Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Ecotoxicol Environ Saf ; 232: 113283, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131581

RESUMO

Perfluorohexanoic acid (PFHxA) has been recognized as an alternative to the wide usage of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in the fluoropolymer industry for years. PFHxA has been frequently detected in the environment due to its wide application. However, the ecological safety of PFHxA, especially its toxicological effects on aquatic organisms, remains obscure. In the present study, PFHxA at different concentrations (0, 0.48, 2.4, and 12 mg/L) was added to the culture medium for zebrafish embryo/larval exposure at 96 h postfertilization (hpf). Zebrafish larvae showed a slow body growth trend and changes in thyroid hormone levels (THs) upon PFHxA exposure, indicating the interference effect of PFHxA on fish larval development. Moreover, the transcription levels of genes related to the hypothalamic-pituitary-thyroid (HPT) axis were also analyzed. The gene expression level of thyroid hormone receptor ß (trß) was upregulated in a dose-dependent manner. Exposure to 0.48 mg/L PFHxA increased the expression levels of the thyrotrophic-releasing hormone (trh) and thyroid hormone receptor α (trα). Significant increases in corticotrophin-releasing hormone (crh) and transthyretin (ttr) gene expression were also observed when the zebrafish larvae were treated with 12 mg/L PFHxA, except iodothyronine deiodinases (dio1), which decreased obviously at that point. There were significant declines in the transcription of both thyroid-stimulating hormone ß (tshß) and uridinediphosphate-glucuronosyltransferase (ugt1ab) upon exposure to 2.4 mg/L PFHxA. In addition, PFHxA induced a dose-related inhibitory effect on the transcription of sodium/iodide symporter (nis). Finally, the thyroid status will be destroyed after exposure to PFHxA, thus leading to growth impairment in zebrafish larvae.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Caproatos , Fluorocarbonos , Hipotálamo , Larva , Glândula Tireoide , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
2.
J Toxicol Environ Health A ; 84(3): 125-136, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33143551

RESUMO

Perfluoroalkyl acids (PFAAs) are persistent environmental contaminants that are associated with various adverse health outcomes. Perfluorooctanoic acid (PFOA) is one of the most prominently detected PFAAs in the environment, which is now replaced with shorter chain carbon compounds including perfluorohexanoic acid (PFHxA) and perfluorobutyric acid (PFBA). The aim of this study was to compare the toxicity of four PFAAs as a function of chain length and head group (carboxylate versus sulfonate) with in vitro and in vivo zebrafish assessments, which were subsequently compared to other cell and aquatic models. Mortality rate increased with chain length (PFOA > PFHxA ≫ PFBA) in both whole embryo/larvae and embryonic cell models. The sulfonate group enhanced toxicity with perfluorobutane sulfonate (PFBS) showing higher toxicity than PFBA and PFHxA in both larvae and cells. Toxicity trends were similar among different aquatic models, but sensitivities varied. Discrepancies with other zebrafish studies were confirmed to be associated with a lack of neutralization of acidic pH of dosing solutions in these other investigations, demonstrating the need for rigor in reporting pH of exposure solutions in all experiments. The zebrafish embryonic cell line was also found to be similar to most other cell lines regardless of exposure length. Overall, results agree with findings in other cell lines and organisms where longer chain length and sulfonate group increase toxicity, except in investigations not neutralizing the exposure solutions for these acidic compounds.


Assuntos
Caproatos/toxicidade , Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Ácidos Sulfônicos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
3.
Ecotoxicol Environ Saf ; 225: 112733, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478978

RESUMO

Perfluorohexanoic acid (PFHxA), a widely used emerging alternative for 8-carbon PFAAs, has been detected at a high level in the water environment. While its toxicity and environmental health risk are still largely unknown in aquatic life. The present study aimed to evaluated the possible developmental neurotoxicity induced by PFHxA exposure (0, 0.48, 2.4, and 12 mg/L for 120 h) in the zebrafish embryo. Here, both developmental endpoints, neurotransmitters concentrations, locomotor behavior were analyzed. No significant effects on mortality, malformation rate, and growth delay were detected in the low dose treatment groups except for in the high dose group (12 mg/L). A significant increase in swimming speed were noted in the 0.48 mg/L group. Other changes including neurotransmitters concentrations and green fluorescent protein (GFP) expression in Tg (HuC-GFP) zebrafish larvae were significantly increased in 12 mg/L group. Beyond that, genes related to neurodevelopment were significantly decreased in larvae. Moreover, downregulations of protein expression levels of α1-tubulin, elavl3, and gap43 were identified. These results demonstrate that the PFAAs alternative PFHxA have no significant neurodevelopmental effects on zebrafish larvae under acute low-dose exposure, while, it is important to note that PFHxA perform inhibiting effects on neurotransmitter and central nervous system under a relatively high dose. This in vivo study could provide reliable toxicity information for risk assessments of PFHxA on aquatic ecosystems. CAPSULE: PFHxA have no significant neurodevelopmental effects on zebrafish larvae under acute low-dose exposure, while exposed with relatively high-dose, could induced the alternations of neurotransmitter concentrations as well as the genes involved in the early developmental stages of zebrafish, leading to the impairment of the nervous system in zebrafish larvae.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Caproatos , Ecossistema , Embrião não Mamífero , Fluorocarbonos/toxicidade , Larva , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
4.
Xenobiotica ; 50(6): 722-732, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31680603

RESUMO

Poly- and perfluorinated alkyl substances (PFAS) are environmentally persistent chemicals associated with many adverse health outcomes. The National Toxicology Program evaluated the toxicokinetics (TK) of several PFAS to provide context for toxicologic findings.Plasma TK parameters and tissue (liver, kidney, brain) concentrations are reported for perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) or perfluorodecanoic acid (PFDA) after single-dose administration in male and female Hsd:Sprague-Dawley® (SD) rats.Generally, longer Tmax and elimination half-lives, and slower clearance f, were correlated with longer chain length. Male rats administered PFOA had a prolonged half-life compared to females (215 h vs. 2.75), while females had faster clearance and smaller plasma area under the curve (AUC). Females administered PFHxA had a shorter half-life (2 h vs. 9) than males and faster clearance with a smaller plasma AUC, although this was less pronounced than PFOA. There was no sex difference in PFDA half-life. Female rats administered PFDA had a higher plasma AUC/dose than males, and a slower clearance. PFDA had the highest levels in the liver of the PFAS evaluated.Profiling the toxicokinetics of these PFAS allows for comparison among subclasses, and more direct translation of rodent toxicity to human populations.


Assuntos
Caproatos/toxicidade , Caprilatos/toxicidade , Ácidos Decanoicos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Animais , Caproatos/metabolismo , Caprilatos/metabolismo , Ácidos Decanoicos/metabolismo , Poluentes Ambientais/metabolismo , Feminino , Fluorocarbonos/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Toxicocinética
5.
J Environ Manage ; 255: 109945, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32063313

RESUMO

In this study, the efficiencies of selected wastewater treatment plants (WWTPs) to remove selected perfluoroalkyl substances (PFASs) during wastewater treatment processes were evaluated. For this purpose, influent samples from Daspoort, Zeekoegat and Phola WWTPs, were initially screened for the presence of sixteen different PFASs of which only seven were detected. These include: perfluorobutanoic acid (PFBA), perfluoro-n-pentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (L-PFHxS), and perfluorooctane sulfonate (L-PFOS). To determine the concentrations of these PFASs, wastewater samples were subjected to solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. The results showed that L-PFOS was the dominant compound with the highest concentration of 508 ± 258 ng/L at Daspoort WWTP. Overall, the three WWTPs could not achieve the complete influent-to-effluent removal of the PFASs and the best removals were observed at Zeekoegat WWTP. The removal efficiency of the different unit processes varied from one plant to another and also from each type of PFASs. At Daspoort, the removal efficiency of the primary settling tanks was poor and the highest removal reached 39% for PFHxA. The activated sludge (AS) of this WWTP achieved the highest removal of 84% for the L-PFOS. At Zeekoegat, the AS achieved the highest removal of 94% for the L-PFOS. The anaerobic pond at Phola achieved a higher removal of 80% for the L-PFOS. However, no removal was observed downstream of the biological filter for the same compound. Poor removal efficiency was reported downstream of the wetland at Phola except for the PFOA (16%).


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Esgotos , Extração em Fase Sólida , Águas Residuárias
6.
J Environ Sci (China) ; 88: 187-199, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31862060

RESUMO

Per- and polyfluorinated alkyl substances (PFASs) are commonly used in industrial processes and daily life products. Because they are persistent, they accumulate in the environment, wildlife and humans. Although many studies have focused on two of the most representative PFASs, PFOS and PFOA, the potential toxicity of short-chain PFASs has not yet been given sufficient attention. We used a battery of assays to evaluate the toxicity of several four-carbon and six-carbon perfluorinated sulfonates and carboxyl acids (PFBS, PFHxS, PFBA and PFHxA), with a human mesenchymal stem cell (hMSC) system. Our results demonstrate significant cyto- and potential developmental toxicity for all the compounds analyzed, with shared but also distinct mechanisms of toxicity. Moreover, the effects of PFBS and PFHxS were stronger than those of PFBA and PFHxA, but occurred at higher doses compared to PFOS or PFOA.


Assuntos
Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Ácidos Carboxílicos , Diferenciação Celular , Autorrenovação Celular , Humanos , Testes de Toxicidade
7.
Regul Toxicol Pharmacol ; 103: 10-20, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30634020

RESUMO

Perfluorohexanoic acid (PFHxA) is a short-chain, six-carbon PFAA and is a primary impurity, degradant, and metabolite associated with the short-chain fluorotelomer-based chemistry used in the United States, Europe and Japan today. With the shift towards short-chain PFAA chemistry, uncertainties remain regarding human health risks associated with current exposure levels. Here, we present a critical review and assessment of data relevant to human health risk assessment to today's short-chain PFAA chemistry. Human biomonitoring surveys indicate that PFHxA is infrequently detected in the environment as well as in human serum and urine; however, human health concerns may persist in locations where PFHxA is detected. In a companion paper (Luz et al., 2019) we comprehensively evaluate the available toxicity data for PFHxA, and derive a chronic human health-based reference dose (RfD) for PFHxA of 0.25 mg/kg-day based on benchmark dose modeling of renal papillary necrosis in chronically exposed female rats. In this paper, we apply this RfD in human health-based screening levels calculations, and derive a drinking water lifetime health advisory of 1400 µg/L and a residential groundwater screening level for children of 4000 µg/L. Compared to environmental concentration data, even sites with more elevated concentrations of PFHxA in the environment are at least an order of magnitude lower than these screening levels. Available PFHxA human serum and urine biomonitoring data, used as a biomarker for general population exposure, demonstrates that the general human population exposures to PFHxA are low. Previous estimates of daily intake rates for infants exposed to PFHxA through breast milk, formula, and baby foods (Lorenzo et al., 2016) combined with the most conservative PFHxA peer-reviewed toxicity value (Luz et al., 2019) demonstrate that the margin of safety for PFHxA is high. Therefore, PFHxA and related fluorotelomer precursors currently appear to present negligible human health risk to the general population and are not likely to drive or substantially contribute to risk at sites contaminated with PFAS mixtures. PFHxA may also represent a suitable marker for the safety of fluorotelomer replacement chemistry used today.


Assuntos
Caproatos/toxicidade , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/toxicidade , Biomarcadores/análise , Caproatos/análise , Fluorocarbonos/análise , Humanos , Medição de Risco , Poluentes Químicos da Água/análise
8.
Regul Toxicol Pharmacol ; 103: 41-55, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30639337

RESUMO

Perfluorohexanoic acid (PFHxA) is a short-chain, six-carbon perfluoroalkyl acid (PFAA) and is a primary impurity, degradant, and metabolite associated with the short-chain fluorotelomer-based chemistry used globally today. The transition to short-chain fluorotelomer-based products as a cornerstone in replacement fluorochemistry has raised questions regarding potential human health risks associated with exposure to fluorotelomer-based substances and therefore, PFHxA. Here, we present a critical review of data relevant to such a risk assessment, including epidemiological studies and in vivo and in vitro toxicity studies that examined PFHxA acute, subchronic, and chronic toxicity. Key findings from toxicokinetic and mode-of-action studies are also evaluated. Sufficient data exist to conclude that PFHxA is not carcinogenic, is not a selective reproductive or developmental toxicant, and does not disrupt endocrine activity. Collectively, effects caused by PFHxA exposure are largely limited to potential kidney effects, are mild and/or reversible, and occur at much higher doses than observed for perfluorooctanoic acid (PFOA). A chronic human-health-based oral reference dose (RfD) for PFHxA of 0.25 mg/kg-day was calculated using benchmark dose modeling of renal papillary necrosis from a chronic rat bioassay. This RfD is four orders of magnitude greater than the chronic oral RfD calculated by the U.S. Environmental Protection Agency for PFOA. The PFHxA RfD can be used to inform public health decisions related to PFHxA and fluorotelomer precursors for which PFHxA is a terminal degradant. These findings clearly demonstrate that PFHxA is less hazardous to human health than PFOA. The analyses presented support site-specific risk assessments as well as product stewardship initiatives for current and future short-chain fluorotelomer-based products.


Assuntos
Caproatos/toxicidade , Fluorocarbonos/toxicidade , Caproatos/administração & dosagem , Caprilatos/administração & dosagem , Caprilatos/toxicidade , Relação Dose-Resposta a Droga , Fluorocarbonos/administração & dosagem , Humanos , Medição de Risco
9.
Int J Toxicol ; 38(3): 183-191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983446

RESUMO

This article presents a supplemental data analysis and evaluation of the findings from an oral (gavage) combined developmental and perinatal/postnatal reproduction toxicity study of the ammonium salt of perfluorohexanoic acid (CASRN: 21615-47-4) in Crl: CD-1(ICR) mice. The original study has been cited as supporting a lowest-observed-adverse-effects level of 175 mg/kg/d and no-observed-adverse-effects level of 35 mg/kg/d for developmental effects from perfluorohexanoic acid (PFHxA, CASRN: 307-24-4) in mice. The statistical analysis reported in 2014 was accurate in terms of quantifying statistical significance within phase 2 of the study. However, given the low incidence of findings, the purpose of this article is to extend the analysis and interpretation of findings by pooling the control group information from both phases of the same study, comparing the study findings to the incidence rates for stillbirths and postpartum viability for this species and strain of mouse observed for similar studies conducted by the same laboratory, and evaluating data on the incidence and range of spontaneous eye abnormalities reported in the literature. Based on this supplemental evaluation, the original study supports a NOAEL of 175 mg/kg/d for PFHxA in mice, which is a factor of 5-fold higher than previously reported. Furthermore, to the extent that this study may be considered in the selection of a point of departure for PFHxA in mice, it is noted that 175 mg/kg/d for maternal exposure is an unbounded NOAEL for developmental effects, meaning that the study did not establish a dose at which developmental effects may occur.


Assuntos
Caproatos/toxicidade , Fluorocarbonos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Córnea/efeitos dos fármacos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Troca Materno-Fetal , Camundongos Endogâmicos ICR , Nível de Efeito Adverso não Observado , Gravidez , Maturidade Sexual/efeitos dos fármacos , Natimorto
10.
Regul Toxicol Pharmacol ; 99: 168-181, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30240830

RESUMO

Perfluorohexanoic acid (PFHxA) is a potential impurity and environmental degradation product of C6-based fluorotelomer products. Considering the potential endocrine activity of perfluoroalkyl acids, a hypothesis-driven weight-of-evidence (WoE) analysis was conducted to evaluate the potential endocrine disruptor activity of PFHxA, as defined by World Health Organization (WHO), across estrogen (E), androgen (A), thyroid (T), and steroidogenesis (S) pathways. A comprehensive literature search identified primary and secondary studies across species for review. The ToxCast/Tox21 database provided in vitro data. Studies identified were reviewed for reliability, and relevance, with endocrine endpoints ranked, and lines of evidence evaluated across pathways. Overall, PFHxA showed no endocrine effects in Japanese medaka, juvenile rainbow trout, chickens or reproductive parameters in northern bobwhite with no significant activity in rodent repeated-dose toxicity, lifetime cancer, or reproductive and developmental studies. In vitro, there was weak or negative activity for T transport protein or activation of E, A or T receptors. PFHxA was also negative in vitro and in vivo for disrupting steroidogenesis. Based on this WoE endocrine analysis, PFHxA exposure did not cause adverse effects associated with alterations in endocrine activity in these models, as such would not be characterized as an endocrine disruptor according to the WHO definition.


Assuntos
Caproatos/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Sistema Endócrino/efeitos dos fármacos , Fluorocarbonos/efeitos adversos , Androgênios/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Estrogênios/metabolismo , Humanos , Reprodutibilidade dos Testes , Glândula Tireoide/efeitos dos fármacos
11.
Toxicol Pathol ; 43(2): 209-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25377447

RESUMO

Perfluorohexanoic acid (PFHxA), a 6-carbon perfluoroalkyl (C6; CAS # 307-24-4), has been proposed as a replacement for the commonly used 8-carbon perfluoroalkyls: perfluorooctanoic acid and perfluorooctane sulfonate. PFHxA is not currently a commercial product but rather the ultimate degradation product of C6 fluorotelomer used to make C6 fluorotelomer acrylate polymers. It can be expected that, to a greater or lesser extent, the environmental loading of PFHxA will increase, as C6 fluorotelomer acrylate treatments are used and waste is generated. This article reports on a chronic study (duration 104 weeks) that was performed to evaluate the possible toxicologic and carcinogenic effects of PFHxA in gavage (daily gavage, 7 days per week) treated male and female Sprague-Dawley (SD) rats. In the current study, dosage levels of 0, 2.5, 15, and 100 mg/kg/day of PFHxA (males) and 5, 30, and 200 mg/kg/day of PFHxA (females) were selected based on a previous subchronic investigation. No effects on body weights, food consumption, a functional observational battery, or motor activity were observed after exposure to PFHxA. While no difference in survival rates in males was seen, a dose-dependent decrease in survival in PFHxA-treated female rats was observed. Hematology and serum chemistry were unaffected by PFHxA. PFHxA-related histologic changes were noted in the kidneys of the 200-mg/kg/day group females. Finally, there was no evidence that PFHxA was tumorigenic in male or female SD rats at any of the dosage levels examined.


Assuntos
Caproatos/toxicidade , Carcinógenos/toxicidade , Fluorocarbonos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Testes de Carcinogenicidade , Ingestão de Alimentos/efeitos dos fármacos , Oftalmopatias/induzido quimicamente , Oftalmopatias/patologia , Feminino , Estimativa de Kaplan-Meier , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Análise de Sobrevida
12.
Environ Res ; 135: 70-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25262077

RESUMO

BACKGROUND: Gilbert syndrome (GS) is an inherited defect of bilirubin conjugation, most commonly caused by a gene mutation for the enzyme UGT1A. GS is known to affect the metabolism and excretion of drugs and xenobiotics. Perfluorocarbon compounds (PFCs) are bio-persistent environmental contaminants that affect metabolic regulation. In this study, we examined the associations of GS phenotype and serum PFCs in the C8 Health Study Population. MATERIALS AND METHODS: Using 2005-2006 data from a large PFC-exposure population survey, we compared serum PFCs concentrations between GS and non GS clinical phenotypes, in a cross sectional design, adjusting for standard risk factors, including age, BMI, smoking status, socioeconomic status and gender. RESULTS: Among 10 PFC compounds considered, only perfluorohexanoic acid (PFHxA) was seen at a significantly higher concentration in GS men and women. CONCLUSION: PFHxA exposure may be associated with GS. Our findings do not support increased exposure in GS for other PFCs.


Assuntos
Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Doença de Gilbert/metabolismo , Fenótipo , Fatores Etários , Índice de Massa Corporal , Estudos Transversais , Poluentes Ambientais/farmacocinética , Feminino , Fluorocarbonos/farmacocinética , Doença de Gilbert/sangue , Humanos , Modelos Lineares , Masculino , Ohio , Fatores Sexuais , Fumar , Fatores Socioeconômicos , West Virginia
14.
Int J Toxicol ; 33(3): 219-237, 2014 05.
Artigo em Inglês | MEDLINE | ID: mdl-24700568

RESUMO

The reproductive toxicity potential of Ammonium Salt of Perfluorinated Hexanoic Acid (PFHxA Ammonium Salt) in pregnant Crl: CD1(ICR) mice was investigated. Twenty females/group were administered the test substance or vehicle once daily from gestation day 6 through 18. Phase 1 doses: 0, 100, 350, and 500 mg/kg/d; phase 2: 0, 7, 35, and 175 mg/kg/d. Parameters evaluated include mortality, viability, body weights, clinical signs, abortions, premature deliveries, pregnancy and fertility, litter observations, maternal behavior, and sexual maturity in the F1 generation. The level of PFHxA Ammonium Salt was measured in the liver of F0 and F1 mice. At doses of 350 and 500 mg/kg/d maternal mortalities, excess salivation and changes in body weight gains occurred. Pup body weights were reduced on postpartum day (PPD) 0 in all the dosage groups, but persisted only in the 350 and 500 mg/kg/d groups. Additional effects at 300 and 500 mg/kg/d included stillbirths, reductions in viability indices, and delays in physical development. Levels of PFHxA Ammonium Salt in the livers of the 100 mg/kg/d dams were all below the lower limit of quantization (0.02 µg/mL); in the 350 mg/kg/d group, 3 of the 8 samples had quantifiable analytical results. In phase 2 no PFHxA Ammonium Salt was found in the liver. Adverse effects occurred only in the 175 mg/kg/d group and consisted of increased stillborn pups, pups dying on PPD 1, and reduced pup weights on PPD 1. Based on these data, the maternal and reproductive no observable adverse effect level of PFHxA Ammonium Salt is 100 mg/kg/d.


Assuntos
Caproatos/toxicidade , Poluentes Ambientais/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Fluorocarbonos/toxicidade , Infertilidade Feminina/induzido quimicamente , Infertilidade Masculina/induzido quimicamente , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Administração Oral , Cloreto de Amônio/administração & dosagem , Cloreto de Amônio/química , Cloreto de Amônio/metabolismo , Cloreto de Amônio/toxicidade , Animais , Caproatos/administração & dosagem , Caproatos/química , Caproatos/metabolismo , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Feminino , Fluorocarbonos/administração & dosagem , Fluorocarbonos/química , Fluorocarbonos/metabolismo , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Lactação , Masculino , Camundongos , Nível de Efeito Adverso não Observado , Gravidez , Complicações na Gravidez/induzido quimicamente , Complicações na Gravidez/metabolismo , Complicações na Gravidez/patologia , Maturidade Sexual/efeitos dos fármacos , Distribuição Tecidual , Toxicocinética , Aumento de Peso/efeitos dos fármacos
15.
Sci Total Environ ; 941: 173325, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797403

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic fluoro-compounds that are oil-, water-, and flame-resistant, making them useful in a wide range of commercial and consumer products, as well as resistant to environmental degradation. To assess the impact of urbanization and wastewater treatment processes, surface water and sediment samples were collected at 27 sites within the Great Lakes in the Lake Huron to Lake Erie corridor (HEC), an international waterway including the highly urbanized Detroit and Rouge Rivers. Samples were analyzed for 92 PFAS via UHPLC-MS/MS. Our previous data in the HEC found the highest amount of PFAS contamination at the Rouge River mouth. In addition to evaluating the input of the Rouge River into the HEC, we evaluated the transport of PFAS into the HEC from other major tributaries. PFAS were detected in both surface water and sediment at all sites in this study, with a total of 10 congeners quantified in all surface water samples and 16 congeners quantified in all sediment samples, indicating ubiquitous contamination. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were pervasive in the HEC as these two compounds were detected in all sites and matrices, often at concentrations above the US EPA's recommended lifetime interim updated health advisories. Surface water samples contained more perfluorohexanoic acid (PFHxA) than any other congener, with average aqueous PFHxA across all surface water samples exceeding the average concentration previously reported in the Great Lakes. Sediment samples were dominated by PFOS, but novel congeners, notably 3-Perfluoropentyl propanoic acid (FPePA), were also quantified in sediment. The Rouge River and other tributaries contribute significantly to the PFAS burden in the HEC including Lake Erie. Overall, our results indicate the need for expanding toxicological research and risk assessment focused on congeners such as PFHxA and PFAS mixtures, as well as regulation that is tighter at the onset of production and encompasses PFAS as a group at a national level.

16.
Mar Pollut Bull ; 204: 116561, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838392

RESUMO

In 2015, > 460,000 L of aqueous film-forming foam (AFFF) and fire suppressors containing per- and polyfluoroalkyl substances (PFAS) were used to combat a fire at a petrochemical fuel storage terminal in the Port of Santos (Brazil). Sediments from seven sites were sampled repeatedly from 2 weeks to 1 year after the fire (n = 30). Æ©15PFAS concentrations ranged from 115 to 15,931 pg g-1 dry weight (dw). Perfluorooctane sulfonic acid (PFOS) was the most frequently detected compound with concentrations ranging from 363 to 4517 (average = 1603) pg g-1dw to <47.1 to 642 (average = 401) pg g-1 dw, followed by perfluorohexanoic acid (PFHxA) (from 38.8 to 219 (average = 162) pg g-1 dw after 15 days and from <20.8 to 161 (average = 101) pg g-1 dw one year later). Together, the hydrodynamics and fire events documented in the region were important features explaining the spread of PFAS.


Assuntos
Ácidos Alcanossulfônicos , Monitoramento Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise , Brasil , Sedimentos Geológicos/química , Caproatos/análise
17.
Environ Int ; 187: 108717, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728818

RESUMO

BACKGROUND: Exposure to environmental pollutants is suspected to be one of the potential causes accounting for the increase in thyroid cancer (TC) incidence worldwide. Among the ubiquitous pollutants, per-polyfluoroalkyl substances (PFASs), were demonstrated to exert thyroid disrupting effects. Perfluoroalkyl carboxylates (PFCAs) represent a subgroup of PFAS and include perfluoro carboxylic acids (PFOA and PFHxA) and perfluoropolyether carboxylic acid (C6O4). The potential relationship between exposure to PFCAs and TC was not yet fully elucidated. This in vitro study investigated whether certain PFCAs (C6O4, PFOA, and PFHxA) can influence the composition of TC microenvironment. METHODS: Two models of normal thyroid cells in primary cultures: Adherent (A-NHT) and Spheroids (S-NHT) were employed. A-NHT and S-NHT were exposed to C6O4, PFOA or PFHxA (0; 0.01; 0.1, 1; 10; 100; 1000 ng/mL) to assess viability (WST-1 and AV/PI assay), evaluate spherification index (SI) and volume specifically in S-NHT. CXCL8 and CCL2 (mRNA and protein), and EMT-related genes were assessed in both models after exposure to PFCAs. RESULTS: PFHxA reduced the viability of both A-NHT and S-NHT. None of the PFCAs interfered with the volume or spherification process in S-NHT. CXCL8 and CCL2 mRNA and protein levels were differently up-regulated by each PFCAs, being PFOA and PFHxA the stronger inducers. Moreover, among the tested PFCAs, PFHxA induced a more consistent increase in the mRNA levels of EMT-related genes. CONCLUSIONS: This is the first evaluation of the effects of exposure to PFCAs on factors potentially involved in establishing the TC microenvironment. PFHxA modulated the TC microenvironment at three levels: cell viability, pro-tumorigenic chemokines, and EMT-genes. The results provide further evidence of the pro-tumorigenic effect of PFOA. On the other hand, a marginal effect was observed for C6O4 on pro-tumorigenic chemokines.


Assuntos
Fluorocarbonos , Glândula Tireoide , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Humanos , Fluorocarbonos/toxicidade , Microambiente Tumoral/efeitos dos fármacos , Neoplasias da Glândula Tireoide/patologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia , Caprilatos/toxicidade , Poluentes Ambientais/toxicidade , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Ácidos Carboxílicos/toxicidade
18.
Food Chem Toxicol ; 183: 114333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061571

RESUMO

The 6:2 fluorotelomer alcohol (6:2 FTOH) is a common impurity in per- and polyfluoroalkyl substances (PFASs) used in many applications. Our previous toxicokinetic (TK) evaluation of 6:2 FTOH calculated times to steady state (tss) of one of its metabolites, 5:3 fluorotelomer carboxylic acid (5:3A), in the plasma and tissues of up to a year after oral exposure to rats. Our current work further elucidated the TK of 5:3A and other metabolites of 6:2 FTOH in pregnant and nonpregnant rats after repeated oral exposure and examined the role of renal transporters in the biopersistence of 5:3A. The tss values for 5:3A in serum and tissues of adult nonpregnant animals ranged from 150 days to over a year. 4:3 fluorotelomer carboxylic acid (4:3A) was an additional potentially-biopersistent metabolite. 5:3A was the major metabolite of 6:2 FTOH in serum of pregnant dams and fetuses at each time interval. 5:3A was not a substrate for renal transporters in a human kidney cell line in vitro, indicating that renal reuptake of 5:3A is unlikely contribute to its biopersistence. Further research is needed to identify the underlying processes and evaluate the impact of these 6:2 FTOH metabolites on human health.


Assuntos
Fluorocarbonos , Ratos , Humanos , Animais , Gravidez , Feminino , Toxicocinética , Fluorocarbonos/toxicidade , Fluorocarbonos/química , Transporte Biológico , Ácidos Carboxílicos
19.
ACS ES T Water ; 3(2): 332-341, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37006340

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of 4000+ man-made compounds of great concern due to their environmental ubiquity and adverse effects. Despite a general interest, few reliable detection tools for integrative passive sampling of PFAS in water are available. A microporous polyethylene tube with a hydrophilic-lipophilic balance sorbent could serve as a flow-resistant passive sampler for PFAS. The tube's sampling rate, Rs, was predicted based on either partitioning and diffusion, or solely diffusion. At 15 °C, the laboratory measured Rs for perfluorohexanoic acid of 100+/-81 mL day-1 were better predicted by a partitioning and diffusion model (48+/-1.8 mL day-1) across 10-60 cm s-1 water flow speeds (15+/-4.2 mL day-1 diffusion only). For perfluorohexane sulfonate, Rs at 15°C were similarly different (110+/-60 mL day-1 measured, 120+/- 63 versus 12+/-3.4 mL day-1 in respective models). Rs values from field deployments were in-between these estimates (46 +/-40 mL day-1 for perfluorohexanoic acid). PFAS uptake was not different for previously biofouled membranes in the laboratory, suggesting the general applicability of the sampler in environmental conditions. This research demonstrates that the polyethylene tube's sampling rates are sensitive to the parameterization of the models used here and partitioning-derived values should be used.

20.
Food Chem Toxicol ; 171: 113515, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435305

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic structurally diverse chemicals incorporated into industrial and consumer products. PFHpA, PFHxA, and PFPeA are carboxylic PFAS (C7, C6, C5, respectively) labeled as a safer alternative to legacy carboxylic PFAS due to their shorter half-life in animals. Although there is a high potential for dermal exposure, these studies are lacking. The present study conducted analyses of serum chemistries, immune phenotyping, gene expression, and histology to evaluate the systemic toxicity of a sub-chronic 28-day dermal exposure of alternative PFAS (1.25-5% or 31.25-125 mg/kg/dose) in a murine model. Liver weight (% body) significantly increased with PFHpA, PFHxA, and PFPeA exposure and histopathological changes were observed in both the liver and skin. Gene expression changes were observed with PPAR isoforms in the liver and skin along with changes in genes involved in steatosis, fatty acid metabolism, necrosis, and inflammation. These findings, along with significant detection levels in serum and urine, support PFAS-induced liver damage and PPARα, δ, and γ involvement in alternative PFAS systemic toxicity and immunological disruption. This demonstrates that these compounds can be absorbed through the skin and brings into question whether these PFAS are a suitable alternative to legacy PFAS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Camundongos , Animais , Modelos Animais de Doenças , Fluorocarbonos/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa