Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
BMC Genomics ; 25(1): 222, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418975

RESUMO

Shepherd's crook (Geodorum) is a genus of protected orchids that are valuable both medicinally and ornamentally. Geodorum eulophioides (GE) is an endangered and narrowly distributed species, and Geodorum densiflorum (GD) and Geodorum attenuatum (GA) are widespread species. The growth of orchids depend on microorganisms. However, there are few studies on the microbial structure in Geodorum, and little is known about the roles of microorganisms in the endangered mechanism of G. eulophioides. This study analyzed the structure and composition of bacterial and fungal communities in the roots and rhizosphere soil of GE, GD, and GA. The results showed that Delftia, Bordetella and norank_f_Xanthobacteraceae were the dominant bacteria in the roots of Geodorum, while norank_f_Xanthobacteraceae, Gaiella and norank_f_norank_o_Gaiellales were the dominant bacteria in the rhizosphere soil of Geodorum. In the roots, the proportion of Mycobacterium in GD_roadside was higher than that in GD_understory, on the contrary, the proportion of Fusarium, Delftia and Bordetella in GD_roadside was lower than that in GD_understory. Compared with the GD_understory, the roots of GD_roadside had lower microbial diversity. In the endangered species GE, Russula was the primary fungus in the roots and rhizosphere soil, with fungal diversity lower than in the more widespread species. Among the widespread species, the dominant fungal genera in the roots and rhizosphere soil were Neocosmospora, Fusarium and Coprinopsis. This study enhances our understanding of microbial composition and diversity, providing fundamental information for future research on microbial contributions to plant growth and ecosystem function in Geodorum.


Assuntos
Agaricales , Fusarium , Rizosfera , Solo/química , Ecossistema , Fungos/genética , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética
2.
BMC Genomics ; 25(1): 552, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825700

RESUMO

BACKGROUND: The disputed phylogenetic position of Aerides flabellata Rolfe ex Downie, due to morphological overlaps with related species, was investigated based on evidence of complete chloroplast (cp) genomes. The structural characterization of complete cp genomes of A. flabellata and A. rosea Lodd. ex Lindl. & Paxton were analyzed and compared with those of six related species in "Vanda-Aerides alliance" to provide genomic information on taxonomy and phylogeny. RESULTS: The cp genomes of A. flabellata and A. rosea exhibited conserved quadripartite structures, 148,145 bp and 147,925 bp in length, with similar GC content (36.7 ~ 36.8%). Gene annotations revealed 110 single-copy genes, 18 duplicated in inverted regions, and ten with introns. Comparative analysis across related species confirmed stable sequence identity and higher variation in single-copy regions. However, there are notable differences in the IR regions between two Aerides Lour. species and the other six related species. The phylogenetic analysis based on CDS from complete cp genomes indicated that Aerides species except A. flabellata formed a monophyletic clade nested in the subtribe Aeridinae, being a sister group to Renanthera Lour., consistent with previous studies. Meanwhile, a separate clade consisted of A. flabellata and six Vanda R. Br. species was formed, as a sister taxon to Holcoglossum Schltr. CONCLUSIONS: This research was the first report on the complete cp genomes of A. flabellata. The results provided insights into understanding of plastome evolution and phylogenetic relationships of Aerides. The phylogenetic analysis based on complete cp genomes showed that A. flabellata should be placed in Vanda rather than in Aerides.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Composição de Bases , Anotação de Sequência Molecular
3.
BMC Plant Biol ; 24(1): 280, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609857

RESUMO

BACKGROUND: Orchids are grown without soil in many regions of the world, but there is a lack of studies to define the balanced and adequate nutrient solution for their cultivation, mainly in the vegetative growth phase. Therefore, this paper aims to evaluate the optimal concentration of the nutrient solution based on the proposal by Hoagland and Arnon (1950) in the vegetative growth phase capable of increasing the nutrient contents, growth, and dry matter production of Dendrobium Tubtim Siam and Phalaenopsis Taisuco Swan. In addition, this paper aims to estimate a new nutrient solution from the optimal nutrient contents in the dry matter of these orchid species to be used in the vegetative growth phase. RESULTS: Nutrient contents, growth, and dry matter production increased as the nutrient solution concentration increased up to an average concentration of 62 and 77% for D. Tubtim Siam and P. Taisuco Swan, respectively. We found that the Hoagland and Arnon solution presented a group of nutrients with concentrations above the requirement for P. Taisuco Swan (nitrogen, phosphor, calcium, and sulfur) and D. Tubtim Siam (phosphor, calcium, magnesium, and sulfur), while other nutrients in the solution did not meet the nutritional demand of these orchid species, inducing nutritional imbalance in the vegetative growth phase. CONCLUSION: We conclude that using a balanced nutrient solution created specifically for each orchid species in vegetative growth might favor their sustainable cultivation by optimizing the use of nutrients in the growing medium.


Assuntos
Anseriformes , Dendrobium , Animais , Cálcio , Tailândia , Nutrientes , Enxofre
4.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
5.
Photosynth Res ; 160(2-3): 97-109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702531

RESUMO

In this study, the morphological (plant height, leaf length and width, stem diameter and leaf number), anatomical (epidermal cell density and thickness, Stomatal length and width), photosynthetic (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, relative humidity, leaf temperature and chlorophyll fluorescence parameters) and biochemical parameters (the content of soluble sugar, soluble protein, proline, malondialdehyde and electrical conductivity) of Cypripedium macranthos Sw. in Changbai Mountain were determined under different light conditions (L10, L30, L50, L100). The results showed that morphological values including plant height, leaf area, stem diameter and leaf number of C. macranthos were smaller under the condition of full light at L100. The epidermal cell density and epidermal thickness of C. macranthos were the highest under L30 and L50 treatments, respectively. It had the highest net photosynthetic rate (Pn) and chlorophyll content under L50 treatment. Meanwhile, correlation analysis indicated that photosynthetically active radiation (PAR) and water use efficiency (WUE) were the main factors influencing Pn. C. macranthos accumulated more soluble sugars and soluble proteins under L100 treatment, while the degree of membrane peroxidation was the highest and the plant was severely damaged. In summary, the adaptability of C. macranthos to light conditions is ranked as follows L50 > L30 > L10 > L100. Appropriate light conditions for C. macranthos are 30%-50% of full light, which should be taken into account in protection and cultivation.


Assuntos
Clorofila , Luz , Fotossíntese , Fotossíntese/fisiologia , Clorofila/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Malondialdeído/metabolismo , Transpiração Vegetal/fisiologia
6.
Ann Bot ; 133(2): 273-286, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37963103

RESUMO

BACKGROUND AND AIMS: Understanding the origin of pollination by sexual deception has proven challenging, as sexually deceptive flowers are often highly modified, making it hard to resolve how any intermediate forms between sexual deception and an ancestral strategy might have functioned. Here, we report the discovery in Caladenia (Orchidaceae) of sexual attraction with pollination during feeding behaviour, which may offer important clues for understanding shifts in pollination strategy. METHODS: For Caladenia robinsonii, we observed the behaviour of its male wasp pollinator, Phymatothynnus aff. nitidus (Thynnidae), determined the site of release of the sexual attractant, and experimentally evaluated if the position of the attractant influences rates of attempted copulation and feeding behaviour. We applied GC-MS to test for surface sugar on the labellum. To establish if this pollination strategy is widespread in Caladenia, we conducted similar observations and experiments for four other Caladenia species. KEY RESULTS: In C. robinsonii, long-range sexual attraction of the pollinator is via semiochemicals emitted from the glandular sepal tips. Of the wasps landing on the flower, 57 % attempted copulation with the sepal tips, while 27 % attempted to feed from the base of the labellum, the behaviour associated with pollen transfer. A similar proportion of wasps exhibited feeding behaviour when the site of odour release was manipulated. A comparable pollination strategy occurs in another phylogenetically distinct clade of Caladenia. CONCLUSIONS: We document a previously overlooked type of sexual deception for orchids involving long-distance sexual attraction, but with pollination occurring during feeding behaviour at the labellum. We show this type of sexual deception operates in other Caladenia species and predict that it is widespread across the genus. Our findings may offer clues about how an intermediate transitional strategy from a food-rewarding or food-deceptive ancestor operated during the evolution of sexual deception.


Assuntos
Orchidaceae , Vespas , Animais , Polinização , Flores , Comportamento Alimentar , Feromônios
7.
Ann Bot ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835172

RESUMO

BACKGROUND AND AIMS: Plant-fungus symbioses may experience temporal turnover during the host's ontogenetic or phenological development, which can influence the host plant's ecological requirements. This study investigates temporal turnover of Ceratobasidiaceae orchid mycorrhizal fungal (OMF) communities in Prasophyllum (Orchidaceae), asking if OMF communities are subject to temporal change due to orchid phenology or ontogeny. METHODS: Roots of adult Prasophyllum frenchii, P. lindleyanum and P. sp. aff. validum from Australia were sampled between autumn and spring. Seed was sown in situ as 'baits' to explore the mycorrhizal associations of germinating protocorms, which were compared to OMF in roots of co-occurring adult plants. Culture dependent and independent sequencing methods were used to amplify the internal transcribed spacer and mitochondrial large subunit loci, with sequences assigned to Operational Taxonomic Units (OTUs) in phylogenetic analyses. Germination trials were used to determine if fungal OTUs were mycorrhizal. KEY RESULTS: A persistent core of OMF associated with Prasophyllum, with Ceratobasidiaceae OMF dominant in all three species. Phenological turnover occurred in P. lindleyanum and P. sp. aff. validum, but not in P. frenchii, which displayed specificity to a single OTU. Ontogenetic turnover occurred in all species. However, phenological and ontogenetic turnover was typically driven by the presence or absence of infrequently detected OTUs in populations that otherwise displayed specificity to one or two dominant OTUs. Ex situ germination trials showed 13 of 14 tested OTUs supported seed germination in their host orchid, including eight OTUs that were not found in protocorms in situ. CONCLUSIONS: An understanding of OMF turnover can have practical importance for the conservation of threatened orchids and their mycorrhizal partners. However, frameworks for classifying OMF turnover should focus on OTUs important to the life cycle of the host plant, which we suggest are likely to be those that are frequently detected or functionally significant.

8.
Ann Bot ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912975

RESUMO

BACKGROUND AND AIMS: The earliest diverging orchid lineage Apostasioideae consists only of two genera: Apostasia and Neuwiedia. Previous report of Apostasia nipponica indicated a symbiotic association with an ectomycorrhiza-forming Ceratobasidiaceae clade and partial utilization of fungal carbon during the adult stage. However, the trophic strategy of Neuwiedia throughout its development remains unidentified. To further improve our understanding of mycoheterotrophy in the Apostasioideae, this study focused on Neuwiedia malipoensis examining both the mycorrhizal association and the physiological ecology of this orchid species across various development stages. METHODS: We identified the major mycorrhizal fungi of N. malipoensis protocorm, leafy seedling and adult stages using molecular barcoding. To reveal nutritional resources utilized by N. malipoensis, we compared stable isotope natural abundance (δ13C, δ15N, δ2H, δ18O) of different developmental stages to autotrophic reference plants. KEY RESULTS: Protocorms exhibited an association with saprotrophic Ceratobasidiaceae rather than ectomycorrhiza-forming Ceratobasidiaceae and 13C signature was characteristic of their fully mycoheterotrophic nutrition.Seedlings and adults predominantly associated with saprotrophic fungi belonging to the Tulasnellaceae. While 13C and 2H stable isotope data revealed partial mycoheterotrophy of seedlings, it is unclear to what extent the fungal carbon supply is reduced in adult N. malipoensis. However, the 15N enrichment of mature N. malipoensis suggests partially mycoheterotrophic nutrition.Our data indicated a transition in mycorrhizal partners during ontogenetic development with decreasing dependency of N. malipoensis on fungal nitrogen and carbon. CONCLUSIONS: The divergence in mycorrhizal partners between N. malipoensis and A. nipponica indicates different resource acquisition strategies and allows for various habitat options in the earliest diverging orchid lineage Apostasioideae. While A. nipponica relies on the heterotrophic C gain from its ectomycorrhizal fungal partner and thus on forest habitats, N. malipoensis rather relies on own photosynthetic C gain as adult allowing it to establish in habitats as widely distributed as those where Rhizoctonia fungi occur.

9.
Ann Bot ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804968

RESUMO

BACKGROUND AND AIMS: Heterotrophic plants have long been a challenge for systematists, exemplified by the base of the orchid subfamily Epidendroideae, which contains numerous mycoheterotrophic species. METHODS: Here we address the utility of organellar genomes in resolving relationships at the epidendroid base, specifically employing models of heterotachy, or lineage-specific rate variation over time. We further conduct comparative analyses of plastid genome evolution in heterotrophs and structural variation in matK. KEY RESULTS: We present the first complete plastid genomes (plastomes) of Wullschlaegelia, the sole genus of the tribe Wullschlaegelieae, revealing a highly reduced genome of 37 kilobases, which retains a fraction of the genes present in related autotrophs. Plastid phylogenomic analyses recovered a strongly supported clade composed exclusively of mycoheterotrophic species with long branches. We further analyzed mitochondrial gene sets, which recovered similar relationships to those in other studies using nuclear data, but the placement of Wullschlaegelia remains uncertain. We conducted comparative plastome analyses among Wullschlaegelia and other heterotrophic orchids, revealing a suite of correlated substitutional and structural changes relative to autotrophic species. Lastly, we investigated evolutionary and structural variation in matK, which is retained in Wullschlaegelia and a few other 'late stage' heterotrophs and found evidence for structural conservation despite rapid substitution rates in both Wullschlaegelia and the leafless Gastrodia. CONCLUSIONS: Our analyses reveal the limits of what the plastid genome can tell us on orchid relationships in this part of the tree, even when applying parameter-rich heterotachy models. Our study underscores the need for increased taxon sampling across all three genomes at the epidendroid base, and illustrates the need for further research on addressing heterotachy in phylogenomic analyses.

10.
Ann Bot ; 134(1): 131-150, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38551515

RESUMO

BACKGROUND AND AIMS: Structural colour is responsible for the remarkable metallic blue colour seen in the leaves of several plants. Species belonging to only ten genera have been investigated to date, revealing four photonic structures responsible for structurally coloured leaves. One of these is the helicoidal cell wall, known to create structural colour in the leaf cells of five taxa. Here we investigate a broad selection of land plants to understand the phylogenetic distribution of this photonic structure in leaves. METHODS: We identified helicoidal structures in the leaf epidermal cells of 19 species using transmission electron microscopy. Pitch measurements of the helicoids were compared with the reflectance spectra of circularly polarized light from the cells to confirm the structure-colour relationship. RESULTS: By incorporating species examined with a polarizing filter, our results increase the number of taxa with photonic helicoidal cell walls to species belonging to at least 35 genera. These include 19 monocot genera, from the orders Asparagales (Orchidaceae) and Poales (Cyperaceae, Eriocaulaceae, Rapateaceae) and 16 fern genera, from the orders Marattiales (Marattiaceae), Schizaeales (Anemiaceae) and Polypodiales (Blechnaceae, Dryopteridaceae, Lomariopsidaceae, Polypodiaceae, Pteridaceae, Tectariaceae). CONCLUSIONS: Our investigation adds considerably to the recorded diversity of plants with structurally coloured leaves. The iterative evolution of photonic helicoidal walls has resulted in a broad phylogenetic distribution, centred on ferns and monocots. We speculate that the primary function of the helicoidal wall is to provide strength and support, so structural colour could have evolved as a potentially beneficial chance function of this structure.


Assuntos
Evolução Biológica , Parede Celular , Filogenia , Folhas de Planta , Folhas de Planta/ultraestrutura , Folhas de Planta/anatomia & histologia , Parede Celular/ultraestrutura , Microscopia Eletrônica de Transmissão , Cor , Epiderme Vegetal/ultraestrutura
11.
Am J Bot ; 111(7): e16373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010314

RESUMO

PREMISE: Salt tolerance has rarely been investigated regionally in the neotropics and even more rarely in Orchidaceae, one of the largest families. Therefore, investigating local adaptation to salt spray and its physiological basis in Epidendrum fulgens, a neotropical orchid species, brings important new insights. METHODS: We assessed the degree of salt tolerance in E. fulgens by testing whether coastal populations are more tolerant to salt, which could point to local adaptation. To understand the physiological basis of such salt tolerance, we exposed wild-collected individuals to salt spray for 60 days, then measured leaf expansion, osmotic potential, sodium leaf concentration, chlorophyll leaf index, chlorophyll fluorescence, relative growth rate, and pressure-volume curves. RESULTS: There is no local adaptation to salt spray since both inland and coastal plants have a high tolerance to salt stress. This tolerance is explained by the ability to tolerate high concentrations of salt in leaf tissues, which is related to the high succulence displayed by this species. CONCLUSIONS: We showed an unprecedented salt tolerance level for an orchid species, highlighting our limited knowledge of that trait beyond the traditional studied groups. Another interesting finding is that salt tolerance in E. fulgens is linked to succulence, is widespread, and is not the result of local adaptation. We suggest that E. fulgens and its allied species could be an interesting group to explore the evolution of important traits related to tolerance to salt stress, like succulence.


Assuntos
Adaptação Fisiológica , Orchidaceae , Folhas de Planta , Tolerância ao Sal , Orchidaceae/fisiologia , Orchidaceae/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Clorofila/metabolismo , Sódio/metabolismo , Clima Tropical
12.
Am J Bot ; 111(7): e16370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38989916

RESUMO

PREMISE: Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants. METHODS: Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of Degranvillea dermaptera, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities. RESULTS: The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In Degranvillea, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of Degranvillea within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other "traits" of the plastome among leafless members of orchid subfamily Orchidoideae. CONCLUSIONS: Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.


Assuntos
Evolução Molecular , Genomas de Plastídeos , Orchidaceae , Filogenia , Orchidaceae/genética
13.
Am J Bot ; 111(2): e16273, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38290971

RESUMO

PREMISE: Density-dependent pollinator visitation can lead to density-dependent mating patterns and within-population genetic structure. In Gymnadenia conopsea, individuals in low-density patches receive more self pollen than individuals in high-density patches, suggesting higher relatedness at low density. Ongoing fragmentation is also expected to cause more local matings, potentially leading to biparental inbreeding depression. METHODS: To evaluate whether relatedness decreases with local density, we analyzed 1315 SNP loci in 113 individuals within two large populations. We quantified within-population genetic structure in one of the populations, recorded potential habitat barriers, and visualized gene flow using estimated effective migration surfaces (EEMS). We further estimated the magnitude of biparental inbreeding depression that would result from matings restricted to within 5 m. RESULTS: There was no significant relationship between local density and relatedness in any population. We detected significant fine-scale genetic structure consistent with isolation by distance, with positive kinship coefficients at distances below 10 m. Kinship coefficients were low, and predicted biparental inbreeding depression resulting from matings within the closest 5 m was a modest 1-3%. The EEMS suggested that rocks and bushes may act as barriers to gene flow within a population. CONCLUSIONS: The results suggest that increased self-pollen deposition in sparse patches does not necessarily cause higher selfing rates or that inbreeding depression results in low establishment success of inbred individuals. The modest relatedness suggests that biparental inbreeding depression is unlikely to be an immediate problem following fragmentation of large populations. The results further indicate that habitat structure may contribute to governing fine-scale genetic structure in G. conopsea.


Assuntos
Endogamia , Magnoliopsida , Humanos , Polinização , Magnoliopsida/genética , Sementes/genética , Estruturas Genéticas , Variação Genética , Repetições de Microssatélites , Genética Populacional
14.
Mol Biol Rep ; 51(1): 582, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678168

RESUMO

BACKGROUND: Hybridization associated with polyploidy studies is rare in the tropics. The genus Zygopetalum (Orchidaceae) was investigated here as a case study of Neotropical plants. In the rocky highlands of the Ibitipoca State Park (ISP), southeast Brazil, individuals with intermediate colors and forms between the species Z. maculatum and Z. triste were commonly identified. METHODS AND RESULTS: Chromosomal analysis and DNA quantity showed a uniform population. Regardless of the aspects related to the color and shape of floral structures, all individuals showed 2n = 96 chromosomes and an average of 14.05 pg of DNA. Irregularities in meiosis associated with chromosome number and C value suggest the occurrence of polyploidy. The genetic distance estimated using ISSR molecular markers revealed the existence of genetic variability not related to morphological clusters. Morphometric measurements of the flower pieces revealed that Z. maculatum shows higher variation than Z. triste although lacking a defined circumscription. CONCLUSION: The observed variation can be explained by the polyploid and phenotypic plasticity resulting from the interaction of the genotypes with the heterogeneous environments observed in this habitat.


Assuntos
Variação Genética , Orchidaceae , Fenótipo , Poliploidia , Orchidaceae/genética , Variação Genética/genética , Brasil , Cromossomos de Plantas/genética , Genótipo , Flores/genética , Flores/anatomia & histologia , Repetições de Microssatélites/genética , Hibridização Genética/genética
15.
Mycorrhiza ; 34(1-2): 19-31, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381148

RESUMO

We have investigated whether mycobiont identity and environmental conditions affect morphology and physiology of the chlorophyllous orchid: Cremastra variabilis. This species grows in a broad range of environmental conditions and associates with saprotrophic rhizoctonias including Tulasnellaceae and saprotrophic non-rhizoctonian fungi from the family Psathyrellaceae. We cultured the orchid from seeds under aseptic culture conditions and subsequently inoculated the individuals with either a Tulasnellaceae or a Psathyrellaceae isolate. We observed underground organ development of the inoculated C. variabilis plants and estimated their nutritional dependency on fungi using stable isotope abundance. Coralloid rhizome development was observed in all individuals inoculated with the Psathyrellaceae isolate, and 1-5 shoots per seedling grew from the tip of the coralloid rhizome. In contrast, individuals associated with the Tulasnellaceae isolate did not develop coralloid rhizomes, and only one shoot emerged per plantlet. In darkness, δ13C enrichment was significantly higher with both fungal isolates, whereas Î´15N values were only significantly higher in plants associated with the Psathyrellaceae isolate. We conclude that C. variabilis changes its nutritional dependency on fungal symbionts depending on light availability and secondly that the identity of fungal symbiont influences the morphology of underground organs.


Assuntos
Agaricales , Basidiomycota , Micorrizas , Orchidaceae , Humanos , Orchidaceae/microbiologia , Micorrizas/fisiologia , Plântula/microbiologia , Simbiose
16.
Chem Biodivers ; : e202401220, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869421

RESUMO

Anoectochilus roxburghii is a well-known and valuable traditional Chinese herb due to various medicinal and functional benefits. In-depth investigation is necessary to discover active ingredients and expand its application. In this study, four new compounds (1-4) along with ten known compounds (5-14) were isolated from the ethanol extract ofA.roxburghii. Their structures were elucidated by spectroscopic data interpretation. The isolates were screened for their inhibitory activities on the production of NO in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Among them, compounds 5, 6, 9, 10, 12, 13 and 14exhibited significant anti-inflammatory activity through inhibiting the release of NO.

17.
Chem Biodivers ; 21(7): e202400708, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38590273

RESUMO

In this study, four undescribed bibenzyl derivatives (1-4), together with seven known compounds (5-11) were isolated from the aerial parts of Dendrobium officinale. Their chemical structures were determined to be (7'S,8'S) -9''-acetyldendrocandin U (1), (7'S,8'S) -4'-methoxydendrocandin T (2), (7'R,8'S) -dendrocandin B (3), (1S,2R) -5'''-methoxydendrofindlaphenol C (4) by analyzing of the spectroscopic data including HR-ESI-MS, 1D-, and 2D-NMR spectra. The absolute configurations of compounds 1-4 were determined by the electronic circular dichroism (ECD) spectra. Compounds 1-3, 5, 10 and 11 inhibited α-glucosidase with the IC50 values ranging from 56.3 to 165.3 µM, compounds 1-3, 5, 7-10 inhibited α-amylase with the IC50 values ranging from 65.2 to 177.6 µM.


Assuntos
Dendrobium , Inibidores de Glicosídeo Hidrolases , Componentes Aéreos da Planta , alfa-Amilases , alfa-Glucosidases , Dendrobium/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Componentes Aéreos da Planta/química , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/isolamento & purificação , Relação Estrutura-Atividade , Estrutura Molecular , Conformação Molecular
18.
Plant Dis ; 108(2): 382-397, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37552163

RESUMO

Black rot is a common disease of Gastrodia elata, causing serious threats to G. elata production. In this study, a total of 17 Cylindrocarpon-like strains were isolated from G. elata black rot tissues. Multilocus sequence analyses based on ITS, HIS, TEF, and TUB combined with morphological characterizations were performed to identify six Ilyonectria species, including four new species, Ilyonectria longispora, I. sinensis, I. xiaocaobaensis, and I. yunnanensis, and two known species, I. changbaiensis and I. robusta. The pathogenicity of 11 isolates comprising type strains of the four new species and representative isolates from each of the six species was tested on healthy tissues of G. elata. All isolates were pathogenic to G. elata tissues, and symptoms were identical to black rot disease, confirming that our isolates were the causal agents of black rot disease of G. elata.


Assuntos
Gastrodia
19.
Phytochem Anal ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034429

RESUMO

INTRODUCTION: Untargeted metabolomics is a powerful tool that provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites, especially when combining different metabolomic platforms. Vanilla is one of the world's most popular flavors originating from cured pods of the orchid Vanilla planifolia. However, only a few studies have investigated the metabolome of V. planifolia, and no LC-MS or GC-MS metabolomics studies with respect to leaves have been performed. OBJECTIVE: The aim of the study was to comprehensively characterize the metabolome of different organs (leaves, internodes, and aerial roots) of V. planifolia. MATERIAL AND METHODS: Characterization of the metabolome was achieved using two complementary platforms (GC × GC-MS, LC-QToF-MS), and metabolite identification was based on a comparison with in-house databases or curated external spectral libraries. RESULTS: In total, 127 metabolites could be identified with high certainty (confidence level 1 or 2) including sugars, amino acids, fatty acids, organic acids, and amines/amides but also secondary metabolites such as vanillin-related metabolites, flavonoids, and terpenoids. Ninty-eight metabolites showed significantly different intensities between the plant organs. Most strikingly, aglycons of flavonoids and vanillin-related metabolites were elevated in aerial roots, whereas its O-glycoside forms tended to be higher in leaves and/or internodes. This suggests that the more bioactive aglycones may accumulate where preferably needed, e.g. for defense against pathogens. CONCLUSION: The results derived from the study substantially expand the knowledge regarding the vanilla metabolome forming a valuable basis for more targeted investigations in future studies, e.g. towards an optimization of vanilla plant cultivation.

20.
J Asian Nat Prod Res ; : 1-8, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904480

RESUMO

Dendroochreatene (1), a new phenanthrene derivative with a spirolactone ring, was isolated from the whole Dendrobium ochreatum plant together with 11 known compounds (2-12). The structure of the new compound was elucidated spectroscopically and phenolic compounds were firstly reported from D. ochreatum. Moscatilin (4), major compound isolated from D. ochreatum, was found to be cytotoxic toward H460 lung-cancer cells, with an IC50 value of 147.3 ± 0.9 µM, while loddigesiinol C (7), C-α-methoxy derivative was inactive.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa