Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Physiol Rev ; 102(2): 993-1024, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486394

RESUMO

Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers organic cation transporter 2 (OCT2) and organic anion transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation from different perspectives: phylogenetic, ontogenetic, and cell dynamic. Our aim is to identify possible molecular targets both to help prevent or compensate for the loss of transport activity in patients with kidney disease and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.


Assuntos
Rim/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Animais , Humanos , Nefropatias/metabolismo , Filogenia
2.
EMBO J ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455803

RESUMO

The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the D-galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton, apo DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding.

3.
Mol Pharm ; 21(9): 4603-4617, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39166754

RESUMO

Modulation of the transport-mediated active uptake by human serum albumin (HSA) for highly protein-bound substrates has been reported and improved the in vitro-to-in vivo extrapolation (IVIVE) of hepatic clearance. However, evidence for the relevance of such a phenomenon in the case of renal transporters is sparse. In this study, transport of renal organic anion transporter 1 or 3 (OAT1/3) substrates into conditionally immortalized proximal tubular epithelial cells transduced with OAT1/3 was measured in the presence and absence of 1 and 4% HSA while keeping the unbound substrate concentration constant (based on measured fraction unbound, fu,inc). In the presence of 4% HSA, the unbound intrinsic active uptake clearance (CLint,u,active) of six highly protein-bound substrates increased substantially relative to the HSA-free control (3.5- to 122-fold for the OAT1 CLint,u,active, and up to 28-fold for the OAT3 CLint,u,active). The albumin-mediated uptake effect (fold increase in CLint,u,active) was more pronounced with highly bound substrates compared to no effect seen for weakly protein-bound substrates adefovir (OAT1-specific) and oseltamivir carboxylate (OAT3-specific). The relationship between OAT1/3 CLint,u,active and fu,inc agreed with the facilitated-dissociation model; a relationship was established between the albumin-mediated fold change in CLint,u,active and fu,inc for both the OAT1 and OAT3, with implications for IVIVE modeling. The relative activity factor and the relative expression factor based on global proteomic quantification of in vitro OAT1/3 expression were applied for IVIVE of renal clearance. The inclusion of HSA improved the bottom-up prediction of the level of OAT1/3-mediated secretion and renal clearance (CLsec and CLr), in contrast to the underprediction observed with the control (HSA-free) scenario. For the first time, this study confirmed the presence of the albumin-mediated uptake effect with renal OAT1/3 transporters; the extent of the effect was more pronounced for highly protein-bound substrates. We recommend the inclusion of HSA in routine in vitro OAT1/3 assays due to considerable improvements in the IVIVE of CLsec and CLr.


Assuntos
Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transporte Biológico/fisiologia , Rim/metabolismo , Animais , Túbulos Renais Proximais/metabolismo , Albumina Sérica/metabolismo , Albumina Sérica Humana/metabolismo , Linhagem Celular
4.
Arch Toxicol ; 98(9): 3019-3034, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38761188

RESUMO

Early brain development depends on adequate transport of thyroid hormones (THs) from the maternal circulation to the fetus. To reach the fetal brain, THs have to cross several physiological barriers, including the placenta, blood-brain-barrier and blood-cerebrospinal fluid-barrier. Transport across these barriers is facilitated by thyroid hormone transmembrane transporters (THTMTs). Some endocrine disrupting chemicals (EDCs) can interfere with the transport of THs by THTMTs. To screen chemicals for their capacity to disrupt THTMT facilitated TH transport, in vitro screening assays are required. In this study, we developed assays for two THTMTs, organic anion transporter polypeptide 1C1 (OATP1C1) and organic anion transporter 4 (OAT4), both known to play a role in the transport of THs across barriers. We used overexpressing cell models for both OATP1C1 and OAT4, which showed an increased uptake of radiolabeled T4 compared to control cell lines. Using these models, we screened various reference and environmental chemicals for their ability to inhibit T4 uptake by OATP1C1 and OAT4. Tetrabromobisphenol A (TBBPA) was identified as an OATP1C1 inhibitor, more potent than any of the reference chemicals tested. Additionally perfluorooctanesulfonic acid (PFOS), perfluoroctanic acid (PFOA), pentachlorophenol and quercetin were identified as OATP1C1 inhibitors in a similar range of potency to the reference chemicals tested. Bromosulfophthalein, TBBPA, PFOA and PFOS were identified as potent OAT4 inhibitors. These results demonstrate that EDCs commonly found in our environment can disrupt TH transport by THTMTs, and contribute to the identification of molecular mechanisms underlying TH system disruption chemicals.


Assuntos
Disruptores Endócrinos , Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Humanos , Disruptores Endócrinos/toxicidade , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Fluorocarbonos/toxicidade , Hormônios Tireóideos/metabolismo , Caprilatos/toxicidade , Tiroxina/metabolismo , Transporte Biológico/efeitos dos fármacos , Células HEK293 , Ácidos Alcanossulfônicos/toxicidade , Animais
5.
Br J Clin Pharmacol ; 89(5): 1672-1681, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36517987

RESUMO

AIMS: Cyclosporin A (CyA) has potent inhibitory activity on organic anion transporting polypeptide 1B (OATP1B), causing drug-drug interactions with its substrate drugs. 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a uraemic toxin, has also been suggested to inhibit OATP1B activity. Recent study has identified coproporphyrin-I (CP-I) as a specific endogenous substrate for OATP1B, which is useful to indicate OATP1B activity. We investigated the relationship of CP-I with CyA and CMPF concentrations in patients taking CyA. METHODS: In total, 121 blood samples from 74 patients who took CyA and underwent routine therapeutic drug monitoring were divided into trough and peak samples. RESULTS: CyA and CP-I concentrations were significantly higher in peak samples than in trough samples. A positive correlation between CP-I and CyA concentrations was found in all samples and in trough and peak samples, while no correlation was observed between CP-I and CMPF concentrations. Multiple regression analysis identified CyA and C-reactive protein concentrations as independent factors affecting CP-I concentration, with blood CyA concentration having markedly greater contribution to plasma CP-I concentration. CONCLUSION: The present study suggests that CyA inhibits OATP1B activity in a concentration-dependent manner in clinical setting, and that dose adjustment of OATP1B substrate drugs coadministered with CyA according to plasma CMPF concentration may not be necessary.


Assuntos
Transportadores de Ânions Orgânicos , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Ciclosporina , Coproporfirinas/metabolismo , Coproporfirinas/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado , Biomarcadores
6.
Acta Pharmacol Sin ; 44(1): 81-91, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35732708

RESUMO

Organic anion transporter 1 (OAT1) plays a major role in mediating the absorption, distribution and excretion of drugs and other xenobiotics in the human body. In this study we explored the OAT1 status in rheumatoid arthritis (RA) patients and arthritic animals and its role in regulating the anti-arthritic activity of methotrexate (MTX). We showed that OAT1 expression was significantly downregulated in synovial tissues from RA patients compared with that in the control patients. In collagen-induced arthritis (CIA) rats, synovial OAT1 expression was significantly decreased compared with the control rats. In synoviocytes isolated from CIA rats, PGE2 (0.003-1.75 µM) dose-dependently downregulated OAT1 expression, resulting in decreased absorption of MTX. Silencing OAT1 in synoviocytes caused a 43.7% reduction in the uptake of MTX. Furthermore, knockdown of OAT1 impaired MTX-induced inhibitory effects on the viability and migration of synoviocytes isolated from CIA rats. Moreover, injection of OAT1-shRNA into articular cavity of CIA rats significantly decreased synovial OAT1 expression and impaired the anti-arthritic action of MTX, while injection of lentivirus containing OAT1 sequences led to the opposite results. Interestingly, we found that paeoniflorin-6'-O-benzene sulfonate (CP-25) upregulated OAT1 expression both in vitro and in vivo and promoted MTX uptake by synoviocytes via regulating OAT1 expression and function. Taken together, OAT1 plays a major role in regulating MTX uptake by synoviocytes and the anti-arthritic activity of MTX. OAT1 is downregulated in RA and CIA rats, which can be improved by CP-25.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Ratos , Humanos , Animais , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Membrana Sinovial , Articulações , Artrite Reumatoide/tratamento farmacológico
7.
Biol Pharm Bull ; 46(2): 170-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724945

RESUMO

Uricosuric agents lower serum uric acid levels by increasing urinary excretion via inhibition of urate transporter 1 (URAT1), urate reabsorption transporter in the renal proximal tubules. Probenecid and benzbromarone have been used as uricosurics, but these drugs inhibit organic anion transporters (OATs) in addition to URAT1. In this study, we investigated whether uricosuric agents interacted with adefovir, known as a substrate for OAT1, using Sprague-Dawley (SD) rats. Furthermore, involvement of other transporters, multi-drug resistance protein 2 (MRP2) in this interaction was examined using Mrp2-deficient rats. Probenecid and lesinurad increased plasma adefovir concentrations and decreased kidney-to-plasma partition coefficient (Kp) in these rats, presumably by inhibiting Oat1. Although benzbromarone had no effect on plasma adefovir concentration, it increased the Kp to 141% in SD rats. Since this effect was abolished in Mrp2-deficient rats, together with the MRP2 inhibition study, it is suggested that benzbromarone inhibits Mrp2-mediated adefovir excretion from the kidney. In contrast, dotinurad, a novel uricosuric agent that selectively inhibits URAT1, had no effect on the plasma and kidney concentrations of adefovir. Therefore, due to the lack of interaction with adefovir, dotinurad is expected to have low drug-drug interaction risk mediated by OAT1, and also by MRP2.


Assuntos
Transportadores de Ânions Orgânicos , Uricosúricos , Ratos , Animais , Uricosúricos/farmacologia , Benzobromarona , Probenecid/farmacologia , Probenecid/metabolismo , Ácido Úrico , Ratos Sprague-Dawley , Rim/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
8.
BMC Pulm Med ; 23(1): 471, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001469

RESUMO

BACKGROUND: The Center for Personalized Precision Medicine of Tuberculosis (cPMTb) was constructed to develop personalized pharmacotherapeutic systems for tuberculosis (TB). This study aimed to introduce the cPMTb cohort and compare the distinct characteristics of patients with TB, non-tuberculosis mycobacterium (NTM) infection, or latent TB infection (LTBI). We also determined the prevalence and specific traits of polymorphisms in N-acetyltransferase-2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) phenotypes using this prospective multinational cohort. METHODS: Until August 2021, 964, 167, and 95 patients with TB, NTM infection, and LTBI, respectively, were included. Clinical, laboratory, and radiographic data were collected. NAT2 and SLCO1B1 phenotypes were classified by genomic DNA analysis. RESULTS: Patients with TB were older, had lower body mass index (BMI), higher diabetes rate, and higher male proportion than patients with LTBI. Patients with NTM infection were older, had lower BMI, lower diabetes rate, higher previous TB history, and higher female proportion than patients with TB. Patients with TB had the lowest albumin levels, and the prevalence of the rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 39.2%, 48.1%, and 12.7%, respectively. The prevalence of rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 42.0%, 44.6%, and 13.3% for NTM infection, and 42.5%, 48.3%, and 9.1% for LTBI, respectively, which did not differ significantly from TB. The prevalence of the normal, intermediate, and lower transporter SLCO1B1 phenotypes in TB, NTM, and LTBI did not differ significantly; 74.9%, 22.7%, and 2.4% in TB; 72.0%, 26.1%, and 1.9% in NTM; and 80.7%, 19.3%, and 0% in LTBI, respectively. CONCLUSIONS: Understanding disease characteristics and identifying pharmacokinetic traits are fundamental steps in optimizing treatment. Further longitudinal data are required for personalized precision medicine. TRIAL REGISTRATION: This study registered ClinicalTrials.gov NO. NCT05280886.


Assuntos
Arilamina N-Acetiltransferase , Diabetes Mellitus , Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Masculino , Feminino , Tuberculose Latente/epidemiologia , Medicina de Precisão , Estudos Prospectivos , Risco Ajustado , Tuberculose/tratamento farmacológico , Micobactérias não Tuberculosas , Mycobacterium tuberculosis/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Arilamina N-Acetiltransferase/genética
9.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375294

RESUMO

Organic anion transporter 3 (OAT3) is predominantly expressed in the kidney and plays a vital role in drug clearance. Consequently, co-ingestion of two OAT3 substrates may alter the pharmacokinetics of the substrate. This review summarizes drug-drug interactions (DDIs) and herbal-drug interactions (HDIs) mediated by OAT3, and inhibitors of OAT3 in natural active compounds in the past decade. This provides a valuable reference for the combined use of substrate drugs/herbs for OAT3 in clinical practice in the future and for the screening of OAT3 inhibitors to avoid harmful interactions.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Medicamentos Sintéticos , Humanos , Rim , Interações Ervas-Drogas , Proteína 1 Transportadora de Ânions Orgânicos , Células HEK293
10.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985493

RESUMO

Organic anion transporting polypeptides (OATPs) were found to readily deliver membrane impermeable, tetrazine bearing fluorescent probes into cells. This feature was explored in OATP3A1 conditioned bio-orthogonal labeling schemes of various intracellular proteins in live cells. Confocal microscopy and super-resolution microscopy (STED) studies have shown that highly specific and efficient staining of the selected intracellular proteins can be achieved with the otherwise non-permeable probes when OATP3A1 is present in the cell membrane of cells. Such a transport protein linked bio-orthogonal labeling scheme is believed to be useful in OATP3A1 activity-controlled protein expression studies in the future.


Assuntos
Transportadores de Ânions Orgânicos , Transportadores de Ânions Orgânicos/metabolismo , Proteínas/metabolismo , Corantes Fluorescentes
11.
J Biol Chem ; 296: 100603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785360

RESUMO

Organic anion transporter 1 (OAT1/SLC22A6) is a drug transporter with numerous xenobiotic and endogenous substrates. The Remote Sensing and Signaling Theory suggests that drug transporters with compatible ligand preferences can play a role in "organ crosstalk," mediating overall organismal communication. Other drug transporters are well known to transport lipids, but surprisingly little is known about the role of OAT1 in lipid metabolism. To explore this subject, we constructed a genome-scale metabolic model using omics data from the Oat1 knockout mouse. The model implicated OAT1 in the regulation of many classes of lipids, including fatty acids, bile acids, and prostaglandins. Accordingly, serum metabolomics of Oat1 knockout mice revealed increased polyunsaturated fatty acids, diacylglycerols, and long-chain fatty acids and decreased ceramides and bile acids when compared with wildtype controls. Some aged knockout mice also displayed increased lipid droplets in the liver when compared with wildtype mice. Chemoinformatics and machine learning analyses of these altered lipids defined molecular properties that form the structural basis for lipid-transporter interactions, including the number of rings, positive charge/volume, and complexity of the lipids. Finally, we obtained targeted serum metabolomics data after short-term treatment of rodents with the OAT-inhibiting drug probenecid to identify potential drug-metabolite interactions. The treatment resulted in alterations in eicosanoids and fatty acids, further supporting our metabolic reconstruction predictions. Consistent with the Remote Sensing and Signaling Theory, the data support a role of OAT1 in systemic lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Animais , Técnicas de Inativação de Genes , Genômica , Aprendizado de Máquina , Camundongos , Proteína 1 Transportadora de Ânions Orgânicos/deficiência , Proteína 1 Transportadora de Ânions Orgânicos/genética
12.
Br J Clin Pharmacol ; 88(3): 1159-1169, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34432302

RESUMO

AIMS: Tenofovir and para-aminosalicylic acid (PAS) may be coprescribed to treat patients with concomitant infections of human immunodeficiency virus and Mycobacterium tuberculosis bacteria. Both drugs are known to have remarkable renal uptake transporter-mediated clearance. Owing to the lack of clinical studies on drug-drug interaction between the 2 drugs, we conducted a translational clinical study to investigate the effect of PAS on tenofovir pharmacokinetics (PK). METHODS: Initially, we studied in vitro renal uptake transporter-mediated drug-drug interactions using stably transfected cells with human organic anion transporters (OAT1 and OAT3). Later, we estimated clinical drug interactions using static and physiologically based PK modelling. Finally, we investigated the effects of PAS-calcium formulation (PAS-Ca) on tenofovir disoproxil fumarate PK in healthy male Korean subjects. RESULTS: PAS inhibited OAT1- and OAT3-mediated tenofovir uptake in vitro. The physiologically based PK drug-drug interaction model suggested a 1.26-fold increase in tenofovir peak plasma concentration when coadministered with PAS. By contrast, an open-label, randomized, crossover clinical trial evaluating the effects of PAS-Ca on tenofovir PK showed significantly altered geometric mean ratio (90% confidence intervals) of maximum plasma concentration (Cmax ) and area under the curve (AUC0-inf ) by 0.33 (0.28-0.38) and 0.29 (0.26-0.33), respectively. CONCLUSION: Our study findings suggest that the PAS-Ca formulation significantly reduced systemic exposure to tenofovir through an unexplained mechanism, which was contrary to the initial prediction. Caution should be exercised while predicting in vivo PK profiles from in vitro data, particularly when there are potential confounders such as pharmaceutical interactions.


Assuntos
Ácido Aminossalicílico , Infecções por HIV , Ácido Aminossalicílico/farmacocinética , Ácido Aminossalicílico/uso terapêutico , Interações Medicamentosas , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Sujeitos da Pesquisa , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Pesquisa Translacional Biomédica
13.
J Nanobiotechnology ; 20(1): 326, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841001

RESUMO

The prevalence of end-stage kidney disease (ESKD) is rapidly increasing with the need for regenerative therapies. Adult stem cell derived kidney tubuloids have the potential to functionally mimic the adult kidney tubule, but still lack the expression of important transport proteins needed for waste removal. Here, we investigated the potential of extracellular vesicles (EVs) obtained from matured kidney tubular epithelial cells to modulate in vitro tubuloids functional maturation. We focused on organic anion transporter 1 (OAT1), one of the most important proteins involved in endogenous waste excretion. First, we show that EVs from engineered proximal tubule cells increased the expression of several transcription factors and epithelial transporters, resulting in improved OAT1 transport capacity. Next, a more in-depth proteomic data analysis showed that EVs can trigger various biological pathways, including mesenchymal-to-epithelial transition, which is crucial in the tubular epithelial maturation. Moreover, we demonstrated that the combination of EVs and tubuloid-derived cells can be used as part of a bioartificial kidney to generate a tight polarized epithelial monolayer with formation of dense cilia structures. In conclusion, EVs from kidney tubular epithelial cells can phenotypically improve in vitro tubuloid maturation, thereby enhancing their potential as functional units in regenerative or renal replacement therapies.


Assuntos
Vesículas Extracelulares , Proteômica , Células Epiteliais , Vesículas Extracelulares/metabolismo , Rim/metabolismo , Túbulos Renais Proximais/metabolismo
14.
Xenobiotica ; 52(7): 758-766, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36278306

RESUMO

1. We investigated the changes in the expression of drug-metabolising enzymes and drug transporters in the liver, small intestine and kidney of mice with collagen antibody-induced arthritis (CAIA) to determine whether changes in these expressions affect pharmacokinetics of drugs in patients with rheumatoid arthritis.2. mRNA expression levels of cytochrome P450 (Cyp) 2b10, Cyp2c29 and Cyp3a11 were observed to be lower in the liver and small intestine of CAIA mice than in control mice. Compared with control mice, mRNA expression levels of multidrug resistance 1 b, peptide transporter 2 and organic anion transporter (Oat) 2 were high in the liver of CAIA mice. Changes in these expression levels were different among organs. However, elevated expression of Oat2 mRNA was not associated with an increase in protein expression and transport activity evaluated using [3H]cGMP as a substrate.3. These results suggest that arthritis can change the expression of pharmacokinetics-related genes, but the changes may not necessarily be linked to the pharmacokinetics in patients with rheumatoid arthritis. On the other hand, we found Oat2 mRNA expression level was positively correlated with plasma interleukin-6 level, indicating that transcriptional activation of Oat2 may occur in inflammatory state.


Assuntos
Artrite Reumatoide , Camundongos , Animais , Colágeno
15.
Xenobiotica ; 52(9-11): 997-1009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170033

RESUMO

Mirogabalin is a α2δ ligand as well as pregabalin. The aim of this study was to clarify whether mirogabalin is a substrate of human LAT1, which involved in absorption and disposition of pregabalin, and to investigate transporters involved in renal secretion and absorption of mirogabalin using transporter-expressing cells and fresh human kidney slices.We employed uptake assay of [3H]mirogabalin by HEK293T or HEK293 cells transiently overexpress human OAT1, OAT3, OCT2, LAT1/4F2hc, LAT2/4F2hc, PEPT1, and PEPT2 proteins. Transport assay of MDCKII cells transiently overexpress OCT2/MATE1, and OCT2/MATE2-K proteins was conducted. Contribution of transporters to renal secretion was investigated by uptake assay using human kidney slices.Uptake clearances of [3H]mirogabalin by OAT1-, OAT3-, OCT2-, PEPT1-, and PEPT2-expressing cells were higher than that by vector cells, but by LAT1/4F2hc and LAT2/4F2hc-expressing cells were not. In transport assay using OCT2/MATE1 and OCT2/MATE2-K cells, [3H]mirogabalin showed directional transport from basolateral to apical side. Contribution of OAT1, OAT3, and OCT2 was observed by uptake of [3H]mirogabalin into the kidney slices.These results indicate that mirogabalin is not a substrate of LAT1, but of PEPT1 and PEPT2 involved in absorption and of OAT1, OAT3, OCT2, MATE1 and/or MATE2-K involved in its urinary secretion.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Humanos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Células HEK293 , Ligantes , Pregabalina , Transportador 2 de Cátion Orgânico/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(32): 16105-16110, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341083

RESUMO

Membrane transporters and receptors are responsible for balancing nutrient and metabolite levels to aid body homeostasis. Here, we report that proximal tubule cells in kidneys sense elevated endogenous, gut microbiome-derived, metabolite levels through EGF receptors and downstream signaling to induce their secretion by up-regulating the organic anion transporter-1 (OAT1). Remote metabolite sensing and signaling was observed in kidneys from healthy volunteers and rats in vivo, leading to induced OAT1 expression and increased removal of indoxyl sulfate, a prototypical microbiome-derived metabolite and uremic toxin. Using 2D and 3D human proximal tubule cell models, we show that indoxyl sulfate induces OAT1 via AhR and EGFR signaling, controlled by miR-223. Concomitantly produced reactive oxygen species (ROS) control OAT1 activity and are balanced by the glutathione pathway, as confirmed by cellular metabolomic profiling. Collectively, we demonstrate remote metabolite sensing and signaling as an effective OAT1 regulation mechanism to maintain plasma metabolite levels by controlling their secretion.


Assuntos
Microbioma Gastrointestinal , Túbulos Renais Proximais/metabolismo , Transdução de Sinais , Animais , Ânions , Receptores ErbB/metabolismo , Glutationa/metabolismo , Humanos , Metaboloma , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
17.
Biopharm Drug Dispos ; 43(2): 57-65, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088420

RESUMO

Febuxostat is a second-line xanthine oxidase inhibitor that undergoes extensive hepatic metabolism to yield its major acyl-ß-D-glucuronide metabolite (febuxostat AG). It was recently reported that febuxostat inhibited organic anion transporter 3 (OAT3)-mediated uptake of enalaprilat. Here, we investigated the inhibition of febuxostat and febuxostat AG on OAT3 in transfected human embryonic kidney 293 cells. Our transporter inhibition assays confirmed the potent noncompetitive and competitive inhibition of OAT3-mediated estrone-3-sulfate transport by febuxostat and febuxostat AG with corresponding apparent Ki values of 0.55 and 6.11 µM respectively. After accounting for probe substrate-dependency and protein binding effects, mechanistic static modelling with the direct factor Xa anticoagulant rivaroxaban estimated a 1.47-fold increase in its systemic exposure when co-administered with febuxostat based on OAT3 interaction which in turn exacerbates the bleeding risk from baseline for patients with atrial fibrillation by 1.51-fold. Taken together, our results suggested that the concomitant usage of febuxostat with rivaroxaban may potentially culminate in a clinically-significant drug-drug interaction and result in an increased risk of bleeding as a result of its OAT3 inhibition.


Assuntos
Glucuronídeos , Rivaroxabana , Interações Medicamentosas , Febuxostat/farmacologia , Células HEK293 , Humanos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Rivaroxabana/farmacologia
18.
J Biol Chem ; 295(7): 1829-1842, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31896576

RESUMO

The multispecific organic anion transporters, OAT1 (SLC22A6) and OAT3 (SLC22A8), the main kidney elimination pathways for many common drugs, are often considered to have largely-redundant roles. However, whereas examination of metabolomics data from Oat-knockout mice (Oat1 and Oat3KO) revealed considerable overlap, over a hundred metabolites were increased in the plasma of one or the other of these knockout mice. Many of these relatively unique metabolites are components of distinct biochemical and signaling pathways, including those involving amino acids, lipids, bile acids, and uremic toxins. Cheminformatics, together with a "logical" statistical and machine learning-based approach, identified a number of molecular features distinguishing these unique endogenous substrates. Compared with OAT1, OAT3 tends to interact with more complex substrates possessing more rings and chiral centers. An independent "brute force" approach, analyzing all possible combinations of molecular features, supported the logical approach. Together, the results suggest the potential molecular basis by which OAT1 and OAT3 modulate distinct metabolic and signaling pathways in vivo As suggested by the Remote Sensing and Signaling Theory, the analysis provides a potential mechanism by which "multispecific" kidney proximal tubule transporters exert distinct physiological effects. Furthermore, a strong metabolite-based machine-learning classifier was able to successfully predict unique OAT1 versus OAT3 drugs; this suggests the feasibility of drug design based on knockout metabolomics of drug transporters. The approach can be applied to other SLC and ATP-binding cassette drug transporters to define their nonredundant physiological roles and for analyzing the potential impact of drug-metabolite interactions.


Assuntos
Metabolômica , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Toxinas Biológicas/metabolismo , Trifosfato de Adenosina/genética , Animais , Ácidos e Sais Biliares/metabolismo , Transporte Biológico/genética , Humanos , Inativação Metabólica/genética , Túbulos Renais Proximais/metabolismo , Aprendizado de Máquina , Camundongos , Camundongos Knockout , Proteína 1 Transportadora de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transdução de Sinais
19.
EMBO J ; 36(22): 3309-3324, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29046334

RESUMO

The maxi-anion channels (MACs) are expressed in cells from mammals to amphibians with ~60% exhibiting a phenotype called Maxi-Cl. Maxi-Cl serves as the most efficient pathway for regulated fluxes of inorganic and organic anions including ATP However, its molecular entity has long been elusive. By subjecting proteins isolated from bleb membranes rich in Maxi-Cl activity to LC-MS/MS combined with targeted siRNA screening, CRISPR/Cas9-mediated knockout, and heterologous overexpression, we identified the organic anion transporter SLCO2A1, known as a prostaglandin transporter (PGT), as a key component of Maxi-Cl. Recombinant SLCO2A1 exhibited Maxi-Cl activity in reconstituted proteoliposomes. When SLCO2A1, but not its two disease-causing mutants, was heterologously expressed in cells which lack endogenous SLCO2A1 expression and Maxi-Cl activity, Maxi-Cl currents became activated. The charge-neutralized mutant became weakly cation-selective with exhibiting a smaller single-channel conductance. Slco2a1 silencing in vitro and in vivo, respectively, suppressed the release of ATP from swollen C127 cells and from Langendorff-perfused mouse hearts subjected to ischemia-reperfusion. These findings indicate that SLCO2A1 is an essential core component of the ATP-conductive Maxi-Cl channel.


Assuntos
Canais Iônicos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Fracionamento Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dinoprostona/farmacologia , Feminino , Deleção de Genes , Inativação Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Proteolipídeos/efeitos dos fármacos , Proteolipídeos/metabolismo , Proteínas Recombinantes/metabolismo , Traumatismo por Reperfusão/patologia
20.
Toxicol Appl Pharmacol ; 425: 115601, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081941

RESUMO

Obesity is recognized as a risk for the development of chronic kidney disease. Excessive fat accumulation in obesity is associated with the overproduction of reactive oxygen species with the underproduction of antioxidant mechanisms generating oxidative stress together with chronic low-grade inflammation which subsequently leads to the development of several obesity-related complications. It has been suggested that the abnormal lipid accumulation can induce endoplasmic reticulum (ER) stress and cellular apoptosis in several tissue types. Agomelatine is a relatively new antidepressant which is a synthetic agonist of melatonin. Previous study reported the antioxidant and anti-inflammatory effects of agomelatine. In this study, we investigated the therapeutic effects of agomelatine in obesity-related renal injury. Male Wistar rats were fed with normal diet or high-fat diet (HF) for 16 weeks. After that, vehicle or agomelatine or vildagliptin was orally administered to HF rats for 4 weeks. Our results indicated that HF rats demonstrated insulin resistance which was accompanied by an impairment of renal function and renal organic anion transporter 3 (Oat3) function as well as renal oxidative stress, ER stress, and apoptosis. Interestingly, agomelatine treatment not only improved the metabolic parameters, renal function and renal Oat3 function but also attenuated renal oxidative stress, ER stress and subsequent apoptosis. Therefore, agomelatine exerted renoprotective effects in obese insulin-resistant condition. These results suggested that agomelatine could be used as a drug to improve metabolic disturbance and prevent kidney dysfunction in obese condition.


Assuntos
Acetamidas/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nefropatias/etiologia , Obesidade/complicações , Animais , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Nefropatias/prevenção & controle , Masculino , Obesidade/induzido quimicamente , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa