RESUMO
Zinc oxide nanoparticles (ZnO NPs), as the highly efficient photocatalysts, could enhance the transformation of biogenic organic phosphorus (OP) to orthophosphate (PO43-) by photodegradation, accelerating eutrophication. Conversely, orthophosphate can also transform ZnO NPs and thus potentially alter their catalytic and chemical properties. Here, we investigated the transformation mechanisms of three biogenic OP compounds and ZnO NPs under ultraviolet light (UV) illumination: inositol phosphates (IHPs), nucleic acids (DNA), and aminoethylphosphonic acid (AEP). The physicochemical characteristics of the resulting products were systematically characterized. Results show that ZnO NPs accelerated the transformation of IHPs, DNA, and AEP to inorganic phosphorus with the direct photolysis efficiencies of 98.14, 87.68, and 51.76%, respectively. The main component of the precipitates remained ZnO NPs, and Zn3(PO4)2 was identified. Zinc phytate was determined in the ZnO NP-IHP system. 31P NMR and FTIR further confirmed that the aquatic phase contained orthophosphate. Photoproduced hydroxyl (·OH) and superoxide (·O2-) were proved to play a dominant role in the OP photomineralization. Furthermore, ZnO NPs significantly enhanced the intensity of ·OH and ·O2- compared to the OP and Zn2+ solution alone. This work explored the light-induced mineralization processes of OP with ZnO NPs indicating that nanophotocatalysts may play a positive role in transformation of OP species in aquatic environments to further contribute to eutrophication.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Fósforo/química , Nanopartículas/química , Fosfatos , ZincoRESUMO
BACKGROUND: A miRNA precursor generally gives rise to one major miRNA species derived from the 5' arm, and are called miRNA-5p. However, more recent studies have shown co-expression of miRNA-5p and -3p, albeit in different concentrations, in cancer cells targeting different sets of transcripts. Co-expression and regulation of the -5p and -3p miRNA species in stem cells, particularly in the reprogramming process, have not been studied. METHODS: In this work, we investigated co-expression and regulation of miRNA-5p and -3p species in human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and embryonic stem cells (ESC) using a nanoliter-scale real-time PCR microarray platform that included 1,036 miRNAs. RESULTS: In comparing iPSC and ESC, only 32 miRNAs were found to be differentially expressed, in agreement of the ESC-like nature of iPSC. In the analysis of reprogramming process in iPSCs, 261 miRNAs were found to be differentially expressed compared with the parental MSC and pre-adipose tissue, indicating significant miRNA alternations in the reprogramming process. In iPSC reprogrammed from MSC, there were 88 miRNAs (33.7%), or 44 co-expressed 5p/3p pairs, clearly indicating frequent co-expression of both miRNA species on reprogramming. Of these, 40 pairs were either co-up- or co-downregulated indicating concerted 5p/3p regulation. The 5p/3p species of only 4 pairs were regulated in reverse directions. Furthermore, some 5p/3p species of the same miRNAs were found to target the same transcript and the same miRNA may cross-target different transcripts of proteins of the G1/S transition of the cell cycle; 5p/3p co-targeting was confirmed in stem-loop RT-PCR. CONCLUSION: The observed cross- and co-regulation by paired miRNA species suggests a fail-proof scheme of miRNA regulation in iPSC, which may be important to iPSC pluripotency.
Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/biossíntese , Diferenciação Celular , Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , MicroRNAs/genéticaRESUMO
Due to the irreplaceable nature of phosphorus (P) in biological growth and the shortage of P rock, it is necessary to recover P from waste, such as sludge ash. P-containing products were prepared using sludge ash and calcium-based additives (CaCO3 and eggshell). In addition, the effects of different incineration methods (one-step method (OSM) and multi-step method (MSM)), additive doses, and incineration temperature on the P content and species in the products were investigated. The results indicated that as the dose of calcium-based additives increased, total P (TP) content in P-containing products reduced, apatite P (AP) content increased, non-apatite P (NAIP) content declined, and P solubility in citric acid content decreased. The amount of AP increased, NAIP reduced, and P solubility in citric acid decreased as the incineration temperature climbed. Although P in P-containing products prepared by OSM and MSM changed in a similar way at different additive doses and temperatures, P-containing products prepared by MSM had at least a 6.1% increase in P solubility in citric acid. Compared with OSM, MSM could save 10% of calcium-based additives when reaching the maximum AP value. Additionally, pure materials were employed to investigate how P species changed during the incineration procedure. The advantage of the MSM-prepared product over the OSM-prepared product may be explained by the high concentration of Ca3(PO4)2 and low concentration of amorphous calcium bound P (Ca-P). Overall, MSM is an effective method to reduce the dose of calcium-based additives and increase the bioavailability of P in P-containing products.
Assuntos
Cálcio , Fósforo , Esgotos , Incineração , Ácido Cítrico , Cinza de CarvãoRESUMO
Phosphorus (P) species characterize the effectiveness of the P fertilizer. In this study, the P species and distribution in different manures (pig manure, dairy manure and chicken manure) and their digestate were systematically investigated through combined characterization methods of Hedley fractionation (H2OP, NaHCO3-P, NaOH-P, HCl-P, and Residual), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) techniques. The results from Hedley fractionation showed that >80 % of P in the digestate was inorganic and the HCl-P content in manure increased significantly during anaerobic digestion (AD). XRD manifested that insoluble hydroxyapatite and struvite belonging to HCl-P were presented during AD, which was in agreement with the result of Hedley fractionation. 31P NMR spectral analysis revealed that some orthophosphate monoesters were hydrolyzed during AD, meanwhile the orthophosphate diester organic phosphorus like DNA and phospholipids content has increased. After characterizing P species by combining these methods, it was found that chemical sequential extraction could be an effective way to fully understand the P in livestock manure and digestate, with other methods used as auxiliary tool depending on the purpose of studies. Meanwhile, this study provided a basic knowledge of utilizing digestate as P fertilizer and minimizing the risk of P loss from livestock manure. Overall, applying digestates can minimize the risk of P loss from directly applied livestock manure while satisfying plant demands, and is an environmentally friendly P fertilizer.
Assuntos
Gado , Fósforo , Animais , Suínos , Fósforo/análise , Esterco/análise , Fertilizantes , Fosfatos , AnaerobioseRESUMO
Trophic status in surface waters has been mostly monitored by measuring soluble reactive phosphorus (SRP) and total phosphorus (TP). Additional to these common parameters, a two-dimensional ion chromatography mass spectrometry (2D-IC-MS) method was used to simultaneously measure soluble phosphate (Pi), pyrophosphate (PPi), and eleven phosphate-containing metabolites (P-metabolites) in Lake Ontario and its tributaries. From the additional P species, PPi, adenosine 5'-monophosphate (AMP), glucose 6-phosphate (G-P), D-fructose 6-phosphate (F-P), D-fructose 1,6-biphosphate (F-2P), D-ribulose 5-phosphate (R-P), D-ribulose 1,5-bisphosphate (R-2P), and D-(-)-3-phosphoglyceric acid (PGA) were detected and quantified in the lake and river samples. The additional multivariate statistical analysis identified similarities between samples collected at different locations. The presence of R-P, R-2P, and F-2P in Lake Ontario tributaries seems to be mainly related to the Calvin cycle, while the lack of all these three P-metabolites and higher PGA levels than G-P in Toronto Harbour samples seems to be the result of depleted Calvin cycle, pentose phosphate, and glycolysis metabolic pathways.
Assuntos
Fosfatos , Fósforo , Glicólise , Ontário , FotossínteseRESUMO
A comprehensive profiling method was established for the determination of various chemicals in Pinellia (P.) ternata and pedatisecta species. The profiling method comprises a fast ultrasonic extraction with various solvents, followed by GC-MS and LC-APCI-MS analysis. A total of 73 polar components as trimethylsilyl (TMS) derivatives were detected in methanol extract by GC-MS. The main components of the P. species were profiled as several kinds of fatty acids, amino acids, nucleic acids, carbohydrates, and phenolic compounds. The hexane extract was analyzed by LC-APCI-MS for the lipid profiling. A total of 35 lipid constituents [fatty acids and their esters, mono-, di-, and tri-acylglycerols] and four phytosterols were observed and tentatively characterized by LC-APCI-MS/MS. Among the phytochemicals detected in the hexane extract, triacylglycerols (TAGs) as the major component were identified by LC-APCI-MS and MS/MS. Based on the identified components, a significant difference in the chemical compositions of P. species tuber and processed P. ternata was found that the complete disappearance of TAGs and a considerable decrement of sucrose were observed in processed P. ternata. Furthermore, the degradation mechanism for TAGs in the presence of alum solution is suggested to occur during the processing P. ternata. Malic acid was found to be a characteristic compound for the classification of P. ternata and pedatisecta with different geographic origins. Based on the validated GC/MS method, twenty-four P. ternata, processed P. ternata and P. pedatisecta samples were profiled to measure the overall abundance of specific groups of compound and to identify diagnostic compounds. In addition, principal component analysis (PCA) on the GC/MS profiling data revealed a clear classification of P. species samples. In this study, the full chemical complement was for the first time reported for quality evaluation of P. species. The method can be usefully applied for phytochemical analysis of related herbal medicines.
Assuntos
Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Pinellia/química , Espectrometria de Massas em Tandem , Pressão Atmosférica , Tubérculos/química , Plantas Medicinais/química , Triglicerídeos/análiseRESUMO
The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived.
Assuntos
Compostos Inorgânicos/análise , Compostos Orgânicos/análise , Fósforo/isolamento & purificação , Esgotos/química , Aerobiose , Bactérias/metabolismo , Biodegradação Ambiental , Biopolímeros/análise , Espectroscopia de Ressonância Magnética , Nitrogênio/isolamento & purificaçãoRESUMO
Biochar, the byproduct from fast pyrolysis of waste biomass, is widely used as a soil conditioner. The phosphorus in biochar is not only a P source for plant growth, but also an important factor caused the eutrophication of water. Here, the effects of environmental conditions on the release of different P species from biochar in a biochar-water system were investigated. About 2.2 mg g(-1) P in the form of inorganic orthophosphate and pyrophosphate was released from a raw biochar (contained 4.7 mg P g(-1)) at initial pH of 9.0 in the initial 8h. The release of orthophosphate was significantly enhanced from 0.64 to 1.35 mg g(-1) by the coexisting anions of Cl(-), NO3(-) or SO4(2-) due to the effect of ion exchange competition, while the release of pyrophosphate (P2O7(4-)) was not influenced by the introduction of anions which might be attributed to the formation of stable complexes. The introduction of Hoagland nutrient solution led to the decrease in release of P due to the formation of precipitates between dissolved P and excessive Ca(2+) and Mg(2+).