Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 63, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36823524

RESUMO

BACKGROUND: Non-typhoidal Salmonella (NTS) is one of the important bacteria that cause foodborne diseases and invasive infections in children and elderly people. Since NTS infection is difficult to control due to the emergence of antibiotic-resistant species and its adverse effect on immune response, the development of a vaccine against NTS would be necessary. This study aimed to develop a multi-epitope vaccine against the most prevalent serovars of NTS (Salmonella Typhimurium, Salmonella Enteritidis) using an immunoinformatics approach and targeting OmpA, OmpD, and enterotoxin (Stn). RESULTS: Initially, the B cell and T cell epitopes were predicted. Then, epitopes and suitable adjuvant were assembled by molecular linkers to construct a multi-epitope vaccine. The computational tools predicted the tertiary structure, refined the tertiary structure and validated the final vaccine construct. The effectiveness of the vaccine was evaluated via molecular docking, molecular dynamics simulation, and in silico immune simulation. The vaccine model had good binding affinity and stability with MHC-I, MHC-II, and toll-like receptors (TLR-1, 2, 4) as well as activation of T cells, IgM, IgG, IFN-γ and IL-2 responses. Furthermore, after codon optimization of the vaccine sequence, this sequence was cloned in E. coli plasmid vector pET-30a (+) within restriction sites of HindIII and BamHI. CONCLUSIONS: This study, for the first time, introduced a multi-epitope vaccine based on OmpA, OmpD and enterotoxin (Stn) of NTS that could stimulate T and B cell immune responses and produced in the prokaryotic system. This vaccine was validated in-silico phase which is an essential study to reduce challenges before in vitro and in vivo studies.


Assuntos
Vacinas Bacterianas , Enterotoxinas , Infecções por Salmonella , Humanos , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T/química , Escherichia coli , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Infecções por Salmonella/prevenção & controle , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
2.
RNA ; 22(7): 979-94, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27154968

RESUMO

The bacterial protein Hfq participates in the regulation of translation by small noncoding RNAs (sRNAs). Several mechanisms have been proposed to explain the role of Hfq in the regulation by sRNAs binding to the 5'-untranslated mRNA regions. However, it remains unknown how Hfq affects those sRNAs that target the coding sequence. Here, the contribution of Hfq to the annealing of three sRNAs, RybB, SdsR, and MicC, to the coding sequence of Salmonella ompD mRNA was investigated. Hfq bound to ompD mRNA with tight, subnanomolar affinity. Moreover, Hfq strongly accelerated the rates of annealing of RybB and MicC sRNAs to this mRNA, and it also had a small effect on the annealing of SdsR. The experiments using truncated RNAs revealed that the contributions of Hfq to the annealing of each sRNA were individually adjusted depending on the structures of interacting RNAs. In agreement with that, the mRNA structure probing revealed different structural contexts of each sRNA binding site. Additionally, the annealing of RybB and MicC sRNAs induced specific conformational changes in ompD mRNA consistent with local unfolding of mRNA secondary structure. Finally, the mutation analysis showed that the long AU-rich sequence in the 5'-untranslated mRNA region served as an Hfq binding site essential for the annealing of sRNAs to the coding sequence. Overall, the data showed that the functional specificity of Hfq in the annealing of each sRNA to the ompD mRNA coding sequence was determined by the sequence and structure of the interacting RNAs.


Assuntos
Fator Proteico 1 do Hospedeiro/fisiologia , Conformação de Ácido Nucleico , Porinas/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Sequência de Bases , Sítios de Ligação , Ligação Proteica , RNA Bacteriano/química , RNA Mensageiro/química
3.
Arch Biochem Biophys ; 568: 38-45, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25600570

RESUMO

OmpD is the major Salmonella enterica serovar Typhimurium (S. Typhimurium) porin and mediates hydrogen peroxide (H2O2) influx. The results described herein extend this finding to hypochlorous acid (HOCl), another reactive oxygen species that is also part of the oxidative burst generated by the phagosome. S. Typhimurium cells lacking OmpD show decreased HOCl influx, and OmpD-reconstituted proteoliposomes show an increase in the uptake of the toxic compound. To understand this physiologically relevant process, we investigated the role of key OmpD residues in H2O2 and NaOCl transport. Using a theoretical approach, residue K16 was defined as a major contributor to the channel electrostatic properties, and E111 was shown to directly participate in the size-exclusion limit of the channel. Together, we provide theoretical, genetic, and biochemical evidence that OmpD mediates H2O2 and NaOCl uptake, and that key residues of the channel are implicated in this process.


Assuntos
Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Porinas/metabolismo , Salmonella typhimurium/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Porinas/química , Porinas/genética , Salmonella typhimurium/química , Salmonella typhimurium/genética , Alinhamento de Sequência
4.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385500

RESUMO

The efficient detection of the foodborne pathogen Salmonella typhimurium has historically been hampered by the constraints of traditional methods, characterized by protracted culture periods and intricate DNA extraction processes for PCR. To address this, our research innovatively focuses on the crucial and relatively uncharted virulence factor, the Outer Membrane Protein D (OmpD) in Salmonella typhimurium. By harmoniously integrating the power of virtual screening and site-directed mutagenesis, we unveiled aptamers exhibiting marked specificity for OmpD. Among these, aptamer 7ZQS stands out with its heightened binding affinity. Capitalizing on this foundation, we further engineered a repertoire of mutant aptamers, wherein APT6 distinguished itself, reflecting unmatched stability and specificity. Our rigorous validation, underpinned by cutting-edge bioinformatics tools, amplifies the prowess of APT6 in discerning and binding OmpD across an array of Salmonella typhimurium strains. This study illuminates a transformative approach to the prompt and accurate detection of Salmonella typhimurium, potentially redefining boundaries in applied analytical chemistry and bolstering diagnostic precision across diverse research and clinical domains.Communicated by Ramaswamy H. Sarma.

5.
Res Vet Sci ; 119: 292-301, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30081339

RESUMO

Three recombinant outer membrane proteins (rOmps) from the Haemophilus parasuis Nagasaki strain (serovar 5 reference strain), rOmpP2, rOmpP5 and rOmpD15, which have previously shown protection against H. parasuis infection in mice, were cloned, expressed and evaluated as vaccine antigens in colostrum-deprived pigs. When these animals were immunized with these rOmps and were later challenged intratracheally with 108 CFUs of the Nagasaki strain, no protection was seen in terms of survival, clinical signs, pathological results and recovery of H. parasuis. We hypothesized that a possible explanation for this lack of protection could be the low number of epitopes accessible to the immune system as a consequence of their poor exposure on the bacterial surface so that the immune response would not be able to protect against experimental infection by H. parasuis when a fully susceptible animal model, such as pigs, was used.


Assuntos
Infecções por Haemophilus/veterinária , Vacinas Anti-Haemophilus/imunologia , Haemophilus parasuis/imunologia , Doenças dos Suínos/imunologia , Animais , Anticorpos Antibacterianos , Colostro , Feminino , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Camundongos , Gravidez , Suínos , Doenças dos Suínos/prevenção & controle
6.
Biosens Bioelectron ; 85: 707-713, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27261886

RESUMO

A specific surface antigen, OmpD has been reported first time as a surface biomarker in the development of selective and sensitive immunosensor for detecting Salmonella typhimurium species. The OmpD surface antigen extraction was done from Salmonella typhimurium serovars, under the optimized growth conditions for its expression. Anti-OmpD antibodies were generated and used as detector probe in immunoassay format on graphene-graphene oxide (G-GO) modified screen printed carbon electrodes. The water samples were spiked with standard Salmonella typhimurium cells, and detection was done by measuring the change in impedimetric response of developed immunosensor to know the concentration of serovar Salmonella typhimurium. The developed immunosensor was able to specifically detect S. typhimurium in spiked water and juice samples with a sensitivity upto 10(1)CFUmL(-1), with high selectivity and very low cross-reactivity with other strains. This is the first report on the detection of Salmonella typhimurum species using a specific biomarker, OmpD. The developed technique could be very useful for the detection of nontyphoidal Salmonellosis and is also important from an epidemiological point of view.


Assuntos
Anticorpos Imobilizados/química , Espectroscopia Dielétrica/instrumentação , Sucos de Frutas e Vegetais/microbiologia , Grafite/química , Porinas/análise , Salmonella typhimurium/isolamento & purificação , Microbiologia da Água , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Óxidos/química , Infecções por Salmonella/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa