Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Purinergic Signal ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421486

RESUMO

For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.

2.
Cell Mol Biol Lett ; 29(1): 100, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977961

RESUMO

OBJECTIVE: Osteoporosis is a global health issue characterized by decreased bone mass and microstructural degradation, leading to an increased risk of fractures. This study aims to explore the molecular mechanism by which P2X7 receptors influence osteoclast formation and bone resorption through the PI3K-Akt-GSK3ß signaling pathway. METHODS: An osteoporosis mouse model was generated through ovariectomy (OVX) in normal C57BL/6 and P2X7f/f; LysM-cre mice. Osteoclasts were isolated for transcriptomic analysis, and differentially expressed genes were selected for functional enrichment analysis. Metabolite analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and multivariate statistical analysis and pattern recognition were used to identify differential lipid metabolism markers and their distribution. Bioinformatics analyses were conducted using the Encyclopedia of Genes and Genomes database and the MetaboAnalyst database to assess potential biomarkers and create a metabolic pathway map. Osteoclast precursor cells were used for in vitro cell experiments, evaluating cell viability and proliferation using the Cell Counting Kit 8 (CCK-8) assay. Osteoclast precursor cells were induced to differentiate into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-beta ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) staining was performed to compare differentiation morphology, size, and quantity between different groups. Western blot analysis was used to assess the expression of differentiation markers, fusion gene markers, and bone resorption ability markers in osteoclasts. Immunofluorescence staining was employed to examine the spatial distribution and quantity of osteoclast cell skeletons, P2X7 protein, and cell nuclei, while pit assay was used to evaluate osteoclast bone resorption ability. Finally, in vivo animal experiments, including micro computed tomography (micro-CT), hematoxylin and eosin (HE) staining, TRAP staining, and immunohistochemistry, were conducted to observe bone tissue morphology, osteoclast differentiation, and the phosphorylation level of the PI3K-Akt-GSK3ß signaling pathway. RESULTS: Transcriptomic and metabolomic data collectively reveal that the P2X7 receptor can impact the pathogenesis of osteoporosis through the PI3K-Akt-GSK3ß signaling pathway. Subsequent in vitro experiments showed that cells in the Sh-P2X7 + Recilisib group exhibited increased proliferative activity (1.15 versus 0.59), higher absorbance levels (0.68 versus 0.34), and a significant increase in resorption pit area (13.94 versus 3.50). Expression levels of osteoclast differentiation-related proteins MMP-9, CK, and NFATc1 were markedly elevated (MMP-9: 1.72 versus 0.96; CK: 2.54 versus 0.95; NFATc1: 3.05 versus 0.95), along with increased fluorescent intensity of F-actin rings. In contrast, the OE-P2X7 + LY294002 group showed decreased proliferative activity (0.64 versus 1.29), reduced absorbance (0.34 versus 0.82), and a significant decrease in resorption pit area (5.01 versus 14.96), accompanied by weakened expression of MMP-9, CK, and NFATc1 (MMP-9: 1.14 versus 1.79; CK: 1.26 versus 2.75; NFATc1: 1.17 versus 2.90) and decreased F-actin fluorescent intensity. Furthermore, in vivo animal experiments demonstrated that compared with the wild type (WT) + Sham group, mice in the WT + OVX group exhibited significantly increased levels of CTX and NTX in serum (CTX: 587.17 versus 129.33; NTX: 386.00 versus 98.83), a notable decrease in calcium deposition (19.67 versus 53.83), significant reduction in bone density, increased trabecular separation, and lowered bone mineral density (BMD). When compared with the KO + OVX group, mice in the KO + OVX + recilisib group showed a substantial increase in CTX and NTX levels in serum (CTX: 503.50 versus 209.83; NTX: 339.83 versus 127.00), further reduction in calcium deposition (29.67 versus 45.33), as well as decreased bone density, increased trabecular separation, and reduced BMD. CONCLUSION: P2X7 receptors positively regulate osteoclast formation and bone resorption by activating the PI3K-Akt-GSK3ß signaling pathway.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos C57BL , Osteoclastos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Purinérgicos P2X7 , Transdução de Sinais , Animais , Feminino , Camundongos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Osteoclastos/metabolismo , Osteoporose/metabolismo , Osteoporose/genética , Osteoporose/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ligante RANK/metabolismo , Ligante RANK/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética
3.
J Biol Chem ; 298(6): 102002, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504351

RESUMO

P2X receptors are a class of nonselective cation channels widely distributed in the immune and nervous systems, and their dysfunction is a significant cause of tumors, inflammation, leukemia, and immune diseases. P2X7 is a unique member of the P2X receptor family with many properties that differ from other subtypes in terms of primary sequence, the architecture of N- and C-terminals, and channel function. Here, we suggest that the observed lengthened ß2- and ß3-sheets and their linker (loop ß2,3), encoded by redundant sequences, play an indispensable role in the activation of the P2X7 receptor. We show that deletion of this longer structural element leads to the loss of P2X7 function. Furthermore, by combining mutagenesis, chimera construction, surface expression, and protein stability analysis, we found that the deletion of the longer ß2,3-loop affects P2X7 surface expression but, more importantly, that this loop affects channel gating of P2X7. We propose that the longer ß2,3-sheets may have a negative regulatory effect on a loop on the head domain and on the structural element formed by E171 and its surrounding regions. Understanding the role of the unique structure of the P2X7 receptor in the gating process will aid in the development of selective drugs targeting this subtype.


Assuntos
Trifosfato de Adenosina , Conformação Proteica em Folha beta , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Humanos , Inflamação , Conformação Proteica em Folha beta/genética , Estabilidade Proteica , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Ativação Transcricional
4.
Purinergic Signal ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032425

RESUMO

P2X7 receptors (P2X7Rs) are membrane-bound ATP-gated ion channels that are composed of three subunits. Different subunit structures may be expressed due to alternative splicing of the P2RX7 gene, altering the receptor's function when combined with the wild-type P2X7A subunits. In this study, the application of the deep-learning method, AlphaFold2-Multimer (AF2M), for the generation of trimeric P2X7Rs was validated by comparing an AF2M-generated rat wild-type P2X7A receptor with a structure determined by cryogenic electron microscopy (cryo-EM) (Protein Data Bank Identification: 6U9V). The results suggested AF2M could firstly, accurately predict the structures of P2X7Rs and secondly, accurately identify the highest quality model through the ranking system. Subsequently, AF2M was used to generate models of heterotrimeric alternatively spliced P2X7Rs consisting of one or two wild-type P2X7A subunits in combination with one or two P2X7B, P2X7E, P2X7J, and P2X7L splice variant subunits. The top-ranking models were deemed valid based on AF2M's confidence measures, stability in molecular dynamics simulations, and consistent flexibility of the conserved regions between the models. The structure of the heterotrimeric receptors, which were missing key residues in the ATP binding sites and carboxyl terminal domains (CTDs) compared to the wild-type receptor, help to explain their observed functions. Overall, the models produced in this study (available as supplementary material) unlock the possibility of structure-based studies into the heterotrimeric P2X7Rs.

5.
Purinergic Signal ; 19(1): 43-53, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35389158

RESUMO

This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.


Assuntos
Eletroacupuntura , Hipersensibilidade , Síndrome do Intestino Irritável , Dor Visceral , Ratos , Animais , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/terapia , Ratos Sprague-Dawley , Astrócitos/metabolismo , Dor Visceral/metabolismo , Eletroacupuntura/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Hipersensibilidade/metabolismo , Analgésicos
6.
Eur J Nucl Med Mol Imaging ; 49(8): 2595-2604, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35048153

RESUMO

PURPOSE: P2X7 receptors have been considered as a promising biomarker for vulnerable atherosclerotic plaques, which are highly expressed by that instability-associated factors such as macrophages. Thus, we aim to investigate the feasibility of using specific P2X7-targeted 18F-labeled tracer 18F-FTTM ((2-chloro-3-[18F]fluorophenyl)[1,4,6,7-tetrahydro-1-(2-pyrimidinyl)-5H-1,2,3-triazolo[4,5-c]pyridin-5-yl]methanone) for PET study of vulnerable atherosclerotic plaques identification. METHOD: The radioligand 18F-FTTM was achieved based on the copper-mediated radiofluorination of arylstannane. In vitro and in vivo experiments were performed to verify the biochemical properties. Dynamic 18F-FTTM Micro-PET/CT imaging was performed for 1 h on ApoE-/- mice (10, 20, 30 weeks on high-fat diet) and wild-type C57BL/6 J mice on normal diet. Ex vivo PET imaging was conducted to verify the specificity of the radioligand. Serum inflammatory cytokines, lipids, and lipoproteins profiles were detected by ELISA. The lipid distribution and morphology of plaques were evaluated by Oil Red O, HE, Masson, and immunofluorescence stainings. RESULTS: 18F-FTTM was afforded with decay-corrected radiochemical yields of 5-10%, specific activity of 269-320 MBq/nmol (n = 8, EOS), and radiochemical purity of above 99%. 18F-FTTM showed excellent stability in vitro, rapid blood clearance in mice, good affinity to RAW264.7 cells. We observed an increase in both in vivo and ex vivo imagings as disease progressed, and the imaging signatures correlated with histopathological features. Furthermore, compared with 18F-FDG imaging, the SUVmax values of 18F-FTTM at the aortic arch of ApoE-/- mice of high-fat feeding for 20 and 30 weeks were 43% and 53% higher than those of the control group, respectively. CONCLUSION: We innovatively apply a new type P2X7-targeted PET probe (18F-FTTM) to identify vulnerable atherosclerotic plaques, to detect the inflammatory response of atherosclerosis, and to provide a powerful non-invasive method for the diagnosis of atherosclerotic lesions and new drug screening for accurate treatment.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Apolipoproteínas E , Aterosclerose/diagnóstico por imagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Receptores Purinérgicos P2X7
7.
J Biochem Mol Toxicol ; 36(1): e22885, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34859534

RESUMO

Ginsenoside-Rg1 (G-Rg1), a saponin that is a primary component of ginseng, is effective against inflammatory diseases. The P2X purinoceptor 7 (P2X7) receptor is an ATP-gated ion channel that is predominantly expressed in immune cells and plays a key role in inflammatory processes. We investigated the role of G-Rg1 in sepsis-related cardiac dysfunction and the underlying mechanism involving the regulation of the P2X7 receptor. We detected cell viability, cytotoxicity, cellular reactive oxygen species (ROS) levels, and mitochondrial membrane potential (MMP) with or without G-Rg1 in lipopolysaccharide (LPS)- or hypoxia/reoxygenation (H/R)-induced H9c2 cell models of ischemia/reperfusion injury. We applied cecal ligation and puncture (CLP) to induce a mouse model of sepsis and measured the survival duration and cardiac function of CLP mice. Next, we quantified the ROS level, MMP, respiratory chain complex I-IV enzymatic activity, and mitochondrial fusion in CLP mouse heart tissues. We then investigated the role of G-Rg1 in repairing LPS-induced cell mitochondrial damage, including mitochondrial superoxidation products. The results showed that G-Rg1 inhibited LPS- or H/R-induced cardiomyocyte apoptosis, cytotoxicity, ROS levels, and mitochondrial damage. In addition, G-Rg1 prolonged the survival time of CLP mice. G-Rg1 attenuated LPS-induced superoxide production in the mitochondria of cardiomyocytes and the excessive release of cytochrome c from mitochondria into the cytoplasm. Most importantly, G-Rg1 suppressed LPS-mediated induction of proapoptotic Bax, activated Akt, induced GSK-3ß phosphorylation, and balanced mitochondrial calcium levels. Overall, G-Rg1 activates the Akt/GSK-3ß pathway through P2X7 receptors to inhibit sepsis-induced cardiac dysfunction and mitochondrial dysfunction.


Assuntos
Ginsenosídeos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/genética , Cardiopatias/genética , Camundongos , Mitocôndrias Cardíacas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Receptores Purinérgicos P2X7/genética , Sepse/genética
8.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361807

RESUMO

There is a new form of puerarin, puerarin-V, that has recently been developed, and it is unclear whether puerarin-V has a cardioprotective effect on diabetic cardiomyopathy (DCM). Here, we determined whether puerarin-V had any beneficial influence on the pathophysiology of DCM and explored its possible mechanisms. By injecting 30 mg/kg of STZ intraperitoneally, diabetes was induced in rats. After a week of stability, the rats were injected subcutaneously with ISO (5 mg/kg). We randomly assigned the rats to eight groups: (1) control; (2) model; (3) metformin; (4-6) puerarin-V at different doses; (7) puerarin (API); (8) puerarin injection. DCM rats were found to have severe cardiac insufficiency (arrythmia, decreased LVdP/dt, and increased E/A ratio). In addition, cardiac injury biomarkers (cTn-T, NT-proBNP, AST, LDH, and CK-MB), inflammatory cytokines (IL-1ß, IL-18, IL-6, and TNF-α), and oxidative damage markers (MDA, SOD and GSH) were markedly increased. Treatment with puerarin-V positively adjusts these parameters mentioned above by improving cardiac function and mitochondrial respiration, suppressing myocardial inflammation, and maintaining the structural integrity of the cardiac muscle. Moreover, treatment with puerarin-V inhibits the P2X7 receptor-mediated pyroptosis pathway that was upregulated in diabetic hearts. Given these results, the current study lends credence to the idea that puerarin-V can reduce myocardial damage in DCM rats. Furthermore, it was found that the effect of puerarin-V in diabetic cardiomyopathy is better than the API, the puerarin injection, and metformin. Collectively, our research provides a new therapeutic option for the treatment of DCM in clinic.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Metformina , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Receptores Purinérgicos P2X7 , Piroptose , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Miocárdio , Respiração , Metformina/uso terapêutico
9.
Biochem Biophys Res Commun ; 569: 112-117, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34243066

RESUMO

P2X7 receptors are trimeric ion channels activated by extracellular ATP. Upon activation, they trigger cytolysis and apoptosis but also control cell proliferation. To shed more light on channel gating and the underlying function of the individual subunits, receptors of concatenated subunits were built containing a defined number of functional binding sites. The currents evoked by ATP were obtained in the outside-out configuration of the patch-clamp technique, and steady-state activation, as well as time courses, were analyzed. Our results show that each occupied binding site contributes to channel activation. While the occupation of a single binding site can already activate the channels, three bound ligands maximally stabilize the open state. Hence, P2X7 receptors can be described by a stepwise activation process.


Assuntos
Trifosfato de Adenosina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Mutação de Sentido Incorreto , Oócitos/fisiologia , Receptores Purinérgicos P2X7/genética , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Sítios de Ligação/genética , Feminino , Ativação do Canal Iônico/genética , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Oócitos/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/metabolismo , Fatores de Tempo , Xenopus laevis
10.
Arch Biochem Biophys ; 714: 109078, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742673

RESUMO

The purinergic activation of P2 receptors initiates a powerful and rapid signaling cascade that contributes to the regulation of an array of physiological and pathophysiological processes in many organs, including the kidney. P2 receptors are broadly distributed in both epithelial and vascular renal cells. Disturbances of purinergic signaling can lead to impairments in renal function. A growing body of evidence indicates changes in P2 receptor expression and nucleotide metabolism in chronic renal injury and inflammatory diseases. Increasing attention has focused on purinergic P2X7 receptors, which are not normally expressed in healthy kidney tissue but are highly expressed at sites of tissue damage and inflammation. Under hyperglycemic conditions, several mechanisms that are linked to purinergic signaling and involve nucleotide release and degradation are disrupted, resulting in the accumulation of adenosine 5'-triphosphate in the bloodstream in diabetes. Dysfunction of the purinergic system might be associated with serious vascular complications in diabetes, including diabetic nephropathy. This review summarizes our current knowledge of the role of P2 receptors in diabetes-related glomerular injury and its implications for new therapeutics for diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Receptores Purinérgicos P2/metabolismo , Animais , Humanos , Transdução de Sinais
11.
Med Res Rev ; 40(6): 2427-2465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32677086

RESUMO

Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Preparações Farmacêuticas , Animais , Humanos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7
12.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516946

RESUMO

Purinergic receptors play a central role in the renal pathophysiology of angiotensin II-induced hypertension, since elevated ATP chronically activates P2X7 receptors in this model. The changes induced by the P2X antagonist Brilliant blue G (BBG) in glomerular hemodynamics and in tubulointerstitial inflammation resulting from angiotensin II infusion were studied. Rats received angiotensin II (435 ng·kg-1·min-1, 2 weeks) alone or in combination with BBG (50 mg/kg/day intraperitoneally). BBG did not modify hypertension (214.5 ± 1.4 vs. 212.7 ± 0.5 mmHg), but restored to near normal values afferent (7.03 ± 1.00 to 2.97 ± 0.27 dyn.s.cm-5) and efferent (2.62 ± 0.03 to 1.29 ± 0.09 dyn.s.cm-5) arteriolar resistances, glomerular plasma flow (79.23 ± 3.15 to 134.30 ± 1.11 nl/min), ultrafiltration coefficient (0.020 ± 0.002 to 0.036 ± 0.003 nl/min/mmHg) and single nephron glomerular filtration rate (22.28 ± 2.04 to 34.46 ± 1.54 nl/min). Angiotensin II induced overexpression of P2X7 receptors in renal tubular cells and in infiltrating T and B lymphocytes and macrophages. All inflammatory cells were increased by angiotensin II infusion and reduced by 20% to 50% (p < 0.05) by BBG administration. Increased IL-2, IL-6, TNFα, IL-1ß, IL-18 and overexpression of NLRP3 inflammasome were induced by angiotensin II and suppressed by BBG. These studies suggest that P2X7 receptor-mediated renal vasoconstriction, tubulointerstitial inflammation and activation of NLRP3 inflammasome are associated with angiotensin II-induced hypertension.


Assuntos
Angiotensina II/efeitos adversos , Suscetibilidade a Doenças , Hipertensão/etiologia , Hipertensão/metabolismo , Nefrite/complicações , Nefrite/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Pressão Arterial , Biópsia , Citocinas/metabolismo , Gerenciamento Clínico , Hipertensão/diagnóstico , Imunidade , Proteinúria/metabolismo , Punções , Ratos , Receptores Purinérgicos P2X7/genética
13.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188153

RESUMO

The ability of P2X7 receptors to potentiate rhythmically evoked acetylcholine (ACh) release through Ca2+ entry via P2X7 receptors and via L-type voltage-dependent Ca2+ channels (VDCCs) was compared by loading Ca2+ chelators into motor nerve terminals. Neuromuscular preparations of the diaphragms of wild-type (WT) mice and pannexin-1 knockout (Panx1-/-) mice, in which ACh release is potentiated by the disinhibition of the L-type VDCCs upon the activation of P2X7 receptors, were used. Miniature end-plate potentials (MEPPs) and evoked end-plate potentials (EPPs) were recorded when the motor terminals were loaded with slow or fast Ca2+ chelators (EGTA-AM or BAPTA-AM, respectively, 50 µM). In WT and Panx1-/- mice, EGTA-AM did not change either spontaneous or evoked ACh release, while BAPTA-AM inhibited synaptic transmission by suppressing the quantal content of EPPs throughout the course of the short rhythmic train (50 Hz, 1 s). In the motor synapses of either WT or Panx1-/- mice in the presence of BAPTA-AM, the activation of P2X7 receptors by BzATP (30 µM) returned the EPP quantal content to the control level. In the neuromuscular junctions (NMJs) of Panx1-/- mice, EGTA-AM completely prevented the BzATP-induced increase in EPP quantal content. After Panx1-/- NMJs were treated with BAPTA-AM, BzATP lost its ability to enhance the EPP quantal content to above the control level. Nitrendipine (1 µM), an inhibitor of L-type VDCCs, was unable to prevent this BzATP-induced enhancement of EPP quantal content to the control level. We propose that the activation of P2X7 receptors may provide additional Ca2+ entry into motor nerve terminals, which, independent of the modulation of L-type VDCC activity, can partially reduce the buffering capacity of Ca2+ chelators, thereby providing sufficient Ca2+ signals for ACh secretion at the control level. However, the activity of both Ca2+ chelators was sufficient to eliminate Ca2+ entry via L-type VDCCs activated by P2X7 receptors and increase the EPP quantal content in the NMJs of Panx1-/- mice to above the control level.


Assuntos
Quelantes de Cálcio/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Acetilcolina/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L/metabolismo , Quelantes , Conexinas/genética , Ácido Egtázico/análogos & derivados , Ácido Egtázico/antagonistas & inibidores , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/metabolismo , Transmissão Sináptica
14.
J Neurochem ; 149(6): 760-780, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30570747

RESUMO

Chronic postsurgical pain (CPSP) remains a medical problem. Whether the descending modulation of nociceptive transmission from the rostral ventromedial medulla (RVM) plays a role in CPSP induced by skin/muscle incision and retraction (SMIR) in the thigh is still unknown. In this study, we found that SMIR surgery, which induced either bilateral or unilateral mechanical allodynia, activated microglia, and up-regulated interleukin-1ß (IL-1ß), an important cytokine, and 8-hydroxyguanine, an oxidative stress marker in the RVM. In addition, the release of 5-hydroxytryptamine (5-HT) was increased in the ipsilateral and contralateral RVM in rats with either bilateral or unilateral pain following SMIR. The 5-HT level increase, 5-HT3 receptor (5-HT3R) up-regulation, and microglia activation were found bilaterally in SMIR rats with bilateral pain, but only ipsilaterally in SMIR rats with unilateral pain. The intrathecal injection of the 5-HT3R antagonist Y25130 prevented the development of CPSP and the activation of spinal microglia induced by SMIR. Furthermore, P2X7 receptor (P2X7R) was up-regulated in microglia in the RVM. The microinjection of the P2X7R antagonist brilliant blue G (BBG, a non-competitive P2X7R antagonist) into the RVM prevented the development of mechanical allodynia, inhibited the activation of microglia, and decreased the expression of IL-1ß and 8-hydroxyguanine in the RVM following SMIR. Importantly, BBG injected into the RVM also decreased the activation of microglia and the level of 5-HT in the lumbar 3 (L3) spinal cord. The microinjection of the P2X7R agonist BzATP, the NADPH oxidase activator phorbol-12-myristate-13-acetate, or IL-1ß into the RVM induced bilateral mechanical allodynia, microglia activation, and 5-HT release in the L3 spinal dorsal horn. Taken together, P2X7R activation in microglia in the RVM following SMIR might be responsible for the development of CPSP via activating descending serotonergic pathway. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Bulbo/metabolismo , Microglia/metabolismo , Vias Neurais/metabolismo , Dor Pós-Operatória/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Dor Crônica/metabolismo , Hiperalgesia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
15.
Int J Mol Sci ; 20(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609840

RESUMO

We have tested the hypothesis that neuropathic pain acting as a stressor drives functional plasticity in the sympathoadrenal system. The relation between neuropathic pain and adrenal medulla function was studied with behavioral, immunohistochemical and electrophysiological techniques in rats subjected to chronic constriction injury of the sciatic nerve. In slices of the adrenal gland from neuropathic animals, we have evidenced increased cholinergic innervation and spontaneous synaptic activity at the splanchnic nerve⁻chromaffin cell junction. Likewise, adrenomedullary chromaffin cells displayed enlarged acetylcholine-evoked currents with greater sensitivity to α-conotoxin RgIA, a selective blocker of α9 subunit-containing nicotinic acetylcholine receptors, as well as increased exocytosis triggered by voltage-activated Ca2+ entry. Altogether, these adaptations are expected to facilitate catecholamine output into the bloodstream. Last, but most intriguing, functional and immunohistochemical data indicate that P2X3 and P2X7 purinergic receptors and transient receptor potential vanilloid-1 (TRPV1) channels are overexpressed in chromaffin cells from neuropathic animals. These latter observations are reminiscent of molecular changes characteristic of peripheral sensitization of nociceptors following the lesion of a peripheral nerve, and suggest that similar phenomena can occur in other tissues, potentially contributing to behavioral manifestations of neuropathic pain.


Assuntos
Neuralgia/patologia , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Canais de Cátion TRPV/metabolismo , Acetilcolina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Medula Suprarrenal/metabolismo , Medula Suprarrenal/patologia , Animais , Capsaicina/farmacologia , Catecolaminas/metabolismo , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Modelos Animais de Doenças , Potenciais Evocados/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuralgia/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/genética , Canais de Cátion TRPV/genética
16.
Mol Pain ; 14: 1744806918795793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30146934

RESUMO

Pain hypersensitivity resulting from peripheral nerve injury depends on pathological microglial activation in the dorsal horn of the spinal cord. This microglial activity is critically modulated by P2X7 receptors (P2X7R) and ATP stimulation of these receptors produces mechanical allodynia, a defining feature of neuropathic pain. Peripheral nerve injury increases P2X7R expression and potentiates its cation channel function in spinal microglia. Here, we report a means to preferentially block the potentiation of P2X7R function by delivering a membrane permeant small interfering peptide that targets Y382-384, a putative tyrosine phosphorylation site within the P2X7R intracellular C-terminal domain. Intrathecal administration of this palmitoylated peptide (P2X7R379-389) transiently reversed mechanical allodynia caused by peripheral nerve injury in both male and female rats. Furthermore, targeting Y382-384 suppressed P2X7R-mediated release of cytokine tumor necrosis factor alpha and blocked the adoptive transfer of mechanical allodynia caused by intrathecal injection of P2X7R-stimulated microglia. Thus, Y382-384 site-specific modulation of P2X7R is an important microglial mechanism in neuropathic pain.


Assuntos
Neuralgia/tratamento farmacológico , Peptídeos/farmacologia , Receptores Purinérgicos P2X7/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hiperalgesia , Injeções Espinhais , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/metabolismo , Limiar da Dor/efeitos dos fármacos , Peptídeos/química , Peptídeos/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Purinergic Signal ; 14(4): 459-469, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362043

RESUMO

P2X7 receptors are present in presynaptic membranes of motor synapses, but their regulatory role in modulation of neurotransmitter release remains poorly understood. P2X7 receptors may interact with pannexin 1 channels to form a purinergic signaling unit. The potential mechanism of P2X7 receptor-dependent modulation of acetylcholine (ACh) release was investigated by recording miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in neuromuscular junctions of wild-type (WT) and pannexin 1 knockout (Panx1-/-) mice. Modulation of P2X7 receptors with the selective inhibitor A740003 or the selective agonist BzATP did not alter the parameters of either spontaneous or evoked ACh release in WT mice. In Panx1-/- mice, BzATP-induced activation of P2X7 receptors resulted in a uniformly increased quantal content of EPPs during a short stimulation train. This effect was accompanied by an increase in the size of the readily releasable pool, while the release probability did not change. Inhibition of calmodulin by W-7 or of calcium/calmodulin-dependent kinase II (CaMKII) by KN-93 completely prevented the potentiating effect of BzATP on the EPP quantal content. The blockade of L-type calcium channels also prevented BzATP action on evoked synaptic activity. Thus, the activation of presynaptic P2X7 receptors in mice lacking pannexin 1 resulted in enhanced evoked ACh release. Such enhanced release was provoked by triggering the calmodulin- and CaMKII-dependent signaling pathway, followed by activation of presynaptic L-type calcium channels. We suggest that in WT mice, this pathway is downregulated due to pannexin 1-dependent tonic activation of inhibitory presynaptic purinergic receptors, which overcomes P2X7-mediated effects.


Assuntos
Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Transmissão Sináptica/fisiologia , Acetamidas/farmacologia , Acetilcolina/metabolismo , Animais , Conexinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Quinolinas/farmacologia , Receptores Purinérgicos P2X7/genética , Sinapses/efeitos dos fármacos , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
18.
Cereb Cortex ; 27(7): 3568-3585, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341850

RESUMO

Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits.


Assuntos
Hipocampo/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Nucleotídeos/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Estado Epiléptico/patologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Aminoquinolinas/farmacologia , Animais , Modelos Animais de Doenças , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Agonistas Muscarínicos/toxicidade , Células-Tronco Neurais/metabolismo , Pilocarpina/toxicidade , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2Y1/genética , Estado Epiléptico/induzido quimicamente
19.
Brain Behav Immun ; 61: 365-374, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28089560

RESUMO

Postoperative cognitive dysfunction worsens patient outcome after surgery. Neuroinflammation is a critical neuropathological process for it. We determined the role of P2X7 receptors, proteins that participate in inflammatory response, in the neuroinflammation induction after surgery, and whether the choice of volatile anesthetics affects its occurrence. Eight-week old C57BL/6J or P2X7 receptor knockout male mice were subjected to right carotid arterial exposure under anesthesia with 1.8% isoflurane, 2.5% sevoflurane or 10% desflurane. They were tested by Barnes maze and fear conditioning from 2weeks after the surgery. Hippocampus was harvested 6h, 24h and 7days after the surgery for immunohistochemical staining and Western blotting. Mice with surgery under anesthesia with isoflurane, sevoflurane or desflurane took longer than control mice to identify the target box 1 or 8days after the training sessions in Barnes maze. Mice anesthetized by isoflurane or sevoflurane, but not by desflurane, had less freezing behavior than control mice in fear conditioning test. Mice with surgery and anesthesia had increased ionized calcium binding adapter molecule 1 and interleukin 1ß in the hippocampus but this increase was smaller in mice anesthetized with desflurane than mice anesthetized with isoflurane. Mice with surgery had increased P2X7 receptors and its downstream molecule caspase 1. Inhibition or knockout of P2X7 receptors attenuated surgery and anesthesia-induced neuroinflammation and cognitive impairment. We conclude that surgery under desflurane anesthesia may have reduced neuroinflammation and cognitive impairment compared with surgery under isoflurane anesthesia. P2X7 receptors may mediate the neuroinflammation and cognitive impairment after surgery.


Assuntos
Artérias Carótidas/cirurgia , Disfunção Cognitiva/metabolismo , Encefalite/metabolismo , Complicações Pós-Operatórias/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Anestésicos Inalatórios/uso terapêutico , Animais , Disfunção Cognitiva/etiologia , Desflurano , Encefalite/etiologia , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Isoflurano/análogos & derivados , Isoflurano/uso terapêutico , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Complicações Pós-Operatórias/etiologia , Receptores Purinérgicos P2X7/genética
20.
Cell Mol Life Sci ; 73(13): 2583-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26803842

RESUMO

Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca(2+) levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice was significantly better than that of control mdx Cx43(fl/fl)Cx45(fl/fl) mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD.


Assuntos
Apoptose , Conexinas/análise , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Morte Celular , Conexinas/metabolismo , Distrofina/análise , Distrofina/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , NF-kappa B/análise , NF-kappa B/metabolismo , Receptores Purinérgicos P2X7/análise , Receptores Purinérgicos P2X7/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa