Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Trends Biochem Sci ; 48(7): 590-596, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031054

RESUMO

Investigating large datasets of biological information by automatic procedures may offer chances of progress in knowledge. Recently, tremendous improvements in structural biology have allowed the number of structures in the Protein Data Bank (PDB) archive to increase rapidly, in particular those for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated proteins. However, their automatic analysis can be hampered by the nonuniform descriptors used by authors in some records of the PDB and PDBx/mmCIF files. In this opinion article we highlight the difficulties encountered in automating the analysis of hundreds of structures, suggesting that further standardization of the description of these molecular entities and of their attributes, generalized to the macromolecular structures contained in the PDB, might generate files more suitable for automatized analyses of a large number of structures.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas/química , Estrutura Molecular , Bases de Dados de Proteínas , Conformação Proteica
2.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38180828

RESUMO

Complex biological processes in cells are embedded in the interactome, representing the complete set of protein-protein interactions. Mapping and analyzing the protein structures are essential to fully comprehending these processes' molecular details. Therefore, knowing the structural coverage of the interactome is important to show the current limitations. Structural modeling of protein-protein interactions requires accurate protein structures. In this study, we mapped all experimental structures to the reference human proteome. Later, we found the enrichment in structural coverage when complementary methods such as homology modeling and deep learning (AlphaFold) were included. We then collected the interactions from the literature and databases to form the reference human interactome, resulting in 117 897 non-redundant interactions. When we analyzed the structural coverage of the interactome, we found that the number of experimentally determined protein complex structures is scarce, corresponding to 3.95% of all binary interactions. We also analyzed known and modeled structures to potentially construct the structural interactome with a docking method. Our analysis showed that 12.97% of the interactions from HuRI and 73.62% and 32.94% from the filtered versions of STRING and HIPPIE could potentially be modeled with high structural coverage or accuracy, respectively. Overall, this paper provides an overview of the current state of structural coverage of the human proteome and interactome.


Assuntos
Proteoma , Humanos , Bases de Dados Factuais
3.
Small ; : e2402271, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030960

RESUMO

The manipulation of crystal phases in metal-nonmetal interstitial alloy nanostructures has attracted considerable attention due to the formation of unique electronic structures and surface atomic arrangements, resulting in unprecedented catalytic performances. However, achieving simultaneous control over crystal phase and nonmetal elements in metal-nonmetal interstitial alloy nanostructures has remained a formidable challenge. Here, a novel synthesis approach is presented for Pd─B interstitial alloy nanocrystals (NCs) that allows investigation of the crystal-phase- and B-content-dependent catalytic performance. Through comparison of the oxygen reduction reaction (ORR) properties of Pd─BX interstitial alloy NCs with different crystal phases and B contents, achieved by precise control of reaction temperature and time, the influences of crystal phase and B contents in the Pd─BX interstitial alloy NCs on ORR are precisely investigated. The hexagonal closed packed (hcp) PdB0.5 NCs exhibit superior catalytic activity, with mass activities reaching 2.58 A mg-1, surpassing Pd/C by 10.3 times, attributed to synergistic effects by the hcp crystal phase and relatively high B contents. This study not only provides a novel approach to fabricate interstitial alloy nanostructures with unconventional crystal phases and finely controlled nonmetal elements but also elucidates the importance of crystal phase and nonmetal element content in optimizing electrocatalytic efficiency.

4.
Chemistry ; 30(15): e202304047, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38180821

RESUMO

Glycans are central to information content and regulation in biological systems. These carbohydrate molecules are active either as oligo- or polysaccharides, often in the form of glycoconjugates. The monosaccharide entities are joined by glycosidic linkages and stereochemical arrangements are of utmost importance in determining conformation and flexibility of saccharides. The conformational preferences and population distributions at the glycosidic torsion angles φ and ψ have been investigated for O-methyl glycosides of three disaccharides where the substitution takes place at a secondary alcohol, viz., in α-l-Fucp-(1→3)-ß-d-Glcp-OMe, α-l-Fucp-(1→3)-α-d-Galp-OMe and α-d-Glcp-(1→4)-α-d-Galp-OMe, corresponding to disaccharide structural elements present in bacterial polysaccharides. Stereochemical differences at or adjacent to the glycosidic linkage were explored by solution state NMR spectroscopy using one-dimensional 1 H,1 H-NOESY NMR experiments to obtain transglycosidic proton-proton distances and one- and two-dimensional heteronuclear NMR experiments to obtain 3 JCH transglycosidic coupling constants related to torsion angles φ and ψ. Computed effective proton-proton distances from molecular dynamics (MD) simulations showed excellent agreement to experimentally derived distances for the α-(1→3)-linked disaccharides and revealed that for the bimodal distribution at the ψ torsion angle for the α-(1→4)-linked disaccharide experiment and simulation were at variance with each other, calling for further force field developments. The MD simulations disclosed a highly intricate inter-residue hydrogen bonding pattern for the α-(1→4)-linked disaccharide, including a nonconventional hydrogen bond between H5' in the glucosyl residue and O3 in the galactosyl residue, supported by a large downfield 1 H NMR chemical shift displacement compared to α-d-Glcp-OMe. Comparison of population distributions of the glycosidic torsion angles φ and ψ in the disaccharide entities to those of corresponding crystal structures highlighted the potential importance of solvation on the preferred conformation.


Assuntos
Glicosídeos , Simulação de Dinâmica Molecular , Glicosídeos/química , Prótons , Configuração de Carboidratos , Carboidratos , Espectroscopia de Ressonância Magnética , Dissacarídeos/química
5.
Chemphyschem ; : e202400161, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687202

RESUMO

Herein we have investigated the formation and interplay of several noncovalent interactions (NCIs) involved in the inhibition of human monoamine oxidase B (MAO B). Concretely, an inspection of the Protein Data Bank (PDB) revealed the formation of a halogen bond (HlgB) between a diphenylene iodonium (DPI) inhibitor and a water molecule present in the active site, in addition to a noncovalent network of interactions (e. g. lone pair-π, hydrogen bonding, OH-π, CH-π and π-stacking interactions) with surrounding protein residues. Several theoretical models were built to understand the strength and directionality features of the HlgB in addition to the interplay with other NCIs present in the active site of the enzyme. Besides, a computational study was carried out using DPI as HlgB donor and several electron rich molecules (CO, H2O, CH2O, HCN, pyridine, OCN-, SCN-, Cl- and Br-) as HlgB acceptors. The results were analyzed using several state-of-the-art computational tools. We expect that our results will be useful for those scientists working in the fields of rational drug design, chemical biology as well as supramolecular chemistry.

6.
Amino Acids ; 56(1): 3, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286913

RESUMO

Viral diseases are expected to cause new epidemics in the future, therefore, it is essential to assess how viral diversity is represented in terms of deposited protein structures. Here, data were collected from the Protein Data Bank to screen the available structures of viruses of interest to WHO. Excluding SARS-CoV-2 and HIV-1, less than 50 structures were found per year, indicating a lack of diversity. Efforts to determine viral structures are needed to increase preparedness for future public health challenges.


Assuntos
Proteínas , SARS-CoV-2 , Proteínas/química , Bases de Dados de Proteínas
7.
BMC Bioinformatics ; 24(1): 260, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340457

RESUMO

BACKGROUND: Although mmCIF is the current official format for deposition of protein and nucleic acid structures to the protein data bank (PDB) database, the legacy PDB format is still the primary supported format for many structural bioinformatics tools. Therefore, reliable software to convert mmCIF structure files to PDB files is needed. Unfortunately, existing conversion programs fail to correctly convert many mmCIF files, especially those with many atoms and/or long chain identifies. RESULTS: This study proposed BeEM, which converts any mmCIF format structure files to PDB format. BeEM conversion faithfully retains all atomic and chain information, including chain IDs with more than 2 characters, which are not supported by any existing mmCIF to PDB converters. The conversion speed of BeEM is at least ten times faster than existing converters such as MAXIT and Phenix. Part of the reason for the speed improvement is the avoidance of conversion between numerical values and text strings. CONCLUSION: BeEM is a fast and accurate tool for mmCIF-to-PDB format conversion, which is a common procedure in structural biology. The source code is available under the BSD licence at https://github.com/kad-ecoli/BeEM/ .


Assuntos
Proteínas , Software , Proteínas/química , Bases de Dados de Proteínas
8.
Proteins ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850517

RESUMO

The rapid evolution of protein structure prediction tools has significantly broadened access to protein structural data. Although predicted structure models have the potential to accelerate and impact fundamental and translational research significantly, it is essential to note that they are not validated and cannot be considered the ground truth. Thus, challenges persist, particularly in capturing protein dynamics, predicting multi-chain structures, interpreting protein function, and assessing model quality. Interdisciplinary collaborations are crucial to overcoming these obstacles. Databases like the AlphaFold Protein Structure Database, the ESM Metagenomic Atlas, and initiatives like the 3D-Beacons Network provide FAIR access to these data, enabling their interpretation and application across a broader scientific community. Whilst substantial advancements have been made in protein structure prediction, further progress is required to address the remaining challenges. Developing training materials, nurturing collaborations, and ensuring open data sharing will be paramount in this pursuit. The continued evolution of these tools and methodologies will deepen our understanding of protein function and accelerate disease pathogenesis and drug development discoveries.

9.
Mol Divers ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938509

RESUMO

1,2,3-Triazole and tetrazole derivatives bearing pyrrolidines are found to exhibit notable biological activity and have become useful scaffolds in medicinal chemistry for application in lead discovery and optimization. We report design, synthesis and molecular docking studies of tetrazolyl-1,2,3-triazole derivatives (7a-i) bearing pyrrolidine moiety and evaluating their anticancer activity against four cancer cell lines viz. Hela, MCF-7, HCT-116 and HepG2. The structures of the new compounds were ascertained by spectral means IR, NMR: 1H &13C and Mass spectrum. From the studies compounds7a and 7i exhibited significant anticancer activity against the Hela cell line with IC50 = 0.32 ± 1.00, 1.80 ± 0.22 µM when compared to reference drug Doxorubicin (IC50 = 2.34 ± 0.11 µM), whereas 7h, 7i, and 7b were found to be active against MCF-7, HCT-116 and HepG2 cell lines with IC50 = 3.20 ± 1.40, 1.38 ± 0.06 and 0.97 ± 0.12 µM respectively. Notably 7a exhibited highest conventional hydrogen bondings TyrA:40, SerA:17, LysA:117, AlaA:146, Tyr218 with 3HB4and SerA:17, LysA:117, AlaA:146, TyrA:40 with 6IBZ and docking energy - 10.85, - 8.21 kcal/mol respectively. These compounds were further evaluated for their ADMET and physicochemical properties by using SwissADME. The results of the in vitro and in silico studies suggest that the tetrazole incorporated pyrrolidine-triazoles may possess the ideal structural requirements for further developing new anticancer agents.

10.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685843

RESUMO

In this work, intra- and intermolecular halogen and chalcogen bonds (HlgBs and ChBs, respectively) present in the solid state of nucleic acids (NAs) have been studied at the RI-MP2/def2-TZVP level of theory. To achieve this, a Protein Data Bank (PDB) survey was carried out, revealing a series of structures in which Br/I or S/Se/Te atoms belonging to nucleobases or pentose rings were involved in noncovalent interactions (NCIs) with electron-rich species. The energetics and directionality of these NCIs were rationalized through a computational study, which included the use of Molecular Electrostatic Potential (MEP) surfaces, the Quantum Theory of Atoms in Molecules (QTAIM), and Non Covalent Interaction plot (NCIplot) and Natural Bonding Orbital (NBO) techniques.


Assuntos
Calcogênios , Ácidos Nucleicos , Cristalografia , Bases de Dados Factuais , Halogênios
11.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764313

RESUMO

The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.

12.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138506

RESUMO

Boron presents an important role in chemistry, biology, and materials science. Diatomic transition-metal borides (MBs) are the building blocks of many complexes and materials, and they present unique electronic structures with interesting and peculiar properties and a variety of bonding schemes which are analyzed here. In the first part of this paper, we present a review on the available experimental and theoretical studies on the first-row-transition-metal borides, i.e., ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, CuB, and ZnB; the second-row-transition-metal borides, i.e., YB, ZrB, NbB, MoB, TcB, RuB, RhB, PdB, AgB, and CdB; and the third-row-transition-metal borides, i.e., LaB, HfB, TaB, WB, ReB, OsB, IrB, PtB, AuB, and HgB. Consequently, in the second part, the second- and third-row MBs are studied via DFT calculations using the B3LYP, TPSSh, and MN15 functionals and, in some cases, via multi-reference methods, MRCISD+Q, in conjunction with the aug-cc-pVQZ-PPM/aug-cc-pVQZB basis sets. Specifically, bond distances, dissociation energies, frequencies, dipole moments, and natural NPA charges are reported. Comparisons between MB molecules along the three rows are presented, and their differences and similarities are analyzed. The bonding of the diatomic borides is also described; it is found that, apart from RhB(X1Σ+), which was just recently found to form quadruple bonds, RuB(X2Δ) and TcB(X3Σ-) also form quadruple σ2σ2π2π2 bonds in their X states. Moreover, to fill the gap existing in the current literature, here, we calculate the TcB molecule.

13.
J Biol Chem ; 296: 100561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744288

RESUMO

This essay, which was written to commemorate the 50th anniversary of the Protein Data Bank, opens with some comments about the intentions of the scientists who pressed for its establishment and the nature of services it provides. It includes a brief account of the events that resulted in the determination of the crystal structure of the large ribosomal subunit from Haloarcula marismortui. The magnitude of the challenge the first ribosome crystal structures posed for the PDB is commented upon, and in the description of subsequent developments in the ribosome structure field that follows, it is pointed out that cryo-EM has replaced X-ray crystallography as the method of choice for investigating ribosome structure.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Ribossomos/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
14.
J Biol Chem ; 296: 100558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744284

RESUMO

The computational de novo protein design is increasingly applied to address a number of key challenges in biomedicine and biological engineering. Successes in expanding applications are driven by advances in design principles and methods over several decades. Here, we review recent innovations in major aspects of the de novo protein design and include how these advances were informed by principles of protein architecture and interactions derived from the wealth of structures in the Protein Data Bank. We describe developments in de novo generation of designable backbone structures, optimization of sequences, design scoring functions, and the design of the function. The advances not only highlight design goals reachable now but also point to the challenges and opportunities for the future of the field.


Assuntos
Proteínas/química , Bases de Dados de Proteínas , Conformação Proteica
15.
J Biol Chem ; 296: 100553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744292

RESUMO

The determination of the double helical structure of DNA in 1953 remains the landmark event in the development of modern biological and biomedical science. This structure has also been the starting point for the determination of some 2000 DNA crystal structures in the subsequent 68 years. Their structural diversity has extended to the demonstration of sequence-dependent local structure in duplex DNA, to DNA bending in short and long sequences and in the DNA wound round the nucleosome, and to left-handed duplex DNAs. Beyond the double helix itself, in circumstances where DNA sequences are or can be induced to unwind from being duplex, a wide variety of topologies and forms can exist. Quadruplex structures, based on four-stranded cores of stacked G-quartets, are prevalent though not randomly distributed in the human and other genomes and can play roles in transcription, translation, and replication. Yet more complex folds can result in DNAs with extended tertiary structures and enzymatic/catalytic activity. The Protein Data Bank is the depository of all these structures, and the resource where structures can be critically examined and validated, as well as compared one with another to facilitate analysis of conformational and base morphology features. This review will briefly survey the major structural classes of DNAs and illustrate their significance, together with some examples of how the use of the Protein Data Bank by for example, data mining, has illuminated DNA structural concepts.


Assuntos
DNA/química , Bases de Dados de Proteínas , Conformação de Ácido Nucleico , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética
16.
J Biol Chem ; 296: 100559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744282

RESUMO

The Protein Data Bank (PDB) is an international core data resource central to fundamental biology, biomedicine, bioenergy, and biotechnology/bioengineering. Now celebrating its 50th anniversary, the PDB houses >175,000 experimentally determined atomic structures of proteins, nucleic acids, and their complexes with one another and small molecules and drugs. The importance of three-dimensional (3D) biostructure information for research and education obtains from the intimate link between molecular form and function evident throughout biology. Among the most prolific consumers of PDB data are biomedical researchers, who rely on the open access resource as the authoritative source of well-validated, expertly curated biostructures. This review recounts how the PDB grew from just seven protein structures to contain more than 49,000 structures of human proteins that have proven critical for understanding their roles in human health and disease. It then describes how these structures are used in academe and industry to validate drug targets, assess target druggability, characterize how tool compounds and other small-molecules bind to drug targets, guide medicinal chemistry optimization of binding affinity and selectivity, and overcome challenges during preclinical drug development. Three case studies drawn from oncology exemplify how structural biologists and open access to PDB structures impacted recent regulatory approvals of antineoplastic drugs.


Assuntos
Bases de Dados de Proteínas , Desenvolvimento de Medicamentos , Descoberta de Drogas , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Sistemas de Liberação de Medicamentos , Armazenamento e Recuperação da Informação , Conformação Proteica
17.
Chembiochem ; 23(2): e202100498, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693623

RESUMO

The importance of selenium-centered noncovalent chalcogen bonds represented as Se⋅⋅⋅A (A=O/S) has been explored for short directional contacts in small molecules and proteins. In addition, S⋅⋅⋅O centered contacts have been analyzed. Computational analyses involving the quantitative assessment of the associated energetics, the molecular electrostatic potentials (MEP), and electron density derived topological parameters, namely, quantum theory of atom in molecules (QTAIM) analyses, and NBO (natural bond orbital) based calculations, have been performed to unequivocally establish the strength, stability, and attractive role of chalcogen bonds in the solid-state. This investigation has been performed in molecules from both the Cambridge Structural Database (CSD) and Protein Data Bank (PDB). Thus futuristic materials may be designed keeping in mind the significance of these interactions, including their relevance in biology.


Assuntos
Calcogênios/química , Bases de Dados de Proteínas , Proteínas/química , Cristalografia por Raios X , Teoria Quântica
18.
Cell Mol Life Sci ; 78(13): 5325-5339, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34046695

RESUMO

Protein-protein interactions are fundamental to various aspects of cell biology with many protein complexes participating in numerous fundamental biological processes such as transcription, translation and cell cycle. MS-based proteomics techniques are routinely applied for characterising the interactome, such as affinity purification coupled to mass spectrometry that has been used to selectively enrich and identify interacting partners of a bait protein. In recent years, many orthogonal MS-based techniques and approaches have surfaced including proximity-dependent labelling of neighbouring proteins, chemical cross-linking of two interacting proteins, as well as inferring PPIs from the co-behaviour of proteins such as the co-fractionating profiles and the thermal solubility profiles of proteins. This review discusses the underlying principles, advantages, limitations and experimental considerations of these emerging techniques. In addition, a brief account on how MS-based techniques are used to investigate the structural and functional properties of protein complexes, including their topology, stoichiometry, copy number and dynamics, are discussed.


Assuntos
Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Proteoma/metabolismo , Animais , Humanos , Proteoma/análise
19.
J Mol Struct ; 1251: 132010, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34866653

RESUMO

An innovative charge-transfer complex between the Schiff base 2-((2-hydroxybenzylidene) amino)-2-(hydroxymethyl) propane-1,3-diol [SAL-THAM] and the π-acceptor, chloranilic acid (CLA) within the mole ratio (1:1) was synthesized and characterized aiming to investigate its electronic transition spectra in acetonitrile (ACN), methanol (MeOH) and ethanol (EtOH) solutions. Applying Job`s method in the three solvents supported the 1:1 (CLA: SAL-THAM) mole ratio complex formation. The formation of stable CT- complex was shown by the highest values of charge-transfer complex formation constants, KCT, calculated using minimum-maximum absorbance method, with the sequence, acetonitrile > ethanol > methanol DFT study on the synthesized CT complex was applied based on the B3LYP method to evaluate the optimized structure and extract geometrical and reactivity parameters. Based on TD-DFT theory, the electronic properties, 1H and 13C NMR, IR, and UV-Vis spectra of the studied system in different solvents showing good agreement with the experimental studies. MEP map described the possibility of hydrogen bonding and charge transfer in the studied system. Finally, a computational approach for screening the antiviral activity of CT - complex towards SARS-CoV-2 coronavirus protease via molecular docking simulation was conducted and confirmed with molecular dynamic (MD) simulation.

20.
Radiat Phys Chem Oxf Engl 1993 ; 198: 110265, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35663798

RESUMO

The world is still suffering from the SARS-CoV-2 pandemic, and the number of infected people is still growing in many countries in 2022. Although great strides have been made to produce effective vaccines, efforts in this field should be accelerated, particularly due to the emergence of new variants. Using inactivated viruses is a conventional method of vaccine production. High levels of ionizing radiation can effectively inactivate viruses. Recently, studies on SARS-CoV-2 irradiation using low-LET radiations (e.g., gamma rays) have been performed. However, there are insufficient studies on the impact of charged particles on the inactivation of this virus. In this study, a realistic structure of SARS-CoV-2 is simulated by using Geant4 Monte Carlo toolkit, and the effect of electrons, protons, alphas, C-12, and Fe-56 ions on the inactivation of SARS-CoV-2 is investigated. The simulation results indicated that densely ionizing (high-LET) particles have the advantage of minimum number of damaged spike proteins per single RNA break. The RNA breaks induced by hydroxyl radicals produced in the surrounding water medium were significant only for electron beam radiation. Hence, indirect RNA breaks induced by densely ionizing particles is negligible. From a simulation standpoint, alpha particles (with energies up to 30 MeV) as well as C-12 ions (with energies up to 80 MeV/n), and Fe-56 ions (with any energy) can be introduced as particles of choice for effective SARS-CoV-2 inactivation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa