Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298072

RESUMO

The detection of biological agents using optical systems is an open field of research. Currently, different spectroscopic techniques allow to detect and classify chemical agents while a fast and accurate technique able to identify biological agents is still under investigation. Some optical techniques, such as Laser-Induced Breakdown Spectroscopy (LIBS) or Laser-Induced Fluorescence (LIF), are already used as classification methods. However, the presence of background, spectrum similarities and other confounders make these techniques not very specific. This work shows a new method to achieve better performances in terms of classification and concentration evaluations. The method is based on the Weighted Least Square Minimization method. In fact, by using ad hoc weights, the LSM looks at specific features of the spectra, resulting in higher accuracy. In order to make a systematic analysis, numerical tests have been conducted. With these tests, the authors were able to highlight the various advantages and drawbacks of the new methodology proposed. Then, the method was applied to some LIF measurements to investigate the applicability of the method to preliminary experimental cases. The results show that, by using this new weighted LSM, it is possible to achieve better classification and concentration evaluation performances. Finally, the possible application of the new method is discussed.


Assuntos
Fatores Biológicos , Lasers , Análise Espectral/métodos
2.
Small ; 17(8): e2004287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522074

RESUMO

With the advent of nanofabrication techniques, plasmonic nanoparticles (PNPs) have been widely applied in various research fields ranging from photocatalysis to chemical and bio-sensing. PNPs efficiently convert chemical or physical stimuli in their local environment into optical signals. PNPs also have excellent properties, including good biocompatibility, large surfaces for the attachment of biomolecules, tunable optical properties, strong and stable scattering light, and good conductivity. Thus, single optical biosensors with plasmonic properties enable a broad range of uses of optical imaging techniques in biological sensing and imaging with high spatial and temporal resolution. This work provides a comprehensive overview on the optical properties of single PNPs, the description of five types of commonly used optical imaging techniques, including surface plasmon resonance (SPR) microscopy, surface-enhanced Raman scattering (SERS) technique, differential interference contrast (DIC) microscopy, total internal reflection scattering (TIRS) microscopy, and dark-field microscopy (DFM) technique, with an emphasis on their single plasmonic nanoprobes and mechanisms for applications in biological imaging and sensing, as well as the challenges and future trends of these fields.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Microscopia , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
3.
Lasers Surg Med ; 52(7): 659-670, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31777113

RESUMO

BACKGROUND AND OBJECTIVES: Photodynamic therapy (PDT) has gained widespread popularity in the last decades because of its distinctive advantages over the other commonly used cancer treatments. PDT dosimetry is a crucial factor in achieving a good optimization of PDT treatment planning. PDT dosimetry is a complex task since light dose as well as photosensitizer and oxygen concentrations in tissue need to be measured (ideally continuously) to be able to fully characterize the biological response. Light dose in PDT is routinely measured by the optical fibers that provide dose data at a limited number of discrete points and are not able to capture spatial dose profiles. The objective of this study is to propose and develop a new optical method for online monitoring of the dose profile data for PDT. STUDY DESIGN/MATERIALS AND METHODS: Using the digital holography technique, first, the general sketch of an experimental setup for PDT light dosimetry is provided. The theory behind the proposed method for using the experimental setup in PDT light dosimetry is fully described, and its limits of validity are determined. In a proof of principle study, the ability of the method for online monitoring of the absorbed light dose profile in PDT is evaluated by a simple experimental setup. RESULTS: The experimental results confirm the usefulness of the proposed method in providing continuous online dose profiles. The absorbed light dose profiles from an infrared light source in a quartz cell containing water are measured and shown. The depth-dose curves are extracted and it is shown that how these dosimetric data can be used for assisting the physicians in determining the appropriate spatiotemporal characteristics for treating the infected tissues and solid tumors with the required light dose amounts. A conversion relation is also derived for transforming the measured light dose with the proposed method to the most frequently used dose values by PDT practitioners, in terms of light power per square area. CONCLUSIONS: There is no restriction in using the method with other commonly used light sources in PDT, like light-emitting diodes and filtered lamps, with different wavelengths in visible or infrared regions of the spectrum. More complex experimental setups can be used in future studies to study the role of accumulated photosensitizers in malignant tissues. The proposed method in this study can also be used for light dose monitoring in other biomedical applications, where light is used for treating special diseases, and patients must receive sufficient amounts of light dose. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Raios Infravermelhos , Neoplasias/tratamento farmacológico , Fibras Ópticas , Fármacos Fotossensibilizantes/uso terapêutico
4.
J Sci Food Agric ; 98(7): 2729-2734, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29095490

RESUMO

BACKGROUND: The market for fruits and vegetables is mainly controlled by the mass distribution channel (MDC). MDC buyers do not have useful instruments to rapidly evaluate the quality of the products. Decisions by the buyers are driven primarily by pricing strategies rather than product quality. Simple, rapid and easy-to-use methods for objectively evaluating the quality of postharvest products are needed. The present study aimed to use visible and near-infrared (vis/NIR) spectroscopy to estimate some qualitative parameters of two low-price products (carrots and tomatoes) of various brands, as well as evaluate the applicability of this technique for use in stores. RESULTS: A non-destructive optical system (vis/NIR spectrophotometer with a reflection probe, spectral range 450-1650 nm) was tested. The differences in quality among carrots and tomatoes purchased from 13 stores on various dates were examined. The reference quality parameters (firmness, water content, soluble solids content, pH and colour) were correlated with the spectral readings. The models derived from the optical data gave positive results, in particular for the prediction of the soluble solids content and the colour, with better results for tomatoes than for carrots. CONCLUSION: The application of optical techniques may help MDC buyers to monitor the quality of postharvest products, leading to an effective optimization of the entire supply chain. © 2017 Society of Chemical Industry.


Assuntos
Daucus carota/química , Solanum lycopersicum/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Frutas/química , Controle de Qualidade , Verduras/química
5.
J Biophotonics ; 17(2): e202300236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37789505

RESUMO

Many optical techniques have been used in various diagnostics and biomedical applications since a decade and polarization imaging is one of the non-invasive and label free optical technique to investigate biological samples making it an important tool in diagnostics, biomedical applications. We report a multispectral polarization-based imaging of oral tissue by utilizing a polarization microscope system with a broadband-light source. Experiments were performed on oral tissue samples and multispectral Stokes mapping was done by recording a set of intensity images. Polarization-based parameters like degree of polarization, angle of fast axis, retardation and linear birefringence have been retrieved. The statistical moments of these polarization components have also been reported at multiples wavelengths. The polarimetric properties of oral tissue at different stages of cancer have been analyzed and significant changes from normal to pre-cancerous lesions to the cancerous are observed in linear birefringence quantification as (1.7 ± 0.1) × 10-3 , (2.5 ± 0.2) × 10-3 and (3.3 ± 0.2) × 10-3 respectively.


Assuntos
Diagnóstico por Imagem , Humanos , Microscopia de Polarização/métodos , Birrefringência , Análise Espectral
6.
J Biomed Opt ; 29(6): 066007, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868496

RESUMO

Significance: The accurate correlation between optical measurements and pathology relies on precise image registration, often hindered by deformations in histology images. We investigate an automated multi-modal image registration method using deep learning to align breast specimen images with corresponding histology images. Aim: We aim to explore the effectiveness of an automated image registration technique based on deep learning principles for aligning breast specimen images with histology images acquired through different modalities, addressing challenges posed by intensity variations and structural differences. Approach: Unsupervised and supervised learning approaches, employing the VoxelMorph model, were examined using a dataset featuring manually registered images as ground truth. Results: Evaluation metrics, including Dice scores and mutual information, demonstrate that the unsupervised model exceeds the supervised (and manual) approaches significantly, achieving superior image alignment. The findings highlight the efficacy of automated registration in enhancing the validation of optical technologies by reducing human errors associated with manual registration processes. Conclusions: This automated registration technique offers promising potential to enhance the validation of optical technologies by minimizing human-induced errors and inconsistencies associated with manual image registration processes, thereby improving the accuracy of correlating optical measurements with pathology labels.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Feminino , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Algoritmos , Imagem Multimodal/métodos
7.
J Biophotonics ; : e202400088, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899690

RESUMO

Hyperspectral quantitative phase microscopy (HS-QPM) involves the acquisition of phase images across narrow spectral bands, which enables wavelength-dependent study of different biological samples. In the present work, a compact Linnik-type HS-QPM system is developed to reduce the instability and complexity associated with conventional HS-QPM techniques. The use of a single objective lens for both reference and sample arms makes the setup compact. The capabilities of the system are demonstrated by evaluating the HS phase map of both industrial and biological specimens. Phase maps of exfoliated cheek cells at different wavelengths are stacked to form a HS phase cube, adding spectral dimensionality to spatial phase distribution. Analysis of wavelength response of different cellular components are performed using principal component analysis to identify dominant spectral features present in the HS phase dataset. Findings of the study emphasize on the efficiency and effectiveness of HS-QPM for advancing cellular characterization in biomedical research and clinical applications.

8.
J Texture Stud ; 54(2): 173-205, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36757668

RESUMO

Texture is an important sensory attribute that drives consumer acceptance of any food material. In recent times consumers' demand for high-quality food urges food industries to provide food with consistent textural properties. However, texture measurement not just requires a trained sensory panel but also a considerable amount of time and effort. On the flip side, human observation could be subjective hence repeatability of the result may not be ensured and/or relied on. Contrary to that, objective methods for texture measurement are reliable and consistent, but are not suitable for in-line application and also destructive in nature. The mentioned crisis has made industries opt for nondestructive texture analysis techniques. In the past decade, considerable research has been carried out on nondestructive texture analysis methods such as micro-deformation, and acoustic and optical techniques, showing feasibility for in-line applications. The current review focuses on the working principles and most recent applications of nondestructive techniques for texture analysis of food products. Moreover, a detailed review of contact and noncontact-type texture measurement has been presented in this article. The literature survey is concluded with future research aspects and challenges involved in the commercialization of the nondestructive texture analysis techniques.


Assuntos
Qualidade dos Alimentos , Alimentos , Humanos , Tecnologia de Alimentos
9.
J Anim Sci Biotechnol ; 14(1): 102, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452378

RESUMO

Numerous researchers and institutions have been developing in ovo sexing technologies to improve animal welfare by identifying male embryos in an early embryonic stage and disposing of them before pain perception. This review gives a complete overview of the technological approaches reported in papers and patents by performing a thorough search using Web of Science and Patstat/Espacenet databases for papers and patents, respectively. Based on a total of 49 papers and 115 patent families reported until May 2023 worldwide, 11 technology categories were defined: 6 non-optical and 5 optical techniques. Every category was described for its characteristics while assessing its potential for application. Next, the dynamics of the publications of in ovo sexing techniques in both paper and patent fields were described through growth curves, and the interest or actual status was visualized using the number of paper citations and the actual legal status of the patents. When comparing the reported technologies in papers to those in patents, scientific gaps were observed, as some of the patented technologies were not reported in the scientific literature, e.g., ion mobility and mass spectrometry approaches. Generally, more diverse approaches in all categories were found in patents, although they do require more scientific evidence through papers or industrial adoption to prove their robustness. Moreover, although there is a recent trend for non-invasive techniques, invasive methods like analyzing DNA through PCR or hormones through immunosensing are still being reported (and might continue to be) in papers and patents. It was also observed that none of the technologies complies with all the industry requirements, although 5 companies already entered the market. On the one hand, more research and harmony between consumers, industry, and governments is necessary. On the other hand, close monitoring of the market performance of the currently available techniques will offer valuable insights into the potential and expectations of in ovo sexing techniques in the poultry industry.

10.
Front Microbiol ; 14: 1233705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692384

RESUMO

New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.

11.
Npj Imaging ; 1(1): 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665236

RESUMO

Conventional histology, as well as immunohistochemistry or immunofluorescence, enables the study of morphological and phenotypical changes during tissue inflammation with single-cell accuracy. However, although highly specific, such techniques require multiple time-consuming steps to apply exogenous labels, which might result in morphological deviations from native tissue structures. Unlike these techniques, mid-infrared (mid-IR) microspectroscopy is a label-free optical imaging method that retrieves endogenous biomolecular contrast without altering the native composition of the samples. Nevertheless, due to the strong optical absorption of water in biological tissues, conventional mid-IR microspectroscopy has been limited to dried thin (5-10 µm) tissue preparations and, thus, it also requires time-consuming steps-comparable to conventional imaging techniques. Here, as a step towards label-free analytical histology of unprocessed tissues, we applied mid-IR optoacoustic microscopy (MiROM) to retrieve intrinsic molecular contrast by vibrational excitation and, simultaneously, to overcome water-tissue opacity of conventional mid-IR imaging in thick (mm range) tissues. In this proof-of-concept study, we demonstrated application of MiROM for the fast, label-free, non-destructive assessment of the hallmarks of inflammation in excised white adipose tissue; i.e., formation of crown-like structures and changes in adipocyte morphology.

12.
Light Sci Appl ; 11: 21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35079351

RESUMO

Throughout history, there have been many outstanding women whose achievements continue to impress and amaze us today. For example, in the field of science, Madame Marie Curie was the first woman Nobel Prize winner and the only person to be awarded a Nobel Prize in two scientific fields. From China, Tu Youyou is a Nobel laureate who discovered artemisinin and dihydroartemisinin, used to treat malaria, a breakthrough in twentieth-century tropical medicine, saving millions of lives around the globe. Businesswomen such as Angela Ahrendts, a former fashion executive who helped revitalize Apple, Inc., and Sheryl Sandberg, Chief Operating Officer of Meta Platforms (formerly Facebook), are recognized as two of the world's most influential business leaders. Now, more than ever, women are at the forefront of developments in optics and photonics research and business. One of those leaders is Elizabeth Rogan, CEO of Optica (formerly the Optical Society and the Optical Society of America.) As the executive in charge of an organization devoted to promoting the generation, application, archiving, and dissemination of knowledge in optics and photonics worldwide, Ms. Rogan has successfully expanded the depth and breadth of Optica's technical and global reach. Her education and expertise are in industry, finance, and strategy. She utilizes these skills in partnership with a large and technically diverse group of Ph.D. volunteers and staff specialists. Combining the efforts of these many talented people with a unity of purpose has proven to be a highly effective approach for Rogan and the association she has led for nearly two decades. Ms. Rogan is a strong advocate for women. For instance, the association's "Faces of Optica" campaign features a wide range of accomplished women in research and applications. And she was an enthusiastic participant in the "Rose in Science," which celebrates the extraordinary accomplishments of women scientists. Light Special Correspondents interviewed Elizabeth Rogan about Optica's legacy, culture, and personal experiences as its CEO in this issue. She also discussed the reasons behind the recent rebranding of the organization and the bonds of friendship the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, and Optica have built over the years. Please join us for an in-depth look at why this century-plus-year-old organization has a fresh new vision for the future.

13.
Forensic Sci Int ; 331: 111136, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34920331

RESUMO

In the forensic investigation of questioned documents, it is often very important to know the deposition order of ink traces from two different writing tools at their intersection on a paper. In the present work, intersections of inks from several writing tools were studied using optical techniques that are standardly applied for questioned documents examination in a forensic laboratory, and an accelerator-based Ion Beam Analysis (IBA) technique called Secondary Ion Mass Spectrometry using MeV ions (MeV SIMS) that is applied in an accelerator facility. MeV SIMS provides molecular information about the studied inks from writing tools, which is an added value and can be also applied for determination of deposition order but was so far relatively rarely used in forensic studies. Aim of this paper is to compare performance of optical techniques and MeV SIMS for several combinations of intersecting lines. Cases were divided into those in which optical techniques can distinguish used inks and those which are optically completely indistinguishable. In the latter cases, we show that although mass spectra of used inks (from blue ballpoint pens) had extremely small differences, these in combination with advanced and most importantly objective multivariate algorithms could be very beneficial in resolving the deposition order at the intersection of optically indistinguishable inks. In general, MeV SIMS proved to be more efficient for oil-based inks while difficulties were encountered with water-based ones, similar to optical methods.

14.
Anal Chim Acta ; 1204: 339633, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35397902

RESUMO

Development of nanotechnology and corresponding industries during the last decade resulted in a new challenge for analytical science. This includes an ultrasensitive detection and characterization of nanoparticles of different origin and other nanomaterials in various media, including so complex ones as food, biological or environmental samples. The goal of this review is a systematic analysis of possible approaches and description of physical principles behind these methods. The main attention is paid to optical methods which are considered by authors to be mostly effective for the formulated task. Different approaches for detection and analysis of nanoparticles in a volume as well as of those adsorbed on a surface are discussed. While the technologies based on direct analysis of nanoparticle suspensions belong to the established approaches whose development potential has been in large extent exhausted, the novel technologies based on the surface sensing of adsorbed nanoparticles demonstrate intensive development. Therefore, the final part of the review is focused on the wide-field surface plasmon resonance microscopy. It allows one an ultrasensitive detection and characterization of individual nanoparticles of different origin in complex media and provides numerous possibilities for subsequent chemical identification of the detected particles using a hyphenation with other analytical technologies.


Assuntos
Nanopartículas , Nanoestruturas , Microscopia , Nanotecnologia , Ressonância de Plasmônio de Superfície/métodos
15.
Neurophotonics ; 9(4): 045005, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405998

RESUMO

Significance: Benign external hydrocephalus (BEH) is considered a self-limiting pathology with a good prognosis. However, some children present a pathological intracranial pressure (ICP) characterized by quantitative and qualitative alterations (the so-called B-waves) that can lead to neurological sequelae. Aim: Our purpose was to evaluate whether there were cerebral hemodynamic changes associated with ICP B-waves that could be evaluated with noninvasive neuromonitoring. Approach: We recruited eleven patients (median age 16 months, range 7 to 55 months) with BEH and an unfavorable evolution requiring ICP monitoring. Bedside, nocturnal monitoring using near-infrared time-resolved and diffuse correlation spectroscopies synchronized to the clinical monitoring was performed. Results: By focusing on the timing of different ICP patterns that were identified manually by clinicians, we detected significant tissue oxygen saturation ( StO 2 ) changes ( p = 0.002 ) and blood flow index (BFI) variability ( p = 0.005 ) between regular and high-amplitude B-wave patterns. A blinded analysis looking for analogs of ICP patterns in BFI time traces achieved 90% sensitivity in identifying B-waves and 76% specificity in detecting the regular patterns. Conclusions: We revealed the presence of StO 2 and BFI variations-detectable with optical techniques-during ICP B-waves in BEH children. Finally, the feasibility of detecting ICP B-waves in hemodynamic time traces obtained noninvasively was shown.

16.
Environ Fluid Mech (Dordr) ; 22(4): 789-818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965667

RESUMO

Abstract: Hydraulic jumps are commonly employed as energy dissipators to guarantee long-term operation of hydraulic structures. A comprehensive and in-depth understanding of their main features is therefore fundamental. In this context, the current study focused on hydraulic jumps with low Froude numbers, i.e. Fr1 = 2.1 and 2.4, at relatively high Reynolds number: Re ~2 × 105. Experimental tests employed a combination of dual-tip phase-detection probes and ultra-high-speed video camera to provide a comprehensive characterisation of the main air-water flow properties of the hydraulic jump, including surface flow features, void fraction, bubble count rate and interfacial velocities. The current research also focused on the transverse distributions of air-water flow properties, i.e. across the channel width, with the results revealing lower values of void fraction and bubble count rate next to the sidewalls compared to the channel centreline data. Such a spatial variability in the transverse direction questions whether data near the side walls may be truly representative of the behaviour in the bulk of the flow, raising the issue of sidewall effects in image-based techniques. Overall, these findings provide new information to both researchers and practitioners for a better understanding of the physical processes inside the hydraulic jump with low Froude numbers, leading to an optimised design of hydraulic structures. Article Highlights: Experimental investigation of air-water flow properties in hydraulic jumps with low Froude numbersDetailed description of the main air-water surface features on the breaking rollerTransversal distribution of the air-water flow properties across the channel width and comparison between centreline and sidewall.

17.
J Carcinog ; 10: 19, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886457

RESUMO

This review covers the development of angle-resolved low coherence interferometry (a/LCI) from initial development through clinical application. In the first applications, the approach used a time-domain interferometry scheme and was validated using animal models of carcinogenesis to assess the feasibility of detecting dysplasia in situ. Further development of the approach led to Fourier-domain interferometry schemes with higher throughput and endoscope-compatible probes to enable clinical application. These later implementations have been applied to clinical studies of dysplasia in Barrett's esophagus tissues, a metaplastic tissue type that is associated with an increased risk of esophageal adenocarcinoma. As an alternative to systematic biopsy, the a/LCI approach offers high sensitivity and specificity for detecting dysplasia in these tissues while avoiding the need for tissue removal or exogenous contrast agents. Here, the various implementations of a/LCI are discussed and the results of the preliminary animal experiments and ex vivo human tissue studies are reviewed. A review of a recent in vivo clinical study is also presented.

18.
Top Curr Chem (Cham) ; 379(2): 12, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33550491

RESUMO

The development of multimodal nanoprobes has been growing in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd3+ chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd3+ chelates and QDs, highlighting their preparation strategies and overall properties.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Gadolínio/química , Imageamento por Ressonância Magnética , Imagem Óptica , Pontos Quânticos/química , Animais , Humanos , Estrutura Molecular
19.
Light Sci Appl ; 9: 58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337022

RESUMO

The phase stability of an optical coherence elastography (OCE) system is the key determining factor for achieving a precise elasticity measurement, and it can be affected by the signal-to-noise ratio (SNR), timing jitters in the signal acquisition process, and fluctuations in the optical path difference (OPD) between the sample and reference arms. In this study, we developed an OCE system based on swept-source optical coherence tomography (SS-OCT) with a common-path configuration (SS-OCECP). Our system has a phase stability of 4.2 mrad without external stabilization or extensive post-processing, such as averaging. This phase stability allows us to detect a displacement as small as ~300 pm. A common-path interferometer was incorporated by integrating a 3-mm wedged window into the SS-OCT system to provide intrinsic compensation for polarization and dispersion mismatch, as well as to minimize phase fluctuations caused by the OPD variation. The wedged window generates two reference signals that produce two OCT images, allowing for averaging to improve the SNR. Furthermore, the electrical components are optimized to minimize the timing jitters and prevent edge collisions by adjusting the delays between the trigger, k-clock, and signal, utilizing a high-speed waveform digitizer, and incorporating a high-bandwidth balanced photodetector. We validated the SS-OCECP performance in a tissue-mimicking phantom and an in vivo rabbit model, and the results demonstrated a significantly improved phase stability compared to that of the conventional SS-OCE. To the best of our knowledge, we demonstrated the first SS-OCECP system, which possesses high-phase stability and can be utilized to significantly improve the sensitivity of elastography.

20.
Light Sci Appl ; 9: 169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062262

RESUMO

Parity-time (PT) symmetry has attracted intensive research interest in recent years. PT symmetry is conventionally implemented between two spatially distributed subspaces with identical localized eigenfrequencies and complementary gain and loss coefficients. The implementation is complicated. In this paper, we propose and demonstrate that PT symmetry can be implemented between two subspaces in a single spatial unit based on optical polarimetric diversity. By controlling the polarization states of light in the single spatial unit, the localized eigenfrequencies, gain, loss, and coupling coefficients of two polarimetric loops can be tuned, leading to PT symmetry breaking. As a demonstration, a fiber ring laser based on this concept supporting stable and single-mode lasing without using an ultranarrow bandpass filter is implemented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa