes. In vivo electrophysiology demonstrates that the broad ligand-sensitivity of mosquito olfactory neurons depends on this non-canonical co-expression. The redundancy afforded by an olfactory system in which neurons co-express multiple chemosensory receptors may increase the robustness of the mosquito olfactory system and explain our long-standing inability to disrupt the detection of humans by mosquitoes.


Assuntos
Aedes , Neurônios Receptores Olfatórios , Aedes/genética , Animais , Humanos , Ligantes , Odorantes
3.
Cell ; 184(26): 6326-6343.e32, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34879231

RESUMO

Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.


Assuntos
Neurônios Receptores Olfatórios/metabolismo , Sensação/genética , Transcrição Gênica , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odorantes , Bulbo Olfatório/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética
4.
Cell ; 181(4): 749-753, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413294

RESUMO

In 1991, Buck and Axel published a landmark study in Cell for work that was awarded the 2004 Nobel Prize. The identification of the olfactory receptors as the largest family of GPCRs catapulted olfaction into mainstream neurobiology. This BenchMark revisits Buck's experimental innovation and its surprising success at the time.


Assuntos
Receptores Odorantes/metabolismo , Olfato/fisiologia , Distinções e Prêmios , História do Século XX , Humanos , Neurobiologia , Prêmio Nobel , Neurônios Receptores Olfatórios , Receptores Acoplados a Proteínas G/metabolismo
5.
EMBO Rep ; 25(7): 2861-2877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839944

RESUMO

In developing olfactory bulb (OB), mitral cells (MCs) remodel their dendrites to establish the precise olfactory circuit, and these circuits are critical for individuals to sense odors and elicit behaviors for survival. However, how microtubules (MTs) participate in the process of dendritic remodeling remains elusive. Here, we reveal that calmodulin-regulated spectrin-associated proteins (CAMSAPs), a family of proteins that bind to the minus-end of the noncentrosomal MTs, play a crucial part in the development of MC dendrites. We observed that Camsap2 knockout (KO) males are infertile while the reproductive tract is normal. Further study showed that the infertility was due to the severe defects of mating behavior in male mice. Besides, mice with loss-of-function displayed defects in the sense of smell. Furthermore, we found that the deficiency of CAMSAP2 impairs the classical morphology of MCs, and the CAMSAP2-dependent dendritic remodeling process is responsible for this defect. Thus, our findings demonstrate that CAMSAP2 plays a vital role in regulating the development of MCs.


Assuntos
Dendritos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Bulbo Olfatório , Olfato , Animais , Feminino , Masculino , Camundongos , Dendritos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Morfogênese/genética , Bulbo Olfatório/metabolismo , Olfato/fisiologia
6.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38548337

RESUMO

The perception of food relies on the integration of olfactory and gustatory signals originating from the mouth. This multisensory process generates robust associations between odors and tastes, significantly influencing the perceptual judgment of flavors. However, the specific neural substrates underlying this integrative process remain unclear. Previous electrophysiological studies identified the gustatory cortex as a site of convergent olfactory and gustatory signals, but whether neurons represent multimodal odor-taste mixtures as distinct from their unimodal odor and taste components is unknown. To investigate this, we recorded single-unit activity in the gustatory cortex of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results demonstrate that chemoselective neurons in the gustatory cortex are broadly responsive to intraoral chemosensory stimuli, exhibiting time-varying multiphasic changes in activity. In a subset of these chemoselective neurons, odor-taste mixtures elicit nonlinear cross-modal responses that distinguish them from their olfactory and gustatory components. These findings provide novel insights into multimodal chemosensory processing by the gustatory cortex, highlighting the distinct representation of unimodal and multimodal intraoral chemosensory signals. Overall, our findings suggest that olfactory and gustatory signals interact nonlinearly in the gustatory cortex to enhance the identity coding of both unimodal and multimodal chemosensory stimuli.


Assuntos
Odorantes , Percepção Gustatória , Animais , Feminino , Ratos , Percepção Gustatória/fisiologia , Paladar/fisiologia , Percepção Olfatória/fisiologia , Ratos Long-Evans , Olfato/fisiologia , Neurônios/fisiologia , Córtex Cerebral/fisiologia
7.
Plant J ; 117(4): 1239-1249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016933

RESUMO

Soybean oil is the second most produced edible vegetable oil and is used for many edible and industrial materials. Unfortunately, it has the disadvantage of 'reversion flavor' under photooxidative conditions, which produces an off-odor and decreases the quality of edible oil. Reversion flavor and off-odor are caused by minor fatty acids in the triacylglycerol of soybean oil known as furan fatty acids, which produce 3-methyl-2,4-nonanedione (3-MND) upon photooxidation. As a solution to this problem, a reduction in furan fatty acids leads to a decrease in 3-MND, resulting in a reduction in the off-odor induced by light exposure. However, there are no reports on the genes related to the biosynthesis of furan fatty acids in soybean oil. In this study, four mutant lines showing low or no furan fatty acid levels in soybean seeds were isolated from a soybean mutant library. Positional cloning experiments and homology search analysis identified two genes responsible for furan fatty acid biosynthesis in soybean: Glyma.20G201400 and Glyma.04G054100. Ectopic expression of both genes produced furan fatty acids in transgenic soybean hairy roots. The structure of these genes is different from that of the furan fatty acid biosynthetic genes in photosynthetic bacteria. Homologs of these two group of genes are widely conserved in the plant kingdom. The purified oil from the furan fatty acid mutant lines had lower amounts of 3-MND and reduced off-odor after light exposure, compared with oil from the wild-type.


Assuntos
Ácidos Graxos , Óleo de Soja , Óleo de Soja/genética , Ácidos Graxos/metabolismo , Odorantes/análise , Glycine max/genética , Mutação , Furanos/metabolismo , Sementes/genética , Proteínas de Plantas/metabolismo
8.
Annu Rev Psychol ; 75: 155-181, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788573

RESUMO

Historically, the human sense of smell has been regarded as the odd stepchild of the senses, especially compared to the sensory bravado of seeing, touching, and hearing. The idea that the human olfaction has little to contribute to our experience of the world is commonplace, though with the emergence of COVID-19 there has rather been a sea change in this understanding. An ever increasing body of work has convincingly highlighted the keen capabilities of the human nose and the sophistication of the human olfactory system. Here, we provide a concise overview of the neuroscience of human olfaction spanning the last 10-15 years, with focus on the peripheral and central mechanisms that underlie how odor information is processed, packaged, parceled, predicted, and perturbed to serve odor-guided behaviors. We conclude by offering some guideposts for harnessing the next decade of olfactory research in all its shapes and forms.


Assuntos
Olfato , Humanos , Olfato/fisiologia
9.
Proc Natl Acad Sci U S A ; 119(15): e2116576119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377807

RESUMO

In studies of vision and audition, stimuli can be chosen to span the visible or audible spectrum; in olfaction, the axes and boundaries defining the analogous odorous space are unknown. As a result, the population of olfactory space is likewise unknown, and anecdotal estimates of 10,000 odorants have endured. The journey a molecule must take to reach olfactory receptors (ORs) and produce an odor percept suggests some chemical criteria for odorants: a molecule must 1) be volatile enough to enter the air phase, 2) be nonvolatile and hydrophilic enough to sorb into the mucous layer coating the olfactory epithelium, 3) be hydrophobic enough to enter an OR binding pocket, and 4) activate at least one OR. Here, we develop a simple and interpretable quantitative model that reliably predicts whether a molecule is odorous or odorless based solely on the first three criteria. Applying our model to a database of all possible small organic molecules, we estimate that at least 40 billion possible compounds are odorous, six orders of magnitude larger than current estimates of 10,000. With this model in hand, we can define the boundaries of olfactory space in terms of molecular volatility and hydrophobicity, enabling representative sampling of olfactory stimulus space.


Assuntos
Odorantes , Olfato , Compostos Orgânicos Voláteis , Animais , Humanos , Aprendizado de Máquina , Modelos Teóricos , Receptores Odorantes , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/classificação , Volatilização
10.
Proc Natl Acad Sci U S A ; 119(29): e2121940119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35787181

RESUMO

Due to marketing recommendations, white wines are often bottled in flint glass to improve aesthetics and showcase wine color. Although this practice is known to cause a wine fault, the influence of light on the fruity and flowery aromatic profile of wine is unknown. The aim of this study was to investigate the changes to the white wine volatilome under typical supermarket shelf conditions, using 1,052 bottles of 24 white wines. After only 7 d of shelf life in flint glass bottles, a dramatic loss in terpenes (10 to 30%) and norisoprenoids (30 to 70%) was recorded, whereas colored glass bottles did not evidence such behavior even after 50 d, and darkness preserved the wine's fruity and flowery aromatic integrity. We also proposed an alternative mechanism for the insurgence of the lightstrike off-odor, which takes the varietal aroma loss into account. In light of this understanding of the flint glass negative impact on white wine aroma identity and sensorial character, this packaging should be strongly discouraged. The same findings should be valid for a wide range of several daily consumed foodstuff where transparent packaging is used.


Assuntos
Embalagem de Alimentos , Vidro/química , Vinho , Frutas , Minerais , Odorantes/análise , Vinho/análise
11.
Genesis ; 62(1): e23586, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593162

RESUMO

Neural activity influences every aspect of nervous system development. In olfactory systems, sensory neurons expressing the same odorant receptor project their axons to stereotypically positioned glomeruli, forming a spatial map of odorant receptors in the olfactory bulb. As individual odors activate unique combinations of glomeruli, this map forms the basis for encoding olfactory information. The establishment of this stereotypical olfactory map requires coordinated regulation of axon guidance molecules instructed by spontaneous activity. Recent studies show that sensory experiences also modify innervation patterns in the olfactory bulb, especially during a critical period of the olfactory system development. This review examines evidence in the field to suggest potential mechanisms by which various aspects of neural activity regulate axon targeting. We also discuss the precise functions served by neural plasticity during the critical period.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Neurônios Receptores Olfatórios/metabolismo , Bulbo Olfatório/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Axônios/metabolismo , Mamíferos
12.
J Neurosci ; 43(48): 8243-8258, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37788940

RESUMO

Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders (ASDs) in humans. FXS is caused by loss of expression of the fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here, we conducted experiments in wild-type (WT) and Fmr1 knock-out (KO; Fmr1-/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation under baseline conditions, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of spontaneous LLDs (sLLDs), which appeared to be because of a decrease in GABAergic synaptic inhibition in glomeruli leading to more feedforward excitation, caused a reduction in the reliability of stimulation-evoked responses in MCs. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the Fmr1 KO-induced reduction in MC response reliability is one plausible mechanism for the impaired fine odor discrimination.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knock-out (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb, similar to what Fmr1 KO does in other brain circuits, but through a novel mechanism that involves enhanced feedforward excitation. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by changes in neural response reliability.


Assuntos
Síndrome do Cromossomo X Frágil , Bulbo Olfatório , Humanos , Masculino , Animais , Camundongos , Bulbo Olfatório/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Odorantes , Reprodutibilidade dos Testes , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Modelos Animais de Doenças
13.
Neuroimage ; 287: 120521, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244877

RESUMO

Long-term memories are formed by repeated reactivation of newly encoded information during sleep. This process can be enhanced by using memory-associated reminder cues like sounds and odors. While auditory cueing has been researched extensively, few electrophysiological studies have exploited the various benefits of olfactory cueing. We used high-density electroencephalography in an odor-cueing paradigm that was designed to isolate the neural responses specific to the cueing of declarative memories. We show widespread cueing-induced increases in the duration and rate of sleep spindles. Higher spindle rates were most prominent over centro-parietal areas and largely overlapping with a concurrent increase in the amplitude of slow oscillations (SOs). Interestingly, greater SO amplitudes were linked to a higher likelihood of coupling a spindle and coupled spindles expressed during cueing were more numerous in particular around SO up states. We thus identify temporally and spatially coordinated enhancements of sleep spindles and slow oscillations as a candidate mechanism behind cueing-induced memory processing. Our results further demonstrate the feasibility of studying neural activity patterns linked to such processing using olfactory cueing during sleep.


Assuntos
Sinais (Psicologia) , Consolidação da Memória , Humanos , Odorantes , Sono/fisiologia , Eletroencefalografia , Memória/fisiologia , Consolidação da Memória/fisiologia
14.
Am Nat ; 203(4): 490-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489779

RESUMO

AbstractGregarious species must distinguish group members from nongroup members. Olfaction is important for group recognition in social insects and mammals but rarely studied in birds, despite birds using olfaction in social contexts from species discrimination to kin recognition. Olfactory group recognition requires that groups have a signature odor, so we tested for preen oil and feather chemical similarity in group-living smooth-billed anis (Crotophaga ani). Physiology affects body chemistry, so we also tested for an effect of egg-laying competition, as a proxy for reproductive status, on female chemical similarity. Finally, the fermentation hypothesis for chemical recognition posits that host-associated microbes affect host odor, so we tested for covariation between chemicals and microbiota. Group members were more chemically similar across both body regions. We found no chemical differences between sexes, but females in groups with less egg-laying competition had more similar preen oil, suggesting that preen oil contains information about reproductive status. There was no overall covariation between chemicals and microbes; instead, subsets of microbes could mediate olfactory cues in birds. Preen oil and feather chemicals showed little overlap and may contain different information. This is the first demonstration of group chemical signatures in birds, a finding of particular interest given that smooth-billed anis live in nonkin breeding groups. Behavioral experiments are needed to test whether anis can distinguish group members from nongroup members using odor cues.


Assuntos
Aves , Plumas , Animais , Feminino , Aves/fisiologia , Reprodução , Olfato , Mamíferos
15.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771931

RESUMO

The lipid composition of the primary cilia membrane is emerging as a critical regulator of cilia formation, maintenance and function. Here, we show that conditional deletion of the phosphoinositide 5'-phosphatase gene Inpp5e, mutation of which is causative of Joubert syndrome, in terminally developed mouse olfactory sensory neurons (OSNs), leads to a dramatic remodeling of ciliary phospholipids that is accompanied by marked elongation of cilia. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], which is normally restricted to the proximal segment redistributed to the entire length of cilia in Inpp5e knockout mice with a reduction in phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] and elevation of phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] in the dendritic knob. The redistribution of phosphoinositides impaired odor adaptation, resulting in less efficient recovery and altered inactivation kinetics of the odor-evoked electrical response and the odor-induced elevation of cytoplasmic Ca2+. Gene replacement of Inpp5e through adenoviral expression restored the ciliary localization of PI(4,5)P2 and odor response kinetics in OSNs. Our findings support the role of phosphoinositides as a modulator of the odor response and in ciliary biology of native multi-ciliated OSNs.


Assuntos
Neurônios Receptores Olfatórios , Animais , Cílios , Camundongos , Odorantes , Fosfolipídeos , Monoéster Fosfórico Hidrolases/genética
16.
J Neurosci Res ; 102(6): e25360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847288

RESUMO

Childhood obesity increases the risk of health and cognitive disorders in adulthood. Consuming high-fat diets (HFD) during critical neurodevelopmental periods, like childhood, impairs cognition and memory in humans and animals, affecting the function and connectivity of brain structures related to emotional memory. However, the underlying mechanisms of such phenomena need to be better understood. This study aimed to investigate the neurochemical profile of the amygdala and hippocampus, brain structures involved in emotional memory, during the acquisition of conditioned odor aversion in male rats that consumed a HFD from weaning to adulthood. The rats gained weight, experienced metabolic changes, and reduced insulin sensitivity and glucose tolerance. Rats showed enhanced odor aversion memory, contrary to the expected cognitive impairments. This memory enhancement was accompanied by increased noradrenergic and glutamatergic neurotransmission in the amygdala and hippocampus. Importantly, this upregulation was specific to stimuli exposure, as basal neurotransmitter levels remained unaltered by the HFD. Our results suggest that HFD modifies cognitive function by altering neurochemical signaling, in this case, upregulating neurotransmitter levels rendering a stronger memory trace, demonstrating that metabolic dysfunctions do not only trigger exclusively detrimental plasticity processes but also render enhanced plastic effects depending on the type of information.


Assuntos
Tonsila do Cerebelo , Dieta Hiperlipídica , Ácido Glutâmico , Hipocampo , Transmissão Sináptica , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Tonsila do Cerebelo/metabolismo , Transmissão Sináptica/fisiologia , Ratos , Ácido Glutâmico/metabolismo , Norepinefrina/metabolismo , Ratos Wistar , Cognição/fisiologia , Aprendizagem da Esquiva/fisiologia
17.
J Neurosci Res ; 102(7): e25365, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031484

RESUMO

Understanding the complex dynamics of social communication behaviors, such as exploration, communication, courtship, mating, and aggression in animal models, is crucial to reveal key neural and hormonal mechanisms underlying these behaviors. The two-intruders test is designed to investigate residents' behavior toward both male and female intruders within the home cage of the test male. During this test imitating natural conditions, several aspects of social interaction were investigated: Exploration, courtship, mating, and aggressive behavior. As mating and aggression involve overlapping neural circuits, the behavioral setup testing both behaviors is best at reflecting their competitive nature. Our findings demonstrate that resident male mice exhibit strong preference to communicate with a female intruder, which correlates with baseline testosterone levels of test males. Relevant female preference in the two-intruders test was also found in BALB/c males. Behavioral breakdown revealed the anogenital sniffing as a key behavioral feature that discriminates resident male behavior toward intruders of different sex. Furthermore, resident male interaction with female intruder was accompanied by neuronal activation in the ventromedial hypothalamus. We demonstrate that odor recognition underlies preference toward females in male residents, as experimental anosmia reduced communication with a female intruder. We conclude the two-intruders test setup to be a useful tool to study the neurological basis of social communication in animal models, which provides detailed analysis of various aspects of the laboratory animals' social behavior in the most natural conditions.


Assuntos
Comunicação Animal , Camundongos Endogâmicos BALB C , Testosterona , Animais , Masculino , Feminino , Camundongos , Comportamento Social , Comportamento Sexual Animal/fisiologia , Agressão/fisiologia , Odorantes , Comportamento Exploratório/fisiologia , Camundongos Endogâmicos C57BL
18.
Chem Senses ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215656

RESUMO

A common tool to measure olfactory function is the Sniffin' Sticks Test extended version (SSET). The SSET evaluates olfactory ability by summing the scores of three subtests: Threshold, Discrimination, and Identification. Recent meta-scientific literature revealed that many psychometric instruments currently in use have not been adequately validated, leading to a measurement crisis that raises concerns about the validity of the conclusions drawn with these instruments. Two examples of the measurement crisis are i) the use of sum scores without testing their assumptions (e.g., unidimensionality and tau-equivalence), which indicate that all subtests have the same, stable relationship with their underlying construct, and ii) the lack of assessment of measurement invariance across groups. Here, we aim to investigate the unidimensionality and tau-equivalence assumptions, internal consistency, and measurement invariance of sex and age groups of the SSET. We tested 988 (555 females, mean±SD: 39.75±18.60 years) participants with the Italian version of the SSET. The tau-equivalent model demonstrated excellent fit indices (CFI robust = 1, TLI robust = 1, RMSEA robust = 0, SRMR = .013), which best explain the data, indicating that all subtests are equally important in measuring olfactory function, but not necessarily equally precise. The results also revealed full measurement invariance across age groups and configural, partial metric, and scalar invariance across sexes, indicating that the use of latent means to compare sex groups should be chosen over raw scores. However, the SSET demonstrated moderate internal consistency. Future studies should clarify whether the reliability of the SSET can be increased.

19.
Chem Senses ; 492024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452143

RESUMO

The sense of smell allows for the assessment of the chemical composition of volatiles in our environment. Different factors are associated with reduced olfactory function, including age, sex, as well as health and lifestyle conditions. However, most studies that aimed at identifying the variables that drive olfactory function in the population suffered from methodological weaknesses in study designs and participant selection, such as the inclusion of convenience sample or only of certain age groups, or recruitment biases. We aimed to overcome these issues by investigating the Cooperative Health Research in South Tyrol (CHRIS) cohort, a population-based cohort, by using a validated odor identification test. Specifically, we hypothesized that a series of medical, demographic and lifestyle variables is associated with odor identification abilities. In addition, our goal was to provide clinicians and researchers with normative values for the Sniffin' Sticks identification set, after exclusion of individuals with impaired nasal patency. We included 6,944 participants without acute nasal obstruction and assessed several biological, social, and medical parameters. A basic model determined that age, sex, years of education, and smoking status together explained roughly 13% of the total variance in the data. We further observed that variables related to medical (positive screening for cognitive impairment and for Parkinson's disease, history of skull fracture, stage 2 hypertension) and lifestyle (alcohol abstinence) conditions had a negative effect on odor identification scores. Finally, we provide clinicians with normative values for both versions of the Sniffin' Sticks odor identification test, i.e. with 16 items and with 12 items.


Assuntos
Disfunção Cognitiva , Transtornos do Olfato , Doença de Parkinson , Adulto , Humanos , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/epidemiologia , Olfato , Odorantes , Limiar Sensorial
20.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985657

RESUMO

Experience plays a pivotal role in determining our food preferences. Consuming food generates odor-taste associations that shape our perceptual judgements of chemosensory stimuli, such as their intensity, familiarity, and pleasantness. The process of making consummatory choices relies on a network of brain regions to integrate and process chemosensory information. The mediodorsal thalamus is a higher-order thalamic nucleus involved in many experience-dependent chemosensory behaviors, including olfactory attention, odor discrimination, and the hedonic perception of flavors. Recent research has shown that neurons in the mediodorsal thalamus represent the sensory and affective properties of experienced odors, tastes, and odor-taste mixtures. However, its role in guiding consummatory choices remains unclear. To investigate the influence of the mediodorsal thalamus in the consummatory choice for experienced odors, tastes, and odor-taste mixtures, we pharmacologically inactivated the mediodorsal thalamus during 2-bottle brief-access tasks. We found that inactivation altered the preference for specific odor-taste mixtures, significantly reduced consumption of the preferred taste and increased within-trial sampling of both chemosensory stimulus options. Our results show that the mediodorsal thalamus plays a crucial role in consummatory decisions related to chemosensory preference and attention.


Assuntos
Preferências Alimentares , Paladar , Animais , Ratos , Masculino , Paladar/fisiologia , Preferências Alimentares/fisiologia , Odorantes , Olfato/fisiologia , Tálamo/fisiologia , Ratos Long-Evans , Núcleo Mediodorsal do Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa