RESUMO
Bacterial symbionts are crucial to the biology of Bactrocera dorsalis. With larval diet (fruit host) being a key factor that determines microbiome composition and with B. dorsalis using more than 400 fruits as hosts, it is unclear if certain bacterial symbionts are preserved and are passed on to B. dorsalis progenies despite changes in larval diet. Here, we conducted a fly rearing experiment to characterize diet-induced changes in the microbiome of female B. dorsalis. In order to explicitly investigate the impacts of larval diet on the microbiome, including potential stable bacterial constituents of B. dorsalis, we performed 16S rRNA sequencing on the gut tissues of teneral female flies reared from four different host fruits (guava, mango, papaya, and rose apple) infested using a single cohort of wild B. dorsalis that emerged from tropical almond (mother flies). Although B. dorsalis-associated microbiota were predominantly shaped by the larval diet, some major bacterial species from the mother flies were retained in progenies raised on different larval diets. With some variation, Klebsiella (ASV 1 and 2), Morganella (ASV 3), and Providencia (ASV 6) were the major bacterial symbionts that were stable and made up 0.1-80% of the gut and ovipositor microbiome of female teneral flies reared on different host fruits. Our results suggest that certain groups of bacteria are stably associated with female B. dorsalis across larval diets. These findings provide a basis for unexplored research on symbiotic bacterial function in B. dorsalis and may aid in the development of novel management techniques against this devastating pest of horticultural importance.
Assuntos
Frutas , Tephritidae , Humanos , Feminino , Animais , Larva , RNA Ribossômico 16S/genéticaRESUMO
Various chalcidoid wasps can actively steer their terebra (= ovipositor shaft) in diverse directions, despite the lack of terebral intrinsic musculature. To investigate the mechanisms of these bending and rotational movements, we combined microscopical and microtomographical techniques, together with videography, to analyse the musculoskeletal ovipositor system of the ectoparasitoid pteromalid wasp Lariophagus distinguendus (Förster, 1841) and the employment of its terebra during oviposition. The ovipositor consists of three pairs of valvulae, two pairs of valvifers and the female T9 (9th abdominal tergum). The paired 1st and the 2nd valvulae are interlocked via the olistheter system, which allows the three parts to slide longitudinally relative to each other, and form the terebra. The various ovipositor movements are actuated by a set of nine paired muscles, three of which (i.e. 1st valvifer-genital membrane muscle, ventral 2nd valvifer-venom gland reservoir muscle, T9-genital membrane muscle) are described here for the first time in chalcidoids. The anterior and posterior 2nd valvifer-2nd valvula muscles are adapted in function. (1) In the active probing position, they enable the wasps to pull the base of each of the longitudinally split and asymmetrically overlapping halves of the 2nd valvula that are fused at the apex dorsally, thus enabling lateral bending of the terebra. Concurrently, the 1st valvulae can be pro- and retracted regardless of this bending. (2) These muscles can also rotate the 2nd valvula and therefore the whole terebra at the basal articulation, allowing bending in various directions. The position of the terebra is anchored at the puncture site in hard substrates (in which drilling is extremely energy- and time-consuming). A freely steerable terebra increases the chance of contacting a potential host within a concealed cavity. The evolution of the ability actively to steer the terebra can be considered a key innovation that has putatively contributed to the acquisition of new hosts to a parasitoid's host range. Such shifts in host exploitation, each followed by rapid radiations, have probably aided the evolutionary success of Chalcidoidea (with more than 500,000 species estimated).
RESUMO
The ovipositor comprises the external genitalia of female insects, which plays an important role in the mating and ovipositing process of insects. However, it remains rudimentary of regional gene expression and physiological function in the ovipositor during structural development. Here, we analysed the basic structure and characteristics of the ovipositor in the migratory locust Locusta migratoria. RNA-seq analysis revealed the specialization of chitin metabolism, lipids synthesis and transport, tanning and cuticular protein genes in the ovipositor. Among them, two cuticle protein genes, LmCP8 and LmACP79, were identified, which are specifically expressed in the ovipositor. Functional analysis based on RNA interference showed that deficiency of LmCP8 affected the structural development of the ovipositor resulting in the retention of a large number of remaining unproduced oocysts in the ovary of the locusts. Our results provide a fundamental resource to investigate the structural development and physiological function of the ovipositor in L. migratoria.
Assuntos
Locusta migratoria , Feminino , Animais , Locusta migratoria/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , Insetos/metabolismoRESUMO
Tok-tokkies are one of the most iconic lineages within Tenebrionidae. In addition to containing some of the largest darkling beetles, this tribe is recognized for its remarkable form of sexual communication known as substrate tapping. Nevertheless, the phylogenetic relationships within the group remain poorly understood. This study investigates the usefulness of female terminalia morphology for delimiting Sepidiini and reconstructing relationships among it. Data on the structure of the ovipositors, genital tubes and spicula ventrali have been generated for >200 species representing 28 Pimeliinae tribes. This dataset was used in a comparative analysis at the subfamilial level, which resulted in recognition of several unique features of tok-tokkie terminalia. Additionally, new features linking phenotypically challenging tribes also were recovered (Cryptochilini + Idisiini + Pimeliini). Secondly, 23 characters linked to the structure of female terminalia were defined for tok-tok beetles. Cladistic analysis demonstrates the nonmonophyletic nature of most of the recognized subtribes. The morphological dataset was analysed separately and in combination with available molecular data (CAD, Wg, cox1, cox2, 28S). All obtained topologies were largely congruent, supporting the following changes: Palpomodina Kaminski & Gearner subtr.n. is erected to accommodate the genera Namibomodes and Palpomodes; Argenticrinis and Bombocnodulus are transferred from Hypomelina to Molurina; 153 species and subspecies previously classified within Psammodes are distributed over three separate genera (Mariazofia Kaminski nom.n., Piesomera stat.r., Psammodes sens.n.). Psammodes sklodowskae Kaminski & Gearner sp.n. is described. Preliminary investigation of the ovipositor of Mariazofia basuto (Koch) comb.n. was carried out with the application of microcomputed tomography, illuminating the muscular system as a reliable reference point for recognizing homologous elements in highly modified ovipositors.
Assuntos
Besouros , Animais , Feminino , Filogenia , Microtomografia por Raio-X , Sorogrupo , GenitáliaRESUMO
In this study, the authors report the first record of egg masses deposited in solitary tunicates by the snubnose sculpin, Orthonopias triacis, from the Northeastern Pacific. Four egg masses were discovered in the tunicate Ascidia ceratodes that were genetically determined to be O. triacis. Female O. triacis had long ovipositors that allow deposition of their eggs inside the atrium of the tunicates. A comparison of host-tunicate size with ovipositor length of sculpins from the Northwestern Pacific, including the genera Furcina and Pseudoblennius, revealed that O. triacis had shorter ovipositors and spawned in the atrium of smaller species of tunicates. Ancestral state reconstruction of egg deposition in solitary tunicates using 1.86Mbp RNAseq data of 20 sculpin species from Northeastern and Northwestern Pacific revealed that this unusual spawning behaviour may have evolved convergently in different species occurring in the Northeastern vs. the Northwestern Pacific.
Assuntos
Perciformes , Urocordados , Animais , FemininoRESUMO
The life history and reproductive ecology of an autumn-spawning bitterling Acheilognathus typus were studied under natural and experimental conditions. In the study pond, the embryos of A. typus emerged from mussels in May and grew rapidly until August, whereas overwintered age-1 fish grew slowly. Adult A. typus in the pond was smaller (32-47 mm in standard length) than they were in other habitats and mainly spawned in smaller mussels. The number of A. typus embryos in mussels was negatively correlated with the shell length of the mussel, and a lower number of embryos were observed in larger mussels (over 110 mm in shell length). In the mussel size-choice experiment conducted in an enclosure, smaller A. typus selected smaller mussels, and larger A. typus selected larger mussels for spawning. In some cases, smaller A. typus spawned in larger mussels and the number of spawned eggs ejected increased by over four times compared with other cases. These results of the enclosure experiment explained the lower number of embryos in larger mussels in the study pond. In addition, reproductive traits such as ovipositor length and the number of ovulated eggs of female A. typus, which are considered to contribute to their size-dependent host utilization, were positively correlated with their standard length. Because A. typus is geologically or seasonally isolated from other bitterling species, this size-dependent host utilization contributes to a reduction in intraspecies rather than interspecies competition.
Assuntos
Bivalves , Cyprinidae , Cipriniformes , Animais , Tamanho Corporal , Ecologia , Feminino , ReproduçãoRESUMO
Parasitic wasps use specialized needle-like structures, ovipositors, to drill into substrates to reach hidden hosts. The external ovipositor (terebra) consists of three interconnected, sliding elements (valvulae), which are moved reciprocally during insertion. This presumably reduces the required pushing force on the terebra and limits the risk of damage whilst probing. Although this is an important mechanism, it is still not completely understood how the actuation of the valvulae is achieved, and it has only been studied with the ovipositor in rest position. Additionally, very little is known about the magnitude of the forces generated during probing. We used synchrotron X-ray microtomography to reconstruct the actuation mechanism of the parasitic wasp Diachasmimorpha longicaudata (Braconidae) in four distinct phases of the probing cycle. We show that only the paired first valvulae of the terebra move independently, while the second valvula moves with the metasoma ('abdomen'). The first valvula movements are initiated by rotation of one chitin plate (first valvifer) with respect to another such plate (second valvifer). This is achieved indirectly by muscles connecting the non-rotating second valvifer and the abdominal ninth tergite. Contrary to previous reports, we found muscle fibres running inside the terebra, although their function remains unclear. The estimated maximal forces that can be exerted by the first valvulae are small (protraction 1.19 mN and retraction 0.874 mN), which reduces the risk of buckling, but are sufficient for successful probing. The small net forces of the valvulae on the substrate may still lead to buckling of the terebra; we show that the sheaths surrounding the valvulae prevent this by effectively increasing the diameter and second moment of area of the terebra. Our findings improve the comprehension of hymenopteran probing mechanisms, the function of the associated muscles, and the forces and damage-limiting mechanism that are involved in drilling a slender terebra into a substrate.
Assuntos
Abdome/diagnóstico por imagem , Oviposição/fisiologia , Parasitos/fisiologia , Vespas/fisiologia , Animais , Feminino , Microtomografia por Raio-XRESUMO
Drosophila suzukii (spotted wing drosophila) has become a major invasive insect pest of soft fruits in the America and Europe, causing severe yield losses every year. The female D. suzukii shows the oviposition preference for ripening or ripe fruit by cutting the hard skin with its serrated ovipositor. A recent study reported that mechanosensation is involved in the texture discrimination during egg-laying behaviour in D. suzukii. However, the underlying mechanism and molecular entity that control this behaviour are not known. The transient receptor potential (TRP) channels and degenerin/epithelial sodium channels (DEG/ENaC) are two candidate gene families of mechanically activated ion channels. Thus, we first identified TRP and DEG/ENaC genes in D. suzukii by bioinformatic analysis. Using transcriptome sequencing, we found that many TRP genes were expressed in the ovipositor in both D. suzukii and D. melanogaster, while some DEG/ENaCs showed species-specific expression patterns. Exposure to drugs targeting TRP and DEG/ENaC channels abolished the oviposition preference for harder texture in female D. suzukii. Therefore, mechanosensitive ion channels may play significant roles in the texture assessment of egg-laying behaviour in D. suzukii, which has promising implications to further research on the development of novel control measures.
Assuntos
Drosophila/fisiologia , Proteínas de Insetos/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/genética , Oviposição/genética , Animais , Drosophila/genética , Feminino , Percepção do Tato/genéticaRESUMO
Drilling into solid substrates with slender beam-like structures is a mechanical challenge, but is regularly done by female parasitic wasps. The wasp inserts her ovipositor into solid substrates to deposit eggs in hosts, and even seems capable of steering the ovipositor while drilling. The ovipositor generally consists of three longitudinally connected valves that can slide along each other. Alternative valve movements have been hypothesized to be involved in ovipositor damage avoidance and steering during drilling. However, none of the hypotheses have been tested in vivo. We used 3D and 2D motion analysis to quantify the probing behavior of the fruit-fly parasitoid Diachasmimorpha longicaudata (Braconidae) at the levels of the ovipositor and its individual valves. We show that the wasps can steer and curve their ovipositors in any direction relative to their body axis. In a soft substrate, the ovipositors can be inserted without reciprocal motion of the valves. In a stiff substrate, such motions were always observed. This is in agreement with the damage avoidance hypothesis of insertion, as they presumably limit the overall net pushing force. Steering can be achieved by varying the asymmetry of the distal part of the ovipositor by protracting one valve set with respect to the other. Tip asymmetry is enhanced by curving of ventral elements in the absence of an opposing force, possibly due to pretension. Our findings deepen the knowledge of the functioning and evolution of the ovipositor in hymenopterans and may help to improve man-made steerable probes.
Assuntos
Oviposição/fisiologia , Vespas/anatomia & histologia , Vespas/parasitologia , Animais , Fenômenos Biomecânicos/fisiologia , Ceratitis capitata , Feminino , Oviparidade/fisiologia , Parasitos/fisiologiaRESUMO
Many parasitic wasps use slender and steerable ovipositors to lay eggs in hosts hidden in substrates, but it is currently unknown how steering is achieved. The ovipositors generally consist of three longitudinally connected elements, one dorsal and two ventral valves that can slide along each other. For the parasitic wasp Diachasmimorpha longicaudata, it has been shown that protraction of the ventral valves causes incurving of the ventral valves towards the dorsal one, which results in a change in probing direction. We hypothesize that this shape change is due to differences in bending stiffness along the ovipositor. Alignment of the stiff tip of the dorsal valve with a more flexible ventral S-shaped region situated just behind the tip straightens this S-bend and results in upwards rotation of the ventral tip. We show that the S-shaped region of the ventral valves has a low bending stiffness because it contains soft materials such as resilin. In contrast, the large cross-sectional area of the dorsal valve tip area probably results in a high bending stiffness. Elsewhere, the dorsal valve is less stiff than the ventral valves. Our results support the hypothesis that the interaction between the stiff dorsal valve portion and the more flexible S-shaped region co-determines the configurational tip changes required for steering the ovipositor in any desired direction along curved paths in the substrate. This provides novel insights in the understanding of steering mechanisms of the hymenopteran ovipositor, and for application in man-made probes.
Assuntos
Oviposição , Vespas/fisiologia , Animais , FemininoRESUMO
The cavities of bamboos (Poaceae) are used by various animals. Most of the animals access these cavities either by existing cracks or by excavating bamboos with soft walls or small, thin-walled bamboos. Only a few animals excavate into the cavities of large and thick- and hard-walled internodes of mature bamboos. We studied two lizard beetle species (Coleoptera: Erotylidae: Languriinae), Doubledaya ruficollis and Oxylanguria acutipennis, that excavate into large internode cavities of recently dead mature bamboos and have morphological modifications. We observed that females of D. ruficollis used their mandibles to bore oviposition holes on Schizostachyum sp. (mean wall thickness = 3.00 mm) and O. acutipennis did so on Dendrocalamus sp. (3.37 mm) bamboos. Previous studies suggested that the markedly asymmetrical mandibles and needle-like ovipositors of females in the genus Doubledaya are adaptive traits for excavating hard-walled bamboos for oviposition. Therefore, we measured their mandibular lengths and ovipositor lengths. D. ruficollis females had greater asymmetry in the mandibles and shorter and less-sclerotized ovipositors than females of congeners using small bamboos. In contrast, O. acutipennis females had slightly asymmetrical mandibles and elongated, well-sclerotized ovipositors. Oviposition holes of D. ruficollis were cone-shaped (evenly tapering), whereas those of O. acutipennis were funnel-shaped (tube-like at the internal apex). This suggests that D. ruficollis females excavate oviposition holes using the mandibles only, and O. acutipennis females use both the mandibles and ovipositors. These differences suggest different oviposition-associated morphological specialization for using large bamboos: the extremely asymmetrical mandibles in D. ruficollis and elongated, needle-like ovipositors in O. acutipennis.
Assuntos
Besouros/anatomia & histologia , Besouros/fisiologia , Estruturas Animais/anatomia & histologia , Animais , Comportamento Animal/fisiologia , Feminino , Tamanho do Órgão/fisiologia , Poaceae/anatomia & histologia , Poaceae/parasitologiaRESUMO
BACKGROUND: While the communities constituted by phytophageous insects and their parasites may represent half of all terrestrial animal species, understanding their diversification remains a major challenge. A neglected idea is that geographic phenotypic variation in a host plant may lead to heterogeneous evolutionary responses of the different members of the associated communities. This could result in diversification on a host plant by ecological speciation in some species, leading to geographic variation in community composition. In this study we investigated geographic variation of inflorescence receptacle size in a plant, Ficus hirta, and how the hymenopteran community feeding in the inflorescences has responded. Our predictions were: 1) Inflorescence size variation affects wasp species differently depending on how they access oviposition sites. 2) In some affected lineages of wasps, we may observe vicariant, parapatric species adapted to different inflorescence sizes. RESULTS: We show that fig (the enclosed inflorescence of Ficus) wall thickness varies geographically. The fig-entering pollinating wasp was not affected, while the parasites ovipositing through the fig wall were. Two parapatric species of Philotrypesis, exhibiting strikingly different ovipositor lengths, were recorded. One species of Sycoscapter was also present, and it was restricted, like the shorter-ovipositor Philotrypesis, to the geographic zone where fig walls were thinner. CONCLUSIONS: Previous work on fig wasps suggested that parapatric geographic ranges among congenerics were due to adaptation to variation in abiotic factors, complemented by interspecific competition. Our results show that parapatric ranges may also result from adaptation to variation in biotic factors. Within an insect community, differences among species in their response to geographic phenotypic variation of their host plant may result in geographically heterogeneous community structure. Such heterogeneity leads to heterogeneous interaction networks among sites. Our results support the hypothesis that plant geographic phenotypic variation can be a driver of diversification in associated insect communities, and can complement other diversification processes.
Assuntos
Variação Biológica da População , Ficus/parasitologia , Geografia , Parasitos/fisiologia , Vespas/fisiologia , Vespas/parasitologia , Animais , Feminino , Ficus/anatomia & histologia , Ficus/genética , Inflorescência/anatomia & histologia , Inflorescência/fisiologia , Repetições de Microssatélites/genética , Oviposição/fisiologia , Polinização , Tamanho da AmostraRESUMO
We show that the insect ovipositor is an olfactory organ that responds to volatiles and CO2 in gaseous form. We demonstrate this phenomenon in parasitic wasps associated with Ficus racemosa where ovipositors, as slender as a human hair, drill through the syconium (enclosed inflorescences) and act as a guiding probe to locate highly specific egg-laying sites hidden inside. We hypothesize that olfaction will occur in the ovipositors of insects such as parasitic fig wasps where the hosts are concealed and volatile concentrations can build up locally. Relevant stimuli such as herbivore-induced fig volatiles and CO2 elicited electrophysiological responses from the ovipositors. Silver nitrate staining also revealed pores in ovipositor sensilla, indicating their olfactory nature. Insects could use volatile sensors on their ovipositors to evaluate ecologically relevant stimuli for oviposition. Further investigations on the sensory nature of ovipositors can provide designs for development of ovipositor-inspired micro-chemosensors.
Assuntos
Vespas/fisiologia , Animais , Dióxido de Carbono/metabolismo , Feminino , Ficus/parasitologia , Oviposição/fisiologia , Sensilas/fisiologia , Células Receptoras Sensoriais/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Vespas/anatomia & histologia , Vespas/ultraestruturaRESUMO
Apical serrations of the hymenopteran ovipositor have been widely postulated to originally constitute adaptations for cutting through hard substrates. Simplifications of the ovipositor tip have occurred in several ichneumonid wasp genera associated with spiders. Despite such reduction in Clistopyga (Hymenoptera, Ichneumonidae), the ovipositor still possesses some apical serrations. Through the first detailed study, we believe, on the behaviour of an ovipositing Clistopyga species, we show that it can alter its ovipositor for different purposes and that the primary function of the apical serrations is clinging to its spider host as the spider attempts to escape. Intriguingly, we also discover a hitherto undocumented adaptation for the hymenopteran ovipositor. The female wasp seals openings in the silken spider nest by using its ovipositor on the silk in a highly sophisticated way that is comparable to how humans entangle wool by needle felting. By studying the ovipositor morphology through a scanning electron microscope, we elucidate how this works, and we hypothesize that by closing the nest the female wasp protects its developing kin.
Assuntos
Aranhas , Animais , Feminino , Seda , VespasRESUMO
Female insects of diverse orders bore into substrates to deposit their eggs. Such insects must overcome several biomechanical challenges to successfully oviposit, which include the selection of suitable substrates through which the ovipositor can penetrate without itself fracturing. In many cases, the insect may also need to steer and manipulate the ovipositor within the substrate to deliver eggs at desired locations before rapidly retracting her ovipositor to avoid predation. In the case of female parasitoid ichneumonid wasps, this process is repeated multiple times during her lifetime, thus testing the ability of the ovipositioning apparatus to endure fracture and fatigue. What specific adaptations does the ovipositioning apparatus of a female ichneumonoid wasp possess to withstand these challenges? We addressed this question using a model system composed of parasitoid and pollinator fig wasps. First, we show that parasitoid ovipositor tips have teeth-like structures, preferentially enriched with zinc, unlike the smooth morphology of pollinator ovipositors. We describe sensillae present on the parasitoid ovipositor tip that are likely to aid in the detection of chemical species and mechanical deformations and sample microenvironments within the substrate. Second, using atomic force microscopy, we show that parasitoid tip regions have a higher modulus compared with regions proximal to the abdomen in parasitoid and pollinator ovipositors. Finally, we use videography to film wasps during substrate boring and analyse buckling of the ovipositor to estimate the forces required for substrate boring. Together, these results allow us to describe the biomechanical principles underlying substrate boring in parasitoid ichneumonid wasps. Such studies may be useful for the biomimetic design of surgical tools and in the use of novel mechanisms to bore through hard substrates.
Assuntos
Oviposição/fisiologia , Vespas/anatomia & histologia , Vespas/fisiologia , Animais , Comportamento Animal , Fenômenos Biomecânicos , Feminino , Ficus/parasitologia , Sensilas/anatomia & histologia , Especificidade da Espécie , Vespas/ultraestruturaRESUMO
Sapygidae is a small family of Aculeata (Hymenoptera), which is divided into two subfamilies Fedtschenkiinae and Sapyginae. The morphology of the skeleton of the sting apparatus in some European species of Sapyginae, which are kleptoparasites of wild bees from the families Megachilidae, Apidae and Colletidae, was examined. Significant differences in its skeletal structure were noted between Sapygina decemguttata and representatives of the genera Sapyga and Monosapyga. The sting of Sapygina belongs to the decurved type, while Sapyga and Monosapyga have a sting close to the coiled type. A comparison of the structure of the skeletons of the sting apparatuses of Sapygina and Sapyga with that of Fedtschenkia (according to other authors) was made. The similarity of the structure of the sting apparatuses of Sapygina and Fedtschenkia was noted. The possibility of using the Sapyginae sting as an ovipositor is discussed.
Assuntos
Vespas , Animais , Vespas/anatomia & histologia , Vespas/ultraestrutura , Feminino , Microscopia Eletrônica de Varredura , Especificidade da Espécie , MasculinoRESUMO
In this study, 5 species of Trichogramma Westwood were evaluated for the biological control of Spodoptera frugiperda (JE Smith), concerning the physical characteristics of female Trichogramma. The results showed that Trichogramma chilonis Ishii, Trichogramma dendrolimi Matsumura, and Trichogramma ostriniae Pang et Chen exhibited high parasitism rates, emergence rates, and offspring numbers, with the highest values observed for T. ostriniae. The ovipositor length of Trichogramma japonicum Ashmead and T. dendrolimi were longer than those of other species, and the hind tibia length was the shortest in Trichogramma cacoeciae Marchal. We further evaluated relationships between the parasitism ability of Trichogramma and various morphological indexes based on Spearman's rank correlation coefficients. A positive correlation was found between the parasitism rate and hind tibia length of T. cacoeciae. In T. dendrolimi, the parasitism rate was negatively correlated with ovipositor width and positively correlated with the length-width ratio of the ovipositor. A significant positive correlation was observed between the proportion of female offspring and the mother's ovipositor length in T. japonicum. However, there were no significant correlations between morphological indexes and indexes of parasitism in T. ostriniae. Overall, the parasitic abilities of T. chilonis on S. frugiperda eggs were significantly correlated with the morphology of the female ovipositors.
Assuntos
Himenópteros , Lepidópteros , Mariposas , Vespas , Feminino , Animais , Spodoptera/parasitologia , Mariposas/parasitologia , Controle Biológico de Vetores/métodosRESUMO
The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.
Assuntos
Receptores Odorantes , Tephritidae , Feminino , Animais , Oviposição , Tephritidae/fisiologia , Receptores Odorantes/genética , Benzotiazóis/farmacologiaRESUMO
The woodwasp Sirex noctilio Fabricius is a major quarantine pest that was reported in China in 2013 and mostly damages Pinus sylvestris var. mongolica. Reverse chemical ecology, which uses chemical lures to catch or block insects from mating is the classic way to control forestry pests. This indicates that insect sensilla play a crucial role in detecting external chemical and physical stimuli. Nonetheless, the categorization and distribution of sensilla on the antennae and ovipositor of S. noctilio are insufficiently specific. In this paper, scanning electron microscopy (SEM) was used to observe the ultrastructure of the sensilla of S. noctilio on the antenna and ovipositor. It was found that the types and distribution of sensilla on the antennae of S. noctilio male and female are consistent, and six types of sensilla are found: sensilla trichodea (ST), sensilla chaetica (SC), Böhm bristles (BB), sensilla basiconica (SB), sensilla ampullacea (SA), and contact chemoreceptors (CC). Besides, there are five types of sensilla on the female ovipositor. In addition to ST, SC and BB, two more types of sensilla are also found: sensilla cavity (SCa) and sensilla coeloconica (SCo). Through identification of the morphology and distribution of the sensilla, the functions of different sensilla in the mating and host selection mechanisms of S. noctilio are proposed, thereby establishing a foundation for S. noctilio chemical communication research.
Assuntos
Quirópteros , Himenópteros , Feminino , Masculino , Animais , Sensilas/ultraestrutura , Himenópteros/ultraestrutura , Microscopia Eletrônica de Varredura , Reprodução , Células Quimiorreceptoras , Antenas de Artrópodes/ultraestruturaRESUMO
Typical cockroaches are flat, broad, with large pronotum and wings covering the body. This conserved morphotype dates back to the Carboniferous, during which the ancestral cockroaches, or roachoids, originated. On the other hand, the ovipositor of cockroaches gradually reduced during the Mesozoic, coupled with a major shift of reproductive strategy. By the Cretaceous, long external ovipositors became rare, most cockroaches used very short or even hidden internal ovipositors to fabricate egg cases (oothecae), which is an innovation for egg protection. Here, we describe two cockroaches from mid-Cretaceous Myanmar amber: Ensiferoblatta oecanthoides gen. et sp. nov. (Ensiferoblattidae fam. nov.) and Proceroblatta colossea gen. et sp. nov. They are slim, elongate, fusiform, with longitudinal pronotum, and have long external ovipositors. The combination of these traits represents a unique morphotype, which resembles crickets and katydids (Ensifera) more than general cockroaches. Ensiferoblatta and Proceroblatta may be arboreal, feeding on and/or laying eggs into certain angiosperms that newly emerged. Their open habit causes latent impairment to viability, and may contribute to their extinction. These new taxa are the youngest members of the ancient, extinct group of cockroaches, namely Eoblattodea, which are characterized by long ovipositors. We speculate that the extinction of certain gymnosperm hosts almost ended the 200-My triumph of Eoblattodea. Despite an attempt to adapt to angiosperm hosts, Ensiferoblatta, Proceroblatta and suchlike cockroaches as an evolutionary dead end failed to save Eoblattodea from extinction. The lack of protection for eggs (maternal care in particular) might accelerate the extinction of Eoblattodea as a whole.