Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Glob Chang Biol ; 29(23): 6772-6793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578632

RESUMO

In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.


Assuntos
Sphagnopsida , Traqueófitas , Ecossistema , Sibéria , Europa (Continente) , Solo , Água
2.
Environ Monit Assess ; 194(8): 575, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821345

RESUMO

Anthropogenic deposition of nitrogen (N) and elevated CO2 (eaCO2) are expected to increase continuously and rapidly in the near future and influence global carbon cycling. These parameters affect the ecosystem by regulating the microbial community and contribute to soil organic matter decomposition. The study was performed to understand the effects of N additions (4 and 6mgl-1) and eaCO2 (700 ppm) on carbon (C)/nitrogen (N) content in the soil, microbial community, and plant biomass (Alternanthera philoxeroides species). The results showed that when the atmospheric CO2 concentration was raised, the total organic carbon (TOC) in the soil statistically increased (P < 0.05) by 4% and 3% under low and high N additions respectively, while the inorganic carbon content also increased by 1% and 3% (P > 0.05) under the same conditions. The increase in the soil TOC content was a result of the movement of carbon from water to the soil due to the presence of vascular tissues of plants in the water. The redundancy analysis (RDA) results revealed that the presence of plant species was responsible for the carbon content increment in the soil. The plant biomass content increased by 30.96% (P = 0.081) and 31.36%, (P = 0.002) under low and high N addition respectively due to the increment in atmospheric CO2. The nitrogen content in the plant species decreased (p > 0.05) by 8.62% and 6.25% at low and high N addition respectively when atmospheric CO2 was raised. This suggests that soil microbes competed with the plants for inorganic nitrogen in the soil and the microbes used up the inorganic nitrogen before it got to the plants. The gram-positive bacteria and fungi population decreased under high N addition and eaCO2 while gram-negative bacteria increased, suggesting that N additions and eaCO2 affected the microbial function and correlated with the nitrogen reduction in the soil. The results from this study serve as a guide to researchers and stakeholders in making policies with regard to the constant increasing CO2 concentration in the atmosphere.


Assuntos
Microbiota , Nitrogênio , Carbono/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Nitrogênio/análise , Plantas , Solo , Microbiologia do Solo , Água/análise , Áreas Alagadas
3.
New Phytol ; 232(2): 788-801, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270800

RESUMO

Composition and functioning of arctic soil fungal communities may alter rapidly due to the ongoing trends of warmer temperatures, shifts in nutrient availability, and shrub encroachment. In addition, the communities may also be intrinsically shaped by heavy grazing, which may locally induce an ecosystem change that couples with increased soil temperature and nutrients and where shrub encroachment is less likely to occur than in lightly grazed conditions. We tested how 4 yr of experimental warming and fertilization affected organic soil fungal communities in sites with decadal history of either heavy or light reindeer grazing using high-throughput sequencing of the internal transcribed spacer 2 ribosomal DNA region. Grazing history largely overrode the impacts of short-term warming and fertilization in determining the composition of fungal communities. The less diverse fungal communities under light grazing showed more pronounced responses to experimental treatments when compared with the communities under heavy grazing. Yet, ordination approaches revealed distinct treatment responses under both grazing intensities. If grazing shifts the fungal communities in Arctic ecosystems to a different and more diverse state, this shift may dictate ecosystem responses to further abiotic changes. This indicates that the intensity of grazing cannot be left out when predicting future changes in fungi-driven processes in the tundra.


Assuntos
Micobioma , Rena , Animais , Regiões Árticas , Ecossistema , Fertilização , Solo , Microbiologia do Solo , Tundra
4.
Glob Chang Biol ; 27(12): 2905-2913, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683757

RESUMO

Plant phenology is highly sensitive to climate change, and shifts in autumnal foliar senescence are critical for plant productivity and nutrient cycling. Global warming has delayed the timing of foliar senescence, but the response of autumnal foliar senescence to nonuniform seasonal warming remains poorly understood, with experimental evidence in trees especially scarce. We therefore conducted a field experiment on seasonally asymmetric warming on 2-year-old larch (Larix principis-rupprechtii) seedlings in two hydrologically contrasting years (wet 2018 and dry 2019). Autumnal and year-round warming significantly delayed the timing of foliar senescence by 6 and 7 d in 2018, the wet year, with corresponding temperature sensitivities of 6.73 ± 1.47 and 8.26 ± 1.00 d/°C, respectively. Interestingly, the dates of senescence did not change across the warming treatments in 2019, the dry year. However, there was no significant effect of summer warming on the timing of foliar senescence neither in the wet nor dry year. The delayed autumnal foliar senescence was responsible for an increase in biomass only in the wet year, 2018. In contrast, summer warming, but not autumnal warming, increased the mortality of the seedlings in both 2018 and 2019. These results suggest that the hydrological conditions substantially modify the response of autumnal phenology and growth to seasonal warming. Autumnal warming increases growth, whereas summer warming could cause carbon starvation/hydraulic failure, reduce growth, and lead to higher mortality. Our results suggest that the functioning, ecosystem services, and sustainability of forests in the future depend on the strength and pattern of nonuniform seasonal warming. This study can inspire new research in phenology and tree growth in experiments with asymmetric warming.


Assuntos
Ecossistema , Árvores , Mudança Climática , Aquecimento Global , Estações do Ano , Temperatura
5.
Glob Chang Biol ; 26(12): 6742-6752, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33020977

RESUMO

Variation in intraspecific traits is one important mechanism that can allow plant species to respond to global changes. Understanding plant trait responses to environmental changes such as grazing patterns, nutrient enrichment and climate warming is, thus, essential for predicting the composition of future plant communities. We measured traits of eight common tundra species in a fully factorial field experiment with mammalian herbivore exclusion, fertilization, and passive warming, and assessed how trait responsiveness to the treatments was associated with abundance changes in those treatments. Herbivory exhibited the strongest impact on traits. Exclusion of herbivores increased vegetative plant height by 50% and specific leaf area (SLA) by 19%, and decreased foliar C:N by 11%; fertilization and warming also increased height and SLA but to a smaller extent. Herbivory also modulated intraspecific height, SLA and foliar C:N responses to fertilization and warming, and these interactions were species-specific. Furthermore, herbivory affected how trait change translated into relative abundance change: increased height under warming and fertilization was more positively related to abundance change inside fences than in grazed plots. Our findings highlight the key role of mammalian herbivory when assessing intraspecific trait change in tundra and its consequences for plant performance under global changes.


Assuntos
Herbivoria , Tundra , Animais , Mudança Climática , Nutrientes , Plantas
6.
Ecotoxicology ; 28(8): 853-868, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392634

RESUMO

Two common tropical grassland species, Panicum maximum Jacq. (Guinea grass) and Cenchrus ciliaris (Buffel grass) of Indo-Gangetic plains were assessed for their responses under future level of O3 (ambient +30 ppb) using open top chambers. Plants were assessed for foliar injuries, pigments, growth, biomass accumulation, histochemical localization of reactive oxygen species (ROS), antioxidant defense system and ROS scavenging activities at two stages. Foliar injuries were noticed at an early stage in P. maximum compared to C. ciliaris. Significant reductions were observed in total chlorophyll, growth and total biomass in both species. Significant increases in contents of melondialdehyde and ascorbic acid in P. maximum while total phenolics and thiols in C. ciliaris were found. Histochemical analysis showed more production of superoxide radicals and hydrogen peroxide in leaf tissues of P. maximum compared to C. ciliaris. It can be concluded that higher level of primary antioxidants (total phenolics and thiols) along with superoxide dismutase and ascorbate peroxidase scavenged O3 effectively in C. ciliaris causing less reduction of biomass which is used as a feed for cattles. In P. maximum, more photosynthates were allocated for defense, leading to higher reduction in total biomass compared to C. ciliaris. The leaf area ratio was higher in P. maximum compared to C. ciliaris under elevated O3. The study further suggests higher susceptibility of P. maximum compared to C. ciliaris under future level of O3 exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Cenchrus/efeitos dos fármacos , Ozônio/toxicidade , Panicum/efeitos dos fármacos , Antioxidantes/metabolismo , Biomassa , Cenchrus/crescimento & desenvolvimento , Cenchrus/fisiologia , Índia , Panicum/crescimento & desenvolvimento , Panicum/fisiologia , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo
7.
Glob Chang Biol ; 24(6): 2231-2238, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29393991

RESUMO

Assessments of the impacts of ozone (O3 ) on regional and global food production are currently based on results from experiments using open-top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O3 exposure and yield data for three major crop species-wheat, rice, and soybean-for which O3 experiments have been conducted with OTCs as well as the ecologically more realistic free-air O3 elevation (O3 -FACE) exposure system; both within the same cultivation region and country. For all three crops, we found that the sensitivity of crop yield to the O3 metric AOT40 (accumulated hourly O3 exposure above a cut-off threshold concentration of 40 ppb) significantly differed between OTC and O3 -FACE experiments. In wheat and rice, O3 sensitivity was higher in O3 -FACE than OTC experiments, while the opposite was the case for soybean. In all three crops, these differences could be linked to factors influencing stomatal conductance (manipulation of water inputs, passive chamber warming, and cultivar differences in gas exchange). Our study thus highlights the importance of accounting for factors that control stomatal O3 flux when applying experimental data to assess O3 impacts on crops at large spatial scales.


Assuntos
Poluentes Atmosféricos/toxicidade , Glycine max/efeitos dos fármacos , Oryza/efeitos dos fármacos , Ozônio/toxicidade , Folhas de Planta/efeitos dos fármacos , Triticum/efeitos dos fármacos
8.
Glob Chang Biol ; 24(10): 4960-4971, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29957890

RESUMO

Biological soil crusts across the desert regions play a key role in regional ecological security and ecological health. They are vital biotic components of desert ecosystems that maintain soil stability, fix carbon and nitrogen, influence the establishment of vascular plants, and serve as habitats for a large number of arthropods and microorganisms, as well as influencing soil hydrological processes. Changes in temperature and precipitation are expected to influence the functioning of desert ecosystems by altering biotic components such as the species composition of biological soil crusts. However, it remains unclear how these important components will respond to the prolonged warming and reduced precipitation that is predicted to occur with climate change. To evaluate how the hydrological properties of these biological soil crusts respond to these alterations, we used open-top chambers over a 10-year period to simulate warming and reduced precipitation. Infiltration, dew entrapment, and evaporation were measured as surrogates of the hydrological functioning of biological soil crusts. It was found that the ongoing warming coupled with reduced precipitation will more strongly affect moss in crustal communities than lichens and cyanobacteria, which will lead to a direct alteration of the hydrological performance of biological soil crusts. Reductions in moss abundance, surface cover, and biomass resulted in a change in structure and function of crustal communities, decreased dew entrapment, and increased infiltration and evaporation of biological soil crusts in desert ecosystems, which further impacted on the desert soil water balance.


Assuntos
Simulação por Computador , Clima Desértico , Aquecimento Global , Microbiologia do Solo , Solo/química , Água/análise , Biomassa , Carbono/análise , Nitrogênio/análise , Chuva , Temperatura
9.
Oecologia ; 187(1): 333-342, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550949

RESUMO

Climate change is expected to favor exotic plant species over native species, because exotics tend to have wider climatic tolerances and greater phenological plasticity, and also because climate change may intensify enemy release. Here, we examine direct effects of warming (+ 1.8 °C above ambient) on plant abundance and phenology, as well as indirect effects of warming propagated through herbivores, in two heavily invaded plant communities in Michigan, USA, separated by approximately three degrees latitude. At the northern site, warming increased exotic plant abundance by 19% but decreased native plant abundance by 31%, indicating that exotic species may be favored in a warmer world. Warming also resulted in earlier spring green-up (1.65 ± 0.77 days), earlier flowering (2.18 ± 0.92 days), and greater damage by herbivores (twofold increase), affecting exotic and native species equally. Contrary to expectations, native and exotic plants experienced similar amounts of herbivory. Warming did not have strong ecological effects at the southern site, only resulting in a delay of flowering time by 2.42 ± 0.83 days for both native and exotic species. Consistent with the enemy release hypothesis, exotic plants experienced less herbivory than native plants at the southern site. Herbivory was lower under warming for both exotic and native species at the southern site. Thus, climate warming may favor exotic over native plant species, but the response is likely to depend on additional environmental and individual species' traits.


Assuntos
Herbivoria , Plantas , Mudança Climática , Ecologia , Michigan
10.
Int J Biometeorol ; 62(9): 1587-1594, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29748910

RESUMO

Oak pollen is a major respiratory allergen in Korea, and the distribution of oak trees is expected to increase by ecological succession and climate change. One of the drivers of climate change is increasing CO2, which is also known to amplify the allergy risk of weed pollen by inducing elevated allergenic protein content. However, the impact of CO2 concentration on tree pollen is not clearly understood due to the experimental difficulties in carrying out extended CO2 treatment. To study the response of pollen production of sawtooth oak trees (Quercus acutissima) to elevated levels of ambient CO2, three open-top chambers at the National Institute of Forest Science in Suwon, Korea were utilized with daytime (8 am-6 pm) CO2 concentrations of ambient (× 1.0, ~ 400 ppm), × 1.4 (~ 560 ppm), and × 1.8 (~ 720 ppm) treatments. Each chamber had three sawtooth oak trees planted in September 2009. One or two trees per chamber matured to bloom in 2016. Five to six catkins were selected per tree and polyethylene bags were attached to collect pollen grains. The total number of catkins per tree was counted and the number and weight of pollen grains per catkin were measured. Oak allergen-Que a 1 (Allergon Co., Uppsala, Sweden)-was extracted and purified to make an ELISA kit by which the antigen levels in the pollen samples were quantified. Total pollen counts per tree of the × 1.4 and × 1.8 treatments showed significant increase of 353 and 1299%, respectively, from the × 1.0 treatment (p < 0.001). Allergenic protein contents at the × 1.4 and × 1.8 treatments also showed significant increase of 12 and 11%, respectively (p = 0.011). The × 1.8 treatment induced significant difference from the × 1.0 treatment in terms of pollen production and allergenic protein content, whereas the × 1.4 treatment showed mixed significance. In summary, the oak trees under the elevated CO2 levels, which are expected in the changing climate, produced significantly higher amount of pollen and allergenic protein than under the present air conditions.


Assuntos
Dióxido de Carbono , Hipersensibilidade/epidemiologia , Pólen/efeitos adversos , Quercus , Alérgenos , Humanos , República da Coreia , Risco , Suécia , Árvores
11.
J Sci Food Agric ; 98(15): 5841-5852, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29770456

RESUMO

BACKGROUND: Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO2 ]. This may affect future rice production and quality. In this study, the effect of elevated [CO2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in the subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO2 ]) were tested using four rice cultivars of eastern India. RESULTS: Under elevated [CO2 ] (25% higher), the yield of high-yielding cultivars (HYCs) viz IR 36, Swarna, and Swarna sub1 was significantly reduced (by 11-13%), whereas the yield increased (by 6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO2 ] significantly enhanced K uptake (by 14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO2 ] indicating that nutrient translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO2 ] elevation. CONCLUSION: The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivars in minimizing the adverse effects of elevated [CO2 ] on rice yield and quality. © 2018 Society of Chemical Industry.


Assuntos
Dióxido de Carbono/análise , Oryza/crescimento & desenvolvimento , Biomassa , Ecossistema , Índia , Nitrogênio/metabolismo , Oryza/genética , Oryza/metabolismo , Controle de Qualidade , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Temperatura
12.
Ann Bot ; 119(3): 433-445, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28064192

RESUMO

BACKGROUND AND AIMS: Climate change in the Arctic is projected to increase temperature, precipitation and snowfall. This may alter leaf anatomy and gas exchange either directly or indirectly. Our aim was to assess whether increased snow depth and warming modify leaf anatomy and affect biogenic volatile organic compound (BVOC) emissions and CO2 exchange of the widespread arctic shrubs Betula nana and Empetrum nigrum ssp. hermaphroditum METHODS: Measurements were conducted in a full-factorial field experiment in Central West Greenland, with passive summer warming by open-top chambers and snow addition using snow fences. Leaf anatomy was assessed using light microscopy and scanning electron microscopy. BVOC emissions were measured using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. Carbon dioxide exchange was measured using an infrared gas analyser. KEY RESULTS: Despite a later snowmelt and reduced photosynthesis for B. nana especially, no apparent delays in the BVOC emissions were observed in response to snow addition. Only a few effects of the treatments were seen for the BVOC emissions, with sesquiterpenes being the most responsive compound group. Snow addition affected leaf anatomy by increasing the glandular trichome density in B. nana and modifying the mesophyll of E. hermaphroditum The open-top chambers thickened the epidermis of B. nana, while increasing the glandular trichome density and reducing the palisade:spongy mesophyll ratio in E. hermaphroditum CONCLUSIONS: Leaf anatomy was modified by both treatments already after the first winter and we suggest links between leaf anatomy, CO2 exchange and BVOC emissions. While warming is likely to reduce soil moisture, melt water from a deeper snow pack alleviates water stress in the early growing season. The study emphasizes the ecological importance of changes in winter precipitation in the Arctic, which can interact with climate-warming effects.


Assuntos
Betula/anatomia & histologia , Dióxido de Carbono/metabolismo , Ericaceae/anatomia & histologia , Folhas de Planta/anatomia & histologia , Compostos Orgânicos Voláteis/metabolismo , Regiões Árticas , Betula/metabolismo , Betula/fisiologia , Betula/ultraestrutura , Ericaceae/metabolismo , Ericaceae/fisiologia , Ericaceae/ultraestrutura , Groenlândia , Temperatura Alta , Microscopia , Microscopia Eletrônica de Varredura , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Estações do Ano , Neve
13.
Plant Physiol Biochem ; 210: 108657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670030

RESUMO

The continuously rising atmospheric CO2 concentration potentially increase plant growth through stimulating C metabolism; however, plant C:N:P stoichiometry in response to elevated CO2 (eCO2) under low P stress remains largely unknown. We investigated the combined effect of eCO2 and low phosphorus on growth, yield, C:N:P stoichiometry, and remobilization in rice cv. Kasalath (aus type), IR64 (a mega rice variety), and IR64-Pup1 (Pup1 QTL introgressed IR64). In response to eCO2 and low P, the C accumulation increased significantly (particularly at anthesis stage) while N and P concentration decreased leading to higher C:N and C:P ratios in all plant components (leaf, sheath, stem, and grain) than ambient CO2. The remobilization efficiencies of N and P were also reduced under low P with eCO2 as compared to control conditions. Among cultivars, the combined effect of eCO2 and low P was greater in IR64-Pup1 and produced higher biomass and grain yield as compared to IR64. However, IR64-Pup1 exhibited a lower N but higher P concentration than IR64, indicating that the Pup1 QTL improved P uptake but did not influence N uptake. Our study suggests that the P availability along with eCO2 would alter the C:N:P ratios due to their differential partitioning, thereby affecting growth and yield.


Assuntos
Dióxido de Carbono , Nitrogênio , Oryza , Fósforo , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fósforo/metabolismo , Fósforo/farmacologia , Locos de Características Quantitativas
14.
Ying Yong Sheng Tai Xue Bao ; 34(1): 123-130, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799385

RESUMO

We used open-top chambers (OTCs) to simulate the conditions of elevated atmospheric CO2 concentration at the Changwu State Key Agro-Ecological Experimental Station of the Loess Plateau. There were three treatments, CK (maize grown under field conditions with natural atmospheric CO2 concentration), OTC (maize grown in the open-top chamber under natural atmospheric CO2 concentration), and OTCe (maize grown in the open-top chamber under elevated atmospheric CO2 concentration of 700 µmol·mol-1).We explored the responses of non-structural carbohydrate (NSC) and grain quality (soluble sugar, starch and crude protein) of spring maize to elevated CO2 at different growth stages, aiming to provide scientific basis for revealing the adaptation mechanism of maize to elevated CO2. The results showed that the effects of elevated CO2 on NSC content and accumulation in maize varied across organs and growth periods. Elevated CO2 promoted the activation and redistribution of NSC in leaves, stems and roots during reproductive growth period, and significantly increased the amount of NSC conversion to the grains (ATMNSC), as well as the conversion rate to the grains (ARNSC) and the contribution to the grains (ACNSC) in leaves, stems and roots. Compared with CK, the warming effect of OTC inhibited the activation and redistribution of NSC in stems and roots, but promoted the activation and redistribution of NSC in leaves, significantly increased the ATMNSC, ARNSC, and ACNSC of maize leaves. Elevated CO2 did not affect the contents of soluble sugar, starch, and crude protein in maize grains.


Assuntos
Dióxido de Carbono , Zea mays , Dióxido de Carbono/metabolismo , Carboidratos , Grão Comestível/metabolismo , Folhas de Planta/metabolismo , Amido , Açúcares
15.
Plants (Basel) ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687360

RESUMO

Phenotypic plasticity is widely acknowledged as one of the most common solutions for coping with novel environmental conditions following climate change. However, it is less known whether the current amounts of trait plasticity, which is sufficient for matching with the contemporary climate, will be adequate when global temperatures exceed historical levels. We addressed this issue by exploring the responses of functional and structural leaf traits in Iris pumila clonal individuals to experimentally increased temperatures (~1.5 °C) using an open top chamber (OTC) design. We determined the phenotypic values of the specific leaf area, leaf dry matter content, specific leaf water content, and leaf thickness in the leaves sampled from the same clone inside and outside of the OTC deployed on it, over seasons and years within two natural populations. We analyzed the data using a repeated multivariate analysis of variance, which primarily focusses on the profiles (reaction norms (RNs)) of a variable gathered from the same individual at several different time points. We found that the mean RNs of all analyzed traits were parallel regardless of experienced temperatures, but differed in the level and the shape. The populations RNs were similar as well. As the amount of plasticity in the analyzed leaf trait was adequate for coping with elevated temperatures inside the OTCs, we predict that it will be also sufficient for responding to increased temperatures if they exceed the 1.5 °C target.

16.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2185-2193, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681383

RESUMO

Rising atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are the main global change drivers. Soil ectoenzymes play an important role in maintaining soil ecosystem services. Exploring the responses of soil ectoenzymes to elevated CO2 and O3 concentrations is important for combating global climate change. In this study, we simulated elevated CO2 concentrations (+200 µmol·mol-1, eCO2), elevated O3 concentrations (0.04 µmol·mol-1, eO3), and their combination (eCO2+eO3) in open-top chambers (OTCs), and investigated the responses of rhizospheric soil ectoenzyme activities. The results showed that eCO2 significantly increased the ß-D-Glucosidase (ßG) activity by 73.0%, and decreased that of polyphenol oxidase (PHO), peroxidase (PEO), and acid phosphatase (AP) by 48.9%, 46.6% and 72.9% respectively, but did not affect that of cellulose hydrolase (CBH) and ß-N-Acetylglucosaminidase (NAG). eO3 significantly reduced the activities of CBH and AP by 34.2% and 30.4%, respectively. The activities of PHO and AP were reduced by 87.3% and 32.3% under the eCO2+eO3 compared with the control, respectively. Results of the principal coordinate analysis, permutation multivariate analysis of variance and redundancy analysis showed that both elevated CO2 and O3 significantly affected soil ectoenzyme activities, with stronger effects of elevated CO2 than elevated O3. Root nitrogen content, root carbon to nitrogen ratio, soil microbial biomass carbon and nitrate nitrogen were the main drivers of soil ectoenzyme activities under elevated CO2 and O3. Elevated O3 could partially neutralize the effects of elevated CO2 on soil ectoenzyme activities. In conclusion, elevated CO2 and O3 restrained the activities of most soil ectoenzyme, suggesting that climate change would threat soil ecosystem services and functions in the agroecosystem.


Assuntos
Oryza , Ozônio , Dióxido de Carbono , Ecossistema , Catecol Oxidase , Nitrogênio , Solo
17.
Biodivers Data J ; 11: e103723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327350

RESUMO

Background: The data we present are part of the project PASTURCLIM (Impact of climate change on pasture's productivity and nutritional composition in the Azores). The project aims to assess the consequences of climate change (e.g. temperature increase) on the grass production and its quality for forage, as well as to assess changes in the arthropod communities associated with the Azorean intensive pastures. An in situ experiment was set up using Open Top Chambers (OTCs), in order to simulate an increasing of temperature (average of +1.2ºC) on pastures. In this contribution, we present the data relative to the arthropod sampling. New information: We provide an inventory of all arthropods recorded inside OTCs and in control plots in three intensively managed pastures dominated by grasses in Terceira Island (Azores): two of them dominated by ryegrass, Loliummultiflorum Lam. (Poaceae), located respectively at 186 m and 301 m above sea level; and one field dominated by common velvetgrass, Holcuslanatus L. (Poaceae), located at an altitude of 385 m.A total of 41351 specimens were collected. Organisms collected belong to four classes, 15 orders, 60 families and 171 species/morphospecies (including 34 taxa identified only at order, family or genus level). Therefore, for only 137 taxa, we have a scientific name associated (n = 38918). A total of 75% of the species (n = 129 species) are considered introduced (including all the species with indeterminate colonisation status that are possibly also exotic species (n = 7622)), representing 71% of the total abundance (n = 29664 specimens). A total of 19% of the species (n = 33 species) are considered native non-endemic representing 28% of the total abundance (n = 11608 specimens). Only one endemic species was sampled, the wolf spider Pardosaacorensis Simon, 1883 (1% of the species), representing 0.2% of the total abundance (n = 79 specimens). Spiders (5056 specimens) and beetles (18310 specimens) were the dominant taxa representing, respectively, 20 and 78 morphospecies.Since the main aim of this study was to have a better knowledge on arthropod communities present in Azorean pastures under a simulated temperature increase, the principal novelty of this paper is the contribution with distribution and abundance data to a baseline knowledge on the future consequences of climate changes on arthropod communities in Azorean pastures.

18.
Sci Total Environ ; 838(Pt 2): 156065, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35597357

RESUMO

Effects of environmental change on plants can differ due to sequential changes in their life-history strategies (i.e., ontogenetic variations). The fitness of herbivorous insects by physiological changes of the host plant could be affected depending on their diet breadth. However, little is known regarding the combinational effects of plant ontogeny and climate change on plant-herbivore interactions. This study examined the plant ontogeny-dependent effects of climate change on the interaction between a host plant (Aristolochia contorta), its specialist herbivore (Sericinus montela), and a generalist herbivore (Spodoptera exigua). Plants were grown under a factorial design of two distinct CO2 concentrations (ambient, 400 ppm; elevated, 560 ppm) and two watering frequencies (control, once a week; increased, twice a week). Plant ontogeny ameliorated the effects of climate change by altering its defensive traits, where nutrient-related factors were cumulatively affected by climate change. Herbivore performance was assessed at three different plant ontogenetic stages (1st-year juvenile, 1st-year senescence, and 2nd-year juvenile). Elevated CO2 levels reduced the growth and survival of the specialist herbivore, whereas increased watering frequency partially alleviated this reduced performance. Generalist herbivore performance slightly increased under elevated CO2 levels with progressing ontogenetic stages. The effects of climate change, both elevated CO2 and increased watering frequency were weaker in 2nd-year juveniles than in 1st-year juveniles. Elevated CO2 levels detrimentally affected the nutritional quality of A. contorta leaves. The effects of climate change on both specialist and generalist herbivore performance differed as plant ontogenetic stage proceeded. Increased growth rates and survival of the generalist herbivore at the latter ontogenetic stage might negatively affect the population dynamics of a specialist herbivore. This study suggests that biases are possible when the plant-herbivore interaction under a changing environment is predicted from a singular plant ontogenetic stage.


Assuntos
Aristolochia , Herbivoria , Animais , Dióxido de Carbono/farmacologia , Insetos/fisiologia , Folhas de Planta/fisiologia , Plantas
19.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559641

RESUMO

Physiological response and transcriptome changes were observed to investigate the effects on the growth, metabolism and genetic changes of Pinus densiflora grown for a long time in an environment with an elevated atmospheric CO2 concentration. Pine trees were grown at ambient (400 ppm) and elevated (560 ppm and 720 ppm) CO2 concentrations for 10 years in open-top chambers. The content of nonstructural carbohydrates was significantly increased in elevated CO2. It was notable that the contents of chlorophylls significantly decreased at an elevated CO2. The activities of antioxidants were significantly increased at an elevated CO2 concentration of 720 ppm. We analyzed the differences in the transcriptomes of Pinus densiflora at ambient and elevated CO2 concentrations and elucidated the functions of the differentially expressed genes (DEGs). RNA-Seq analysis identified 2415 and 4462 DEGs between an ambient and elevated CO2 concentrations of 560 ppm and 720 ppm, respectively. Genes related to glycolysis/gluconeogenesis and starch/sucrose metabolism were unchanged or decreased at an elevated CO2 concentration of 560 ppm and tended to increase at an elevated CO2 concentration of 720 ppm. It was confirmed that the expression levels of genes related to photosynthesis and antioxidants were increased at an elevated CO2 concentration of 720 ppm.

20.
Chemosphere ; 308(Pt 2): 136347, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087720

RESUMO

Biochar application is a potent climate change mitigation strategy in agroecosystems. However, little is known about the interactive effects of elevated CO2 (eCO2) and biochar on plant nutrient uptake and soil microbial processes. A pot experiment was conducted to investigate the effects of eCO2 and biochar addition on plant C:N:P stoichiometry and rhizobacterial community for better management of nutrient balance and use efficiency in a future climate scenario. White lupin (Lupinus albus L.) was grown for 30 days in topsoil and subsoil with or without 2% corn-stubble biochar under ambient CO2 (aCO2: 390 ppm) or eCO2 (550 ppm). Elevated CO2 increased, but biochar decreased, plant biomass and shoot N and P uptake, with no interactions in either soil layer. Elevated CO2 decreased shoot N concentration by 16% and biochar decreased shoot P concentration by 11%. As a result, eCO2 increased shoot C:N ratio by 20% and decreased the N:P ratio by 11%. Biochar decreased shoot C:N ratio by 8% in the subsoil under eCO2. However, biochar increased shoot C:P ratio by an average of 13% and N:P ratio by 23% in the subsoil. Moreover, plants grown in the subsoil showed lower shoot N (35%) and P (70%) uptake compared to the topsoil. The results indicate that N and P are the more limiting factors that regulate plant growth under eCO2 and biochar application, respectively. Elevated CO2 and biochar oppositely affected dominant rhizobacterial community composition, with the eCO2 effect being greater. The microbiota in the subsoil held a greater diversity of contrasting species than the topsoil, which were associated with nutrient cycling, hydrocarbon degradation and plant productivity. These results enrich our understanding of potential soil nutrient cycling and plant nutrient balance in future agroecosystems.


Assuntos
Lupinus , Microbiota , Dióxido de Carbono/metabolismo , Carvão Vegetal , Hidrocarbonetos , Lupinus/metabolismo , Rizosfera , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa