Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 83(5): 818-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26140668

RESUMO

Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.


Assuntos
Cádmio/toxicidade , Proteínas de Transporte/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Cádmio/farmacocinética , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glicolatos/farmacologia , Hidroponia/métodos , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/efeitos dos fármacos , Ftalimidas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Estresse Fisiológico/efeitos dos fármacos
2.
Plant Sci ; 298: 110575, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771139

RESUMO

Primary root is the basic component of root system and plays a key role in early seedling growth and survival in rice. However, the molecular mechanism of primary root elongation still needs to be well understood. Here, we showed that OsWOX4, a WUSCHEL-related homeobox (WOX) transcription factor, was involved in the primary root elongation in rice. Silencing of OsWOX4 by RNA interference (RNAi) greatly increased the primary root length, whereas its overexpression reduced primary root elongation significantly. Moreover, the size of meristem zone and epidermal cell length of mature zone in RNAi root tips were drastically enhanced, while they were reduced markedly in overexpression lines, in comparison with that of wild type. Further analysis showed that the accumulation of free IAA was slightly increased in RNAi roots, but drastically reduced in plants overexpressing OsWOX4. The expression of genes responsible for auxin biosynthesis and transport was also changed in OsWOX4 transgenic lines. Transient transcriptional activation and electrophoretic mobility shift assays showed that OsWOX4 directly regulated the transcription of OsAUX1 through binding to its promoter region. Collectively, our results indicated that OsWOX4 played a crucial role in the primary root elongation by regulating auxin transport, suggesting its importance in rice root system architecture.


Assuntos
Proteínas de Homeodomínio/genética , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética , Proteínas de Homeodomínio/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plântula/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa