Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Signal ; 25(11): 2155-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872075

RESUMO

The effects of activating mutations associated with night blindness on the stoichiometry of rhodopsin interactions with G protein-coupled receptor kinase 1 (GRK1) and arrestin-1 have not been reported. Here we show that the monomeric form of WT rhodopsin and its constitutively active mutants M257Y, G90D, and T94I, reconstituted into HDL particles are effectively phosphorylated by GRK1, as well as two more ubiquitously expressed subtypes, GRK2 and GRK5. All versions of arrestin-1 tested (WT, pre-activated, and constitutively monomeric mutants) bind to monomeric rhodopsin and show the same selectivity for different functional forms of rhodopsin as in native disc membranes. Rhodopsin phosphorylation by GRK1 and GRK2 promotes arrestin-1 binding to a comparable extent, whereas similar phosphorylation by GRK5 is less effective, suggesting that not all phosphorylation sites on rhodopsin are equivalent in promoting arrestin-1 binding. The binding of WT arrestin-1 to phospho-opsin is comparable to the binding to its preferred target, P-Rh*, suggesting that in photoreceptors arrestin-1 only dissociates after opsin regeneration with 11-cis-retinal, which converts phospho-opsin into inactive phospho-rhodopsin that has lower affinity for arrestin-1. Reduced binding of arrestin-1 to the phospho-opsin form of G90D mutant likely contributes to night blindness caused by this mutation in humans.


Assuntos
Arrestina/genética , Receptor Quinase 1 Acoplada a Proteína G/genética , Mutação , Cegueira Noturna/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/genética , Animais , Arrestina/metabolismo , Bovinos , HDL-Colesterol/química , HDL-Colesterol/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Regulação da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Cegueira Noturna/metabolismo , Cegueira Noturna/patologia , Opsinas/genética , Opsinas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Células Fotorreceptoras Retinianas Bastonetes/patologia , Rodopsina/metabolismo , Transdução de Sinais
2.
Cell Signal ; 25(12): 2613-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24012956

RESUMO

Arrestin-1 binds light-activated phosphorhodopsin and ensures timely signal shutoff. We show that high transgenic expression of an arrestin-1 mutant with enhanced rhodopsin binding and impaired oligomerization causes apoptotic rod death in mice. Dark rearing does not prevent mutant-induced cell death, ruling out the role of arrestin complexes with light-activated rhodopsin. Similar expression of WT arrestin-1 that robustly oligomerizes, which leads to only modest increase in the monomer concentration, does not affect rod survival. Moreover, WT arrestin-1 co-expressed with the mutant delays retinal degeneration. Thus, arrestin-1 mutant directly affects cell survival via binding partner(s) other than light-activated rhodopsin. Due to impaired self-association of the mutant its high expression dramatically increases the concentration of the monomer. The data suggest that monomeric arrestin-1 is cytotoxic and WT arrestin-1 protects rods by forming mixed oligomers with the mutant and/or competing with it for the binding to non-receptor partners. Thus, arrestin-1 self-association likely serves to keep low concentration of the toxic monomer. The reduction of the concentration of harmful monomer is an earlier unappreciated biological function of protein oligomerization.


Assuntos
Arrestina/genética , Arrestina/metabolismo , Mutação , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Animais , Arrestina/química , Morte Celular , MAP Quinase Quinase 4/metabolismo , Camundongos , Multimerização Proteica , Células Fotorreceptoras Retinianas Bastonetes/citologia , Rodopsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa