Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Neurosci ; 43(48): 8090-8103, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37758475

RESUMO

During brain development, excess synapses are pruned (i.e., removed), in part by microglial phagocytosis, and dysregulated synaptic pruning can lead to behavioral deficits. The P2Y6 receptor (P2Y6R) is known to regulate microglial phagocytosis of neurons, and to regulate microglial phagocytosis of synapses in cell culture and in vivo during aging. However, currently it is unknown whether P2Y6R regulates synaptic pruning during development. Here, we show that P2Y6R KO mice of both sexes had strongly reduced microglial internalization of synaptic material, measured as Vglut1 within CD68-staining lysosomes of microglia at postnatal day 30 (P30), suggesting reduced microglial phagocytosis of synapses. Consistent with this, we found an increased density of synapses in the somatosensory cortex and the CA3 region and dentate gyrus of the hippocampus at P30. We also show that adult P2Y6R KO mice have impaired short- and long-term spatial memory and impaired short- and long-term recognition memory compared with WT mice, as measured by novel location recognition, novel object recognition, and Y-maze memory tests. Overall, this indicates that P2Y6R regulates microglial phagocytosis of synapses during development, and this contributes to memory capacity.SIGNIFICANCE STATEMENT The P2Y6 receptor (P2Y6R) is activated by uridine diphosphate released by neurons, inducing microglial phagocytosis of such neurons or synapses. We tested whether P2Y6R regulates developmental synaptic pruning in mice and found that P2Y6R KO mice have reduced synaptic material within microglial lysosomes, and increased synaptic density in the brains of postnatal day 30 mice, consistent with reduced synaptic pruning during development. We also found that adult P2Y6R KO mice had reduced memory, consistent with persistent deficits in brain function, resulting from impaired synaptic pruning. Overall, the results suggest that P2Y6R mediates microglial phagocytosis of synapses during development, and the absence of this results in memory deficits in the adult.


Assuntos
Microglia , Sinapses , Masculino , Feminino , Camundongos , Animais , Microglia/fisiologia , Fagocitose/fisiologia , Neurônios
2.
J Recept Signal Transduct Res ; 43(2): 37-49, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37099407

RESUMO

PURPOSE: Hyporeactivity to vasopressors leading to multiple organ failure is a serious clinical implication in sepsis. Though the regulatory role of purinoceptors in inflammation is reported, their involvement in sepsis-induced vasoplegia is still unknown. Thus we investigated the effect of sepsis on vascular AT1 and P2Y6 receptors. MATERIALS AND METHODS: Polymicrobial sepsis was induced by cecal ligation and puncture in mice. Vascular reactivity was assessed by organ bath study and aortic mRNA expression of AT1 and P2Y6 was quantified by qRT-PCR. RESULTS: Both angiotensin-II and UDP produced higher contractions in the absence of endothelium as well as following inhibition of nitric oxide synthase. Angiotensin-II mediated aortic contraction was antagonized by losartan (AT1 antagonist), but not by PD123319 (AT2 antagonist) whereas UDP-induced aortic contraction was significantly inhibited by MRS2578 (P2Y6 antagonist). In addition, MRS2578 significantly inhibited the contractile response of Ang-II. Compared to SO mice, angiotensin-II and UDP-induced maximum contraction were found to be significantly attenuated in sepsis. Accordingly, aortic mRNA expression of AT1a receptors was significantly down-regulated while that of P2Y6 receptors was significantly increased in sepsis. 1400 W (a selective iNOS inhibitor) significantly reversed angiotensin-II-induced vascular hyporeactivity in sepsis without affecting UDP-induced hypo-reactivity. CONCLUSION: Sepsis-induced vascular hyporeactivity to angiotensin-II is mediated by enhanced expression of iNOS. Moreover, AT1R-P2Y6 cross talk/heterodimerization could be a novel target for regulating vascular dysfunction in sepsis.


Assuntos
Angiotensina II , Sepse , Camundongos , Animais , Angiotensina II/farmacologia , Sepse/complicações , Sepse/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Difosfato de Uridina
3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835211

RESUMO

Nonalcoholic steatohepatitis (NASH) is a disease that progresses from nonalcoholic fatty liver (NAFL) and which is characterized by inflammation and fibrosis. The purinergic P2Y6 receptor (P2Y6R) is a pro-inflammatory Gq/G12 family protein-coupled receptor and reportedly contributes to intestinal inflammation and cardiovascular fibrosis, but its role in liver pathogenesis is unknown. Human genomics data analysis revealed that the liver P2Y6R mRNA expression level is increased during the progression from NAFL to NASH, which positively correlates with inductions of C-C motif chemokine 2 (CCL2) and collagen type I α1 chain (Col1a1) mRNAs. Therefore, we examined the impact of P2Y6R functional deficiency in mice crossed with a NASH model using a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). Feeding CDAHFD for 6 weeks markedly increased P2Y6R expression level in mouse liver, which was positively correlated with CCL2 mRNA induction. Unexpectedly, the CDAHFD treatment for 6 weeks increased liver weights with severe steatosis in both wild-type (WT) and P2Y6R knockout (KO) mice, while the disease marker levels such as serum AST and liver CCL2 mRNA in CDAHFD-treated P2Y6R KO mice were rather aggravated compared with those of CDAHFD-treated WT mice. Thus, P2Y6R may not contribute to the progression of liver injury, despite increased expression in NASH liver.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores Purinérgicos P2 , Animais , Humanos , Camundongos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo
4.
Bull Exp Biol Med ; 175(1): 45-48, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37338760

RESUMO

Spontaneous bioelectrical activity of the brain and the duration of gasping were recorded in mice during modeling of global strangulation ischemia of the brain against the background of preventive administration of citicoline. The maximum neuroprotective effect of citicoline was observed when it was administered 60 min before the simulation of ischemia and was completely prevented by preliminary administration of a selective P2Y6 receptor antagonist MRS2578. The obtained experimental data attest to the leading role of receptor mechanisms in the implementation of neuroprotective activity of citicoline.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Camundongos , Animais , Citidina Difosfato Colina/farmacologia , Citidina Difosfato Colina/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Encéfalo
5.
Bioorg Med Chem Lett ; 45: 128137, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048882

RESUMO

The Gq-coupled P2Y6 receptor (P2Y6R) is a component of the purinergic signaling system and functions in inflammatory, cardiovascular and metabolic processes. UDP, the native P2Y6R agonist and P2Y14R partial agonist, is subject to hydrolysis by ectonucleotidases. Therefore, we have synthesized UDP/CDP analogues containing a stabilizing α,ß-methylene bridge as P2Y6R agonists and identified compatible affinity-enhancing pyrimidine modifications. A distal binding region on the receptor was explored with 4-benzyloxyimino cytidine 5'-diphosphate analogues and their potency determined in a calcium mobilization assay. A 4-trifluoromethyl-benzyloxyimino substituent in 25 provided the highest human P2Y6R potency (MRS4554, 0.57 µM), and a 5-fluoro substitution of the cytosine ring in 28 similarly enhanced potency, with >175- and 39-fold selectivity over human P2Y14R, respectively. However, 3-alkyl (31-33, 37, 38), ß-d-arabinofuranose (39) and 6-aza (40) substitution prevented P2Y6R activation. Thus, we have identified new α,ß-methylene bridged N4-extended CDP analogues as P2Y6R agonists that are highly selective over the P2Y14R.


Assuntos
Difosfonatos/farmacologia , Nucleotídeos de Pirimidina/farmacologia , Receptores Purinérgicos P2/metabolismo , Difosfonatos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Nucleotídeos de Pirimidina/síntese química , Nucleotídeos de Pirimidina/química , Relação Estrutura-Atividade
6.
Purinergic Signal ; 14(3): 271-284, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30019187

RESUMO

Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 µM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 µM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.


Assuntos
Glaucoma , Pressão Intraocular/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2/efeitos dos fármacos , Animais , Humanos , Coelhos , Difosfato de Uridina/química , Difosfato de Uridina/farmacologia
7.
Int J Mol Sci ; 19(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029501

RESUMO

Uridine 5'-diphosphate (UDP)-activated purinergic receptor P2Y6 is a member of a G-protein-coupled purinergic receptor family that plays an important role in mammalian innate immunity. However, the role of the P2Y6 receptor (P2Y6R) in fish immunity has not been investigated. In this report, we characterized a P2Y6R gene from Japanese flounder (Paralichthys olivaceus) and examined its role in fish innate immunity. Sequence analysis reveals that the Japanese flounder P2Y6R protein is conserved and possesses four potential glycosylation sites. Quantitative real-time RT-PCR analysis shows that P2Y6R is broadly distributed in all examined Japanese flounder tissues with dominant expression in the liver. In addition, P2Y6R gene expression was up-regulated in head kidney macrophages (HKMs) upon lipopolysaccharides (LPS) and poly(I:C) stimulations but down-regulated by LPS challenge in peripheral blood leukocytes (PBLs). Furthermore, pharmacological inhibition of the endogenous P2Y6 receptor activity by the potently selective P2Y6R antagonist, MRS 2578, greatly up-regulated pro-inflammatory cytokine interleukin (IL)-1ß, IL-6 and TNF-α gene expression in PBL cells treated with UDP. Moreover, LPS- and poly(I:C)-induced gene expression of IL-1ß and TNF-α in Japanese flounder PBL cells was attenuated significantly by inhibition of P2Y6R activity with antagonist MRS 2578. Collectively, we, for the first time, showed the involvement of functional purinergic P2Y6R in fish innate immunity.


Assuntos
Linguado/imunologia , Linguado/metabolismo , Imunidade Inata , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/farmacologia , Sequência de Aminoácidos , Animais , Citocinas/genética , Citocinas/metabolismo , Linguado/sangue , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Inflamação/imunologia , Inflamação/patologia , Isotiocianatos/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Filogenia , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2/genética , Análise de Sequência de Proteína , Tioureia/análogos & derivados , Tioureia/farmacologia
8.
J Biol Chem ; 291(30): 15841-52, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27231349

RESUMO

The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced postnatal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Hiperplasia , Isoproterenol/efeitos adversos , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miócitos Cardíacos/patologia , Receptores Purinérgicos P2/genética
9.
J Neuroinflammation ; 14(1): 38, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219441

RESUMO

BACKGROUND: Microglia in the central nervous system (CNS) were reported to play crucial role in neurodegeneration. Previous studies showed that P2Y6 receptor (P2Y6R) mainly contributed to microglia activation and phagocytosis in CNS. However, the level of P2Y6R in Parkinson's disease (PD) patients is unclear. Therefore, we measured the level of P2Y6R in PD patients and speculated whether it could be a potential biomarker for PD. Given on the basis that P2Y6R was higher in PD patients, we further explored the mechanisms underlying P2Y6R in the pathogenesis of PD. METHODS: We tested the expression level of P2Y6R in the peripheral blood mononuclear cells (PBMCs) among 145 PD patients, 170 healthy controls, and 30 multiple system atrophy (MSA) patients. We also used a lipopolysaccharide (LPS)-stimulated microglial cell culture model to investigate (i) the effects of LPS on P2Y6R expression with western blot and RT-PCR, (ii) the effects of LPS on UDP expression using HPLC, (iii) the effects of UDP/P2Y6R signaling on cytokine expression using western blot, RT-PCR, and ELISA, and (iv) the signaling pathways activated by the P2Y6R involved in the neuroinflammation. RESULTS: Expression levels of P2Y6R in PD patients were higher than healthy controls and MSA patients. P2Y6R could be a good biomarker of PD. P2Y6R was also upregulated in LPS-treated BV-2 cells and involved in proinflammatory cytokine release through an autocrine loop based on LPS-triggered UDP secretion and accelerated neuroinflammatory responses through the ERK1/2 pathway. Importantly, blocking UDP/P2Y6R signaling could reverse these pathological processes. CONCLUSIONS: P2Y6R may be a potential clinical biomarker of PD. Blocking P2Y6R may be a potential therapeutic approach to the treatment of PD patients through inhibition of microglia-activated neuroinflammation.


Assuntos
Leucócitos Mononucleares/metabolismo , Microglia/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Receptores Purinérgicos P2/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Leucócitos Mononucleares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia
10.
Neurochem Res ; 41(4): 795-803, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26566795

RESUMO

Microglia clean up dead cells and debris through phagocytosis in the central nervous system. UDP-activated P2Y6 receptors (P2Y6Rs) induce the formation of phagocytic cup-like structure and P2Y6R expression is increased during the phagocytosis. However, it remains unclear how surface expression of P2Y6R is increased. PICK1 (protein interacting with C-kinase-1) interacts with various neurotransmitter receptors, transporters, and enzymes. We here report that PICK1 might interact with P2Y6R. Surface P2Y6R was reduced in microglia from PICK1-knockout mice and PICK1-knockdown BV2 cells, which was also confirmed by electrophysiological recordings, showing that P2Y6R-mediated current was increased by PICK1 overexpression but was reduced by PICK1-knockdown in BV2 microglia. Finally, PICK1 was sufficient to affect cytoskeletal aggregation and phagocytosis both in primary microglia and BV2 cells. These results indicate that PICK1 is an important regulator of P2Y6R expression and microglial phagocytosis.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Microglia/metabolismo , Microglia/ultraestrutura , Proteínas Nucleares/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Células Cultivadas , Camundongos Knockout , Proteínas Nucleares/genética , Fagocitose , Polimerização
11.
Arterioscler Thromb Vasc Biol ; 34(10): 2237-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25104800

RESUMO

OBJECTIVE: Nucleotides such as ATP, ADP, UTP, and UDP serve as proinflammatory danger signals via purinergic receptors on their release to the extracellular space by activated or dying cells. UDP binds to the purinergic receptor Y6 (P2Y6) and propagates vascular inflammation by inducing the expression of chemokines such as monocyte chemoattractant protein 1, interleukin-8, or its mouse homologsCCL1 (chemokine [C-C motif] ligand 1)/keratinocyte chemokine, CXCL2 (chemokine [C-X-C motif] ligand 2)/macrophage inflammatory protein 2, and CXCL5 (chemokine [C-X-C motif] ligand 5)/LIX, and adhesion molecules such as vascular cell adhesion molecule 1 and intercellular cell adhesion molecule 1. Thus, P2Y6 contributes to leukocyte recruitment and inflammation in conditions such as allergic asthma or sepsis. Because atherosclerosis is a chronic inflammatory disease driven by leukocyte recruitment to the vessel wall, we hypothesized a role of P2Y6 in atherogenesis. APPROACH AND RESULTS: Intraperitoneal stimulation of wild-type mice with UDP induced rolling and adhesion of leukocytes to the vessel wall as assessed by intravital microscopy. This effect was not present in P2Y6-deficient mice. Atherosclerotic aortas of low-density lipoprotein receptor-deficient mice consuming high-cholesterol diet for 16 weeks expressed significantly more transcripts and protein of P2Y6 than respective controls. Finally, P2Y6 (-/-)/low-density lipoprotein receptor-deficient mice consuming high-cholesterol diet for 16 weeks developed significantly smaller atherosclerotic lesions compared with P2Y6 (+/+)/low-density lipoprotein receptor-deficient mice. Bone marrow transplantation identified a crucial role of P2Y6 on vascular resident cells, most likely endothelial cells, on leukocyte recruitment and atherogenesis. Atherosclerotic lesions of P2Y6-deficient mice contained fewer macrophages and fewer lipids as determined by immunohistochemistry. Mechanistically, RNA expression of vascular cell adhesion molecule 1 and interleukin-6 was decreased in these lesions and P2Y6-deficient macrophages took up less modified low-density lipoprotein cholesterol. CONCLUSIONS: We show for the first time that P2Y6 deficiency limits atherosclerosis and plaque inflammation in mice.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Inflamação/prevenção & controle , Receptores Purinérgicos P2/deficiência , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Transplante de Medula Óssea , Colesterol na Dieta , Modelos Animais de Doenças , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Migração e Rolagem de Leucócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Purinérgicos P2/genética , Transdução de Sinais , Fatores de Tempo , Migração Transendotelial e Transepitelial , Difosfato de Uridina/metabolismo
12.
Bioorg Med Chem ; 23(17): 5764-73, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26233801

RESUMO

P2Y6 receptor (P2Y6-R) is involved in various physiological and pathophysiological events. With a view to set rules for the design of UDP-based reversible P2Y6-R antagonists as potential drugs, we established structure-activity relationship of UDP analogues, bearing modifications at the uracil ring, ribose moiety, and the phosphate chain. For instance, C5-phenyl- or 3-NMe-uridine-5'-α,ß-methylene-diphosphonate, 16 and 23, or lack of 2'-OH, in 12-15, resulted in loss of both agonist and antagonist activity toward hP2Y6-R. However, uridylyl phosphosulfate, 19, selectively inhibited hP2Y6-R (IC50 112 µM) versus P2Y2/4-Rs. In summary, we have established a comprehensive SAR for hP2Y6-R ligands towards the development of hP2Y6-R antagonists.


Assuntos
Receptores Purinérgicos P2/química , Nucleotídeos de Uracila/síntese química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Nucleotídeos de Uracila/química
13.
Glia ; 62(9): 1463-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24838858

RESUMO

Microglia activated through Toll-like receptor (TLR)-2 or -4 can cause neuronal death by phagocytosing otherwise-viable neurons-a form of cell death called "phagoptosis." UDP release from neurons has been shown to provoke microglial phagocytosis of neurons via microglial P2Y6 receptors, but whether inhibition of this process affects neuronal survival is unknown. We tested here whether inhibition of P2Y6 signaling could prevent neuronal death in inflammatory conditions, and whether UDP signaling can induce phagoptosis of stressed but viable neurons. We find that delayed neuronal loss and death in mixed neuronal/glial cultures induced by the TLR ligands lipopolysaccharide (LPS) or lipoteichoic acid was prevented by: apyrase (to degrade nucleotides), Reactive Blue 2 (to inhibit purinergic signaling), or MRS2578 (to specifically block P2Y6 receptors). In each case, inflammatory activation of microglia was not affected, and the rescued neurons remained viable for at least 7 days. Blocking P2Y6 receptors with MRS2578 also prevented phagoptosis of neurons induced by 250 nM amyloid beta 1-42, 5 µM peroxynitrite, or 50 µM 3-morpholinosydnonimine (which releases reactive oxygen and nitrogen species). Furthermore, the P2Y6 receptor agonist UDP by itself was sufficient to stimulate microglial phagocytosis and to induce rapid neuronal loss that was prevented by eliminating microglia or inhibiting phagocytosis. In vivo, injection of LPS into rat striatum induced microglial activation and delayed neuronal loss and blocking P2Y6 receptors with MRS2578 prevented this neuronal loss. Thus, blocking UDP/P2Y6 signaling is sufficient to prevent neuronal loss and death induced by a wide range of stimuli that activate microglial phagocytosis of neurons.


Assuntos
Microglia/fisiologia , Neurônios/imunologia , Fagocitose/fisiologia , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Apirase/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/imunologia , Isotiocianatos/farmacologia , Lipopolissacarídeos/toxicidade , Masculino , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Ácido Peroxinitroso/toxicidade , Fagocitose/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Ácidos Teicoicos/toxicidade , Tioureia/análogos & derivados , Tioureia/farmacologia , Triazinas/farmacologia
14.
Phytomedicine ; 130: 155754, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820662

RESUMO

BACKGROUND: Gouty arthritis (GA), a common inflammatory condition triggered by monosodium urate crystal accumulation, often necessitates safer treatment alternatives due to the limitations of current therapies. Astilbin, a flavonoid from Smilax glabra Roxb, has demonstrated potential in traditional Chinese medicine for its anti-inflammatory properties. However, the anti-GA effect and its underlying mechanism have not been fully elucidated. PURPOSE: This study aimed to investigate the therapeutic potential of astilbin in GA, focusing on its effects on neutrophil extracellular traps (NETs), as well as the potential molecular target of GA both in vitro and in vivo. STUDY DESIGN: Firstly, astilbin inhibited the citrullinated histone H3 (Cit h3) protein levels and reduced the NETs formation in neutrophils stimulated by monosodium urate (MSU). Secondly, we wondered the effect of astilbin on migration of neutrophils and dimethyl-sulfoxide (DMSO)-differentiated HL-60 (dHL-60) cells under the stimulation of MSU. Then, the effect of astilbin on suppressing NETs through purinergic P2Y6 receptor (P2Y6R) and Interlukin-8 (IL-8)/ CXC chemokine receptor 2 (CXCR2) pathway was investigated. Also, the relationship between P2Y6R and IL-8/CXCR2 was explored in dHL-60 cells under stimulation of MSU. Finally, we testified the effect of astilbin on reducing NETs in GA through suppressing P2Y6R and then down-regulating IL-8/CXCR2 pathway. METHODS: MSU was used to induce NETs in neutrophils and dHL-60 cells. Real-time formation of NETs and migration of neutrophils were monitored by cell living imaging with or without MSU. Then, the effect of astilbin on NETs formation, P2Y6R and IL-8/CXCR2 pathway were detected by immunofluorescence (IF) and western blotting. P2Y6R knockdown dHL-60 cells were established by small interfering RNA to investigate the association between P2Y6R and IL-8/CXCR2 pathway. Also, plasmid of P2Y6R was used to overexpress P2Y6R in dHL-60 cells, which was employed to explore the role of P2Y6R in astilbin inhibiting NETs. Within the conditions of knockdown and overexpression of P2Y6R, migration and NETs formation were assessed by transmigration assay and IF staining, respectively. In vivo, MSU-induced GA mice model was established to assess the effect of astilbin on inflammation by haematoxylin-eosin and ELISA. Additionally, the effects of astilbin on neutrophils infiltration, NETs, P2Y6R and IL-8/CXCR2 pathway were analyzed by IF, ELISA, immunohistochemistry (IHC) and western blotting. RESULTS: Under MSU stimulation, astilbin significantly suppressed the level of Cit h3 and NETs formation including the fluorescent expressions of Cit h3, neutrophils elastase, myeloperoxidase, and intra/extracellular DNA. Also, results showed that MSU caused NETs release in neutrophils as well as a trend towards recruitment of dHL-60 cells to MSU. Astilbin could markedly decrease expressions of P2Y6R and IL-8/CXCR2 pathway which were upregulated by MSU. By silencing P2Y6R, the expression of IL-8/CXCR2 pathway and migration of dHL-60 cells were inhibited, leading to the suppression of NETs. These findings indicated the upstream role of P2Y6R in the IL-8/CXCR2 pathway. Moreover, overexpression of P2Y6R was evidently inhibited by astilbin, causing a downregulation in IL-8/CXCR2 pathway, migration of dHL-60 cells and NETs formation. These results emphasized that astilbin inhibited the IL-8/CXCR2 pathway primarily through P2Y6R. In vivo, astilbin administration led to marked reductions in ankle swelling, inflammatory infiltration as well as neutrophils infiltration. Expressions of P2Y6R and IL-8/CXCR2 pathway were evidently decreased by astilbin and P2Y6R inhibitor MRS2578 either alone or in combination. Also, astilbin and MRS2578 showed notable effect on reducing MSU-induced NETs formation and IL-8/CXCR2 pathway whether used alone or in combination, parallelly demonstrating that astilbin decreased NETs formation mainly through P2Y6R. CONCLUSION: This study revealed that astilbin suppressed NETs formation via downregulating P2Y6R and subsequently the IL-8/CXCR2 pathway, which evidently mitigated GA induced by MSU. It also highlighted the potential of astilbin as a promising natural therapeutic for GA.


Assuntos
Artrite Gotosa , Armadilhas Extracelulares , Flavonóis , Interleucina-8 , Neutrófilos , Receptores Purinérgicos P2 , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Receptores Purinérgicos P2/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Artrite Gotosa/tratamento farmacológico , Células HL-60 , Flavonóis/farmacologia , Animais , Ácido Úrico/farmacologia , Receptores de Interleucina-8B/metabolismo , Masculino , Histonas/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos
15.
Transl Neurodegener ; 13(1): 47, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243044

RESUMO

Neurodegenerative diseases are associated with chronic neuroinflammation in the brain, which can result in microglial phagocytosis of live synapses and neurons that may contribute to cognitive deficits and neuronal loss. The microglial P2Y6 receptor (P2Y6R) is a G-protein coupled receptor, which stimulates microglial phagocytosis when activated by extracellular uridine diphosphate, released by stressed neurons. Knockout or inhibition of P2Y6R can prevent neuronal loss in mouse models of Alzheimer's disease (AD), Parkinson's disease, epilepsy, neuroinflammation and aging, and prevent cognitive deficits in models of AD, epilepsy and aging. This review summarises the known roles of P2Y6R in the physiology and pathology of the brain, and its potential as a therapeutic target to prevent neurodegeneration and other brain pathologies.


Assuntos
Microglia , Doenças Neurodegenerativas , Receptores Purinérgicos P2 , Humanos , Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Microglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2/genética , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos
16.
Stem Cell Res Ther ; 15(1): 168, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886849

RESUMO

BACKGROUND: Mechanical stimulation (MS) significantly increases the release of adenine and uracil nucleotides from bone marrow-derived mesenchymal stem cells (BM-MSCs) undergoing osteogenic differentiation. Released nucleotides acting via ionotropic P2X7 and metabotropic P2Y6 purinoceptors sensitive to ATP and UDP, respectively, control the osteogenic commitment of BM-MSCs and, thus, bone growth and remodelling. Yet, this mechanism is impaired in post-menopausal (Pm)-derived BM-MSCs, mostly because NTPDase3 overexpression decreases the extracellular accumulation of nucleotides below the levels required to activate plasma membrane-bound P2 purinoceptors. This prompted us to investigate whether in vitro MS of BM-MSCs from Pm women could rehabilitate their osteogenic commitment and whether xenotransplantation of MS purinome-primed Pm cells promote repair of critical bone defects in an in vivo animal model. METHODS: BM-MSCs were harvested from the neck of femora of Pm women (70 ± 3 years old) undergoing total hip replacement. The cells grew, for 35 days, in an osteogenic-inducing medium either submitted (SS) or not (CTR) to MS (90 r.p.m. for 30 min) twice a week. Increases in alkaline phosphatase activity and in the amount of osteogenic transcription factors, osterix and osteopontin, denoted osteogenic cells differentiation, while bone nodules formation was ascertain by the alizarin red-staining assay. The luciferin-luciferase bioluminescence assay was used to quantify extracellular ATP. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC. The density of P2Y6 and P2X7 purinoceptors in the cells was assessed by immunofluorescence confocal microscopy. MS-stimulated BM-MSCs from Pm women were xenotransplanted into critical bone defects drilled in the great trochanter of femora of one-year female Wistar rats; bone repair was assessed by histological analysis 10 days after xenotransplantation. RESULTS: MS-stimulated Pm BM-MSCs in culture (i) release 1.6-fold higher ATP amounts, (ii) overexpress P2X7 and P2Y6 purinoceptors, (iii) exhibit higher alkaline phosphatase activity and overexpress the osteogenic transcription factors, osterix and osteopontin, and (iv) form larger bone nodules, than CTR cells. Selective blockage of P2X7 and P2Y6 purinoceptors with A438079 (3 µM) and MRS 2578 (0.1 µM), respectively, prevented the osteogenic commitment of cultured Pm BM-MSCs. Xenotransplanted MS purinome-primed Pm BM-MSCs accelerated the repair of critical bone defects in the in vivo rat model. CONCLUSIONS: Data suggest that in vitro MS restores the purinergic cell-to-cell communication fostering the osteogenic differentiation and osteointegration of BM-MSCs from Pm women, a strategy that may be used in bone regeneration and repair tactics.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Osteogênese , Pós-Menopausa , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Osteogênese/efeitos dos fármacos , Animais , Idoso , Ratos , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Fator de Transcrição Sp7/metabolismo , Fator de Transcrição Sp7/genética , Células Cultivadas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ratos Wistar
17.
Sci Rep ; 14(1): 11609, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773214

RESUMO

No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.


Assuntos
Biomarcadores Tumorais , Neoplasias Bucais , Pirimidinas , Uracila , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Uracila/metabolismo , Biomarcadores Tumorais/metabolismo , Pirimidinas/metabolismo , Feminino , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral , Idoso , Apirase/metabolismo
18.
Aging Cell ; 22(2): e13761, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565471

RESUMO

Aging causes loss of brain synapses and memory, and microglial phagocytosis of synapses may contribute to this loss. Stressed neurons can release the nucleotide UTP, which is rapidly converted into UDP, that in turn activates the P2Y6 receptor (P2Y6 R) on the surface of microglia, inducing microglial phagocytosis of neurons. However, whether the activation of P2Y6 R affects microglial phagocytosis of synapses is unknown. We show here that inactivation of P2Y6 R decreases microglial phagocytosis of isolated synapses (synaptosomes) and synaptic loss in neuronal-glial co-cultures. In vivo, wild-type mice aged from 4 to 17 months exhibited reduced synaptic density in cortical and hippocampal regions, which correlated with increased internalization of synaptic material within microglia. However, this aging-induced synaptic loss and internalization were absent in P2Y6 R knockout mice, and these mice also lacked any aging-induced memory loss. Thus, P2Y6 R appears to mediate aging-induced loss of synapses and memory by increasing microglial phagocytosis of synapses. Consequently, blocking P2Y6 R has the potential to prevent age-associated memory impairment.


Assuntos
Microglia , Sinapses , Animais , Camundongos , Transtornos da Memória , Camundongos Knockout , Fagocitose/fisiologia
19.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119476, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059189

RESUMO

Endosomal trafficking is intricately linked to G protein-coupled receptors (GPCR) fate and signaling. Extracellular uridine diphosphate (UDP) acts as a signaling molecule by selectively activating the GPCR P2Y6. Despite the recent interest for this receptor in pathologies, such as gastrointestinal and neurological diseases, there is sparse information on the endosomal trafficking of P2Y6 receptors in response to its endogenous agonist UDP and synthetic selective agonist 5-iodo-UDP (MRS2693). Confocal microscopy and cell surface ELISA revealed delayed internalization kinetics in response to MRS2693 vs. UDP stimulation in AD293 and HCT116 cells expressing human P2Y6. Interestingly, UDP induced clathrin-dependent P2Y6 internalization, whereas receptor stimulation by MRS2693 endocytosis appeared to be associated with a caveolin-dependent mechanism. Internalized P2Y6 was associated with Rab4, 5, and 7 positive vesicles independent of the agonist. We have measured a higher frequency of receptor expression co-occurrence with Rab11-vesicles, the trans-Golgi network, and lysosomes in response to MRS2693. Interestingly, a higher agonist concentration reversed the delayed P2Y6 internalization and recycling kinetics in the presence of MRS2693 stimulation without changing its caveolin-dependent internalization. This work showed a ligand-dependent effect affecting the P2Y6 receptor internalization and endosomal trafficking. These findings could guide the development of bias ligands that could influence P2Y6 signaling.


Assuntos
Receptores Acoplados a Proteínas G , Difosfato de Uridina , Humanos , Ligantes , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Difosfato de Uridina/metabolismo , Proteínas de Ligação ao GTP/metabolismo
20.
Front Pharmacol ; 13: 1014284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408258

RESUMO

Many drugs used in cardiovascular therapy, such as angiotensin receptor antagonists and beta-blockers, may exert at least some of their actions through effects on the sympathetic nervous system, and this also holds true for e.g., P2Y12 antagonists. A new target at the horizon of cardiovascular drugs is the P2Y6 receptor which contributes to the development of arteriosclerosis and hypertension. To learn whether P2Y6 receptors in the sympathetic nervous system might contribute to actions of respective receptor ligands, responses of sympathetic neurons to P2Y6 receptor activation were analyzed in primary cell culture. UDP in a concentration dependent manner caused membrane depolarization and enhanced numbers of action potentials fired in response to current injections. The excitatory action was antagonized by the P2Y6 receptor antagonist MRS2578, but not by the P2Y2 antagonist AR-C118925XX. UDP raised intracellular Ca2+ in the same range of concentrations as it enhanced excitability and elicited inward currents under conditions that favor Cl- conductances, and these were reduced by a blocker of Ca2+-activated Cl- channels, CaCCInh-A01. In addition, UDP inhibited currents through KV7 channels. The increase in numbers of action potentials caused by UDP was not altered by the KV7 channel blocker linopirdine, but was enhanced in low extracellular Cl- and was reduced by CaCCInh-A01 and by an inhibitor of phospholipase C. Moreover, UDP enhanced release of previously incorporated [3H] noradrenaline, and this was augmented in low extracellular Cl- and by linopirdine, but attenuated by CaCCInh-A01. Together, these results reveal sympathoexcitatory actions of P2Y6 receptor activation involving Ca2+-activated Cl- channels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa