Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429579

RESUMO

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Assuntos
Epilepsia , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento , Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Obesidade , Humanos , Camundongos , Animais , Deficiência Intelectual/genética , Proteínas Repressoras , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Transcrição
2.
Genes Dev ; 31(10): 973-989, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28607179

RESUMO

Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition.


Assuntos
Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia de Células B/genética , Leucemia de Células B/fisiopatologia , Animais , Linhagem Celular Tumoral , Linhagem da Célula/genética , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Inativação de Genes , Linfoma não Hodgkin/genética , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas Repressoras , Transdução de Sinais/genética
3.
Cancer Cell Int ; 24(1): 66, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336746

RESUMO

Acute myeloid leukemia (AML) is a malignant hematologic disease caused by gene mutations and genomic rearrangements in hematologic progenitors. The PHF6 (PHD finger protein 6) gene is highly conserved and located on the X chromosome in humans and mice. We found that PHF6 was highly expressed in AML cells with MLL rearrangement and was related to the shortened survival time of AML patients. In our study, we knocked out the Phf6 gene at different disease stages in the AML mice model. Moreover, we knocked down PHF6 by shRNA in two AML cell lines and examined the cell growth, apoptosis, and cell cycle. We found that PHF6 deletion significantly inhibited the proliferation of leukemic cells and prolonged the survival time of AML mice. Interestingly, the deletion of PHF6 at a later stage of the disease displayed a better anti-leukemia effect. The expressions of genes related to cell differentiation were increased, while genes that inhibit cell differentiation were decreased with PHF6 knockout. It is very important to analyze the maintenance role of PHF6 in AML, which is different from its tumor-suppressing function in T-cell acute lymphoblastic leukemia (T-ALL). Our study showed that inhibiting PHF6 expression may be a potential therapeutic strategy targeting AML patients.

4.
J Cell Mol Med ; 27(5): 609-621, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36756714

RESUMO

Uterine corpus endometrial carcinoma (UCEC) is the most common cancer of the female reproductive tract. The overall survival of advanced and recurrent UCEC patients is still unfavourable nowadays. It is urgent to find a predictive biomarker and block tumorgenesis at an early stage. Plant homeodomain finger protein 6 (PHF6) is a key player in epigenetic regulation, and its alterations lead to various diseases, including tumours. Here, we found that PHF6 expression was upregulated in UCEC tissues compared with normal tissues. The UCEC patients with high PHF6 expression had poor survival than UCEC patients with low PHF6 expression. PHF6 mutation occurred in 12% of UCEC patients, and PHF6 mutation predicted favourable clinical outcome in UCEC patients. Depletion of PHF6 effectively inhibited HEC-1-A and KLE cell proliferation in vitro and decreased HEC-1-A cell growth in vivo. Furthermore, high PHF6 level indicated a subtype of UCECs characterized by low immune infiltration, such as CD3+ T-cell infiltration. While knockdown of PHF6 in endometrial carcinoma cells increased T-cell migration by promoting IL32 production and secretion. Taken together, our findings suggested that PHF6 might play an oncogenic role in UCEC patients. Thus, PHF6 could be a potential biomarker in predicting the prognosis of UCEC patients. Depletion of PHF6 may be a novel therapeutic strategy for UCEC patients.


Assuntos
Carcinoma Endometrioide , Neoplasias do Endométrio , Feminino , Humanos , Epigênese Genética , Linfócitos T/metabolismo , Recidiva Local de Neoplasia/genética , Neoplasias do Endométrio/patologia , Útero/metabolismo , Carcinoma Endometrioide/genética , Proteínas Repressoras/genética
5.
Development ; 147(21)2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32994169

RESUMO

Börjeson-Forssman-Lehmann syndrome (BFLS) is an intellectual disability and endocrine disorder caused by plant homeodomain finger 6 (PHF6) mutations. Individuals with BFLS present with short stature. We report a mouse model of BFLS, in which deletion of Phf6 causes a proportional reduction in body size compared with control mice. Growth hormone (GH) levels were reduced in the absence of PHF6. Phf6-/Y animals displayed a reduction in the expression of the genes encoding GH-releasing hormone (GHRH) in the brain, GH in the pituitary gland and insulin-like growth factor 1 (IGF1) in the liver. Phf6 deletion specifically in the nervous system caused a proportional growth defect, indicating a neuroendocrine contribution to the phenotype. Loss of suppressor of cytokine signaling 2 (SOCS2), a negative regulator of growth hormone signaling partially rescued body size, supporting a reversible deficiency in GH signaling. These results demonstrate that PHF6 regulates the GHRH/GH/IGF1 axis.


Assuntos
Regulação para Baixo , Epilepsia/metabolismo , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/metabolismo , Hipogonadismo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Obesidade/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Epilepsia/sangue , Epilepsia/patologia , Face/patologia , Dedos/patologia , Transtornos do Crescimento/sangue , Transtornos do Crescimento/patologia , Hormônio do Crescimento/sangue , Hipogonadismo/sangue , Hipogonadismo/patologia , Hipotálamo/metabolismo , Fator de Crescimento Insulin-Like I/genética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/sangue , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/metabolismo , Obesidade/sangue , Obesidade/patologia , Especificidade de Órgãos , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
6.
J Transl Med ; 21(1): 220, 2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-36967443

RESUMO

BACKGROUND: Aberrant epigenetic remodeling events contribute to progression and metastasis of breast cancer (Bca). The specific mechanims that epigenetic factors rely on to mediate tumor aggressiveness remain unclear. We aimed to elucidate the roles of epigenetic protein PHF6 in breast tumorigenesis. METHODS: Published datasets and tissue samples with PHF6 staining were used to investigate the clinical relevance of PHF6 in Bca. CCK-8, clony formation assays were used to assess cell growth capacity. Cell migration and invasion abilities were measured by Transwell assay. The gene mRNA and protein levels were measured by quantitative real-time PCR and western blot. Chromatin immunoprecipitation (ChIP)-qPCR assays were used to investigate transcriptional relationships among genes. The Co-immunoprecipitation (Co-IP) assay was used to validate interactions between proteins. The CRISPR/Cas9 editing technology was used to construct double HIF knockout (HIF-DKO) cells. The subcutaneous xenograft model and orthotopic implantation tumor model were used to asess in vivo tumor growth. RESULTS: In this study, we utilized MTT assay to screen that PHF6 is required for Bca growth. PHF6 promotes Bca proliferation and migration. By analyzing The Cancer Genome Atlas breast cancer (TCGA-Bca) cohort, we found that PHF6 was significantly higher in tumor versus normal tissues. Mechanistically, PHF6 physically interacts with HIF-1α and HIF-2α to potentiate HIF-driven transcriptional events to initiate breast tumorigenesis. HIF-DKO abolished PHF6-mediated breast tumor growth, and PHF6 deficiency in turn impaired HIF transcriptional effects. Besides, hypoxia could also rely on YAP activation, but not HIF, to sustain PHF6 expressions in Bca cells. In addition, PHF6 recuits BPTF to mediate epigenetic remodeling to augment HIF transcriptional activity. Targeting PHF6 or BPTF inhibitor (AU1) is effective in mice models. Lastly, PHF6 correlated with HIF target gene expression in human breast tumors, which is an independent prognostic regulator. CONCLUSIONS: Collectively, this study identified PHF6 as a prognostic epigenetic regulator for Bca, functioning as a HIF coactivator. The fundamental mechanisms underlying YAP/PHF6/HIF axis in breast tumors endowed novel epigenegtic targets for Bca treatment.


Assuntos
Neoplasias da Mama , Proteínas Repressoras , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prognóstico , Proteínas Repressoras/genética
7.
Genes Dev ; 29(5): 483-8, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25737277

RESUMO

We performed a genome-scale shRNA screen for modulators of B-cell leukemia progression in vivo. Results from this work revealed dramatic distinctions between the relative effects of shRNAs on the growth of tumor cells in culture versus in their native microenvironment. Specifically, we identified many "context-specific" regulators of leukemia development. These included the gene encoding the zinc finger protein Phf6. While inactivating mutations in PHF6 are commonly observed in human myeloid and T-cell malignancies, we found that Phf6 suppression in B-cell malignancies impairs tumor progression. Thus, Phf6 is a "lineage-specific" cancer gene that plays opposing roles in developmentally distinct hematopoietic malignancies.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Leucemia/genética , Linhagem da Célula , Proliferação de Células/genética , Genoma Humano/genética , Humanos , Leucemia/fisiopatologia , Mutação/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras
8.
Turk J Med Sci ; 53(5): 1234-1243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38812997

RESUMO

Background/aim: T-cell acute lymphoblastic leukemia (T-ALL) is a form of leukemia characterized by the proliferation of immature T lymphocytes. NOTCH1 is one of the most frequently mutated genes in T-ALL. NOTCH1 expression in T-cell development depends on plant homeodomain finger protein 6 (PHF6), which plays a tumor suppressor role in T-ALL. Several studies have shown that PHF6 expression is essential for NOTCH1 expression. Therefore, whether posttranslational modification of PHF6 plays a role in the regulation of NOTCH1 expression and T-ALL cell line proliferation was investigated herein. Materials and methods: The amino acid sequence of PHF6 was analyzed and it was found that a putative protein kinase A (PKA) phosphorylation motif RDRS199 was conserved in several vertebrate species and the S199 site was expected to be phosphorylated according to the PhosphoSite database. Therefore, an eukaryotic expression vector of human PHF6 was constructed, and the codon 199 was changed to the codon encoding the nonphosphorylatable alanine and the phosphorylation-mimicking aspartic acid via site-directed mutagenesis. After confirming the ectopic expressions of the PHF6 vectors by western blot analysis, the effects of these proteins were identified on the NOTCH1 expression using western blot analysis, leukemic cell proliferation using MTT assay, and expressions of the cell surface markers of T-cells using flow cytometry. Results: The ectopic expression of wild-type PHF6 stimulated the formation of CD4 + T-cells. While the expression of the wild-type PHF6 suppressed the growth of the leukemic cell line, this effect was diminished in both the alanine and aspartic acid mutants of PHF6. In addition, both mutants also seemed to negatively affect the NOTCH1 expression, although the effect of the alanine mutant was more severe. Conclusion: Taken together, the different biological activities exerted by the conserved S199 phosphorylation-site mutants shown in this study implicate that signaling pathway(s) leading to differential phosphorylation of this residue may have a substantial effect on the activity of PHF6, and thus may constitute a potential therapeutic target in T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptor Notch1 , Proteínas Repressoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proliferação de Células/genética , Fosforilação , Mutação , Linhagem Celular Tumoral
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(2): 294-301, 2023 Feb 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36999477

RESUMO

Börjeson-Forssman-Lehmann syndrome (BFLS) is a rare X-linked intellectual disability. The main features of the patients include intellectual disability/global developmental delay, characteristic face, anomalies of fingers and toes, hypogonadism, linear skin hyperpigmentation, and tooth abnormalities in female patients, and obesity in male patients. A case of BFLS caused by a novel mutation of PHF6 gene who was treated in the Department of Pediatrics, Xiangya Hospital, Central South University was reported. The 11 months old girl presented the following symptons: Global developmental delay, characteristic face, sparse hair, ocular hypertelorism, flat nasal bridge, hairy anterior to the tragus, thin upper lip, dental anomalies, ankyloglossia, simian line, tapering fingers, camptodactylia, and linear skin hyperpigmentation. The gene results of the second-generation sequencing technology showed that there was a novel heterozygous mutation site c.346C>T (p.Arg116*) of the PHF6 (NM032458.3), variation rating as pathogenic variation. During the follow-up, the patient developed astigmatism, strabismus, awake bruxism, and stereotyped behavior, and the linear skin hyperpigmentation became gradually more evident. The disease is lack of effective therapy so far.


Assuntos
Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Masculino , Feminino , Criança , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Obesidade/complicações , Hipogonadismo/genética , Hipogonadismo/patologia
10.
J Biol Chem ; 297(4): 101195, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520760

RESUMO

DNA methylation shows complex correlations with gene expression, and the role of promoter hypermethylation in repressing gene transcription has been well addressed. Emerging evidence indicates that gene body methylation promotes transcription; however, the underlying mechanisms remain to be further investigated. Here, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), bisulfite genomic sequencing, and immunofluorescent labeling, we show that gene body methylation is indeed positively correlated with rRNA gene (rDNA) transcription. Mechanistically, gene body methylation is largely maintained by DNA methyltransferase 1 (DNMT1), deficiency or downregulation of which during myoblast differentiation or nutrient deprivation results in decreased gene body methylation levels, leading to increased gene body occupancy of plant homeodomain (PHD) finger protein 6 (PHF6). PHF6 binds to hypomethylated rDNA gene bodies where it recruits histone methyltransferase SUV4-20H2 to establish the repressive histone modification, H4K20me3, ultimately inhibiting rDNA transcription. These findings demonstrate that DNMT1-mediated gene body methylation safeguards rDNA transcription by preventing enrichment of repressive histone modifications, suggesting that gene body methylation serves to maintain gene expression in response to developmental and/or environmental stresses.


Assuntos
Metilação de DNA , DNA Ribossômico/metabolismo , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA Ribossômico/genética , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Proteínas Repressoras/genética
11.
Proteins ; 90(1): 142-154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331342

RESUMO

Derivatives of 2,4-thiazolidinedione have been reported to inhibit the aggregation of tau protein, in which compound 30 (C30) not only inhibit 80% of paired helical filament 6 (PHF6) aggregation, but also inhibit K18 and full-length tau aggregation. However, its inhibitory mechanism is unclear. In this study, to investigate the effect of C30 on tau protein, all-atom molecular dynamics simulation was performed on the PHF6 oligomer with and without C30. The results show that C30 can cause significant conformational changes in the PHF6 oligomer. The nematic order parameter P2 and secondary structure analyses show that C30 destroys the ordered structure of PHF6 oligomer, reduces the content of ß-sheet structure, and transforms ß-sheet into random coil structure. By clustering analysis, it was found that C30 has four possible binding sites on the PFH6 oligomer, and the binding ability order is S1 > S2 > S4 > S3. Following a more in-depth analyses of each site, it was determined that the S1 site is the most possible binding site mainly located between layers of L1 and L3. The hydrophobic interaction is the driving force for the binding of C30 to PHF6 oligomer. In addition, L1P4_Y310, L1P5_Y310, L3P1_V309, and L3P2_V309 are key residues for C30 binding to oligomer. Moreover, π-π interaction formed by L1P4_Y310 and L1P5_Y310 with C30 and the hydrogen bonding interaction formed by C30 with L3P3_Q307 are beneficial to the combination of C30 and oligomer. The fully understanding disrupt the mechanism of 2,4-thiazolidinedione derivative on PHF6 oligomer and the identification of binding sites will help design and discover new AD inhibitors in the future.


Assuntos
Oligopeptídeos , Tiazolidinedionas , Proteínas tau , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Distribuição de Poisson , Termodinâmica , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
12.
Clin Genet ; 102(3): 182-190, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662002

RESUMO

While inherited hemizygous variants in PHF6 cause X-linked recessive Borjeson-Forssman-Lehmann syndrome (BFLS) in males, de novo heterozygous variants in females are associated with an overlapping but distinct phenotype, including moderate to severe intellectual disability, characteristic facial dysmorphism, dental, finger and toe anomalies, and linear skin pigmentation. By personal communication with colleagues, we assembled 11 additional females with BFLS due to variants in PHF6. We confirm the distinct phenotype to include variable intellectual disability, recognizable facial dysmorphism and other anomalies. We observed skewed X-inactivation in blood and streaky skin pigmentation compatible with functional mosaicism. Variants occurred de novo in 10 individuals, of whom one was only mildly affected and transmitted it to her more severely affected daughter. The mutational spectrum comprises a two-exon deletion, five truncating, one splice-site and three missense variants, the latter all located in the PHD2 domain and predicted to severely destabilize the domain structure. This observation supports the hypothesis of more severe variants in females contributing to gender-specific phenotypes in addition to or in combination with effects of X-inactivation and functional mosaicism. Therefore, our findings further delineate the clinical and mutational spectrum of female BFLS and provide further insights into possible genotype-phenotype correlations between females and males.


Assuntos
Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Anormalidades Musculoesqueléticas , Proteínas Repressoras , Epilepsia , Face/anormalidades , Feminino , Dedos/anormalidades , Transtornos do Crescimento , Humanos , Hipogonadismo/genética , Deficiência Intelectual/complicações , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Anormalidades Musculoesqueléticas/complicações , Obesidade , Proteínas Repressoras/genética
13.
EMBO Rep ; 21(1): e48460, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31782600

RESUMO

The cellular response to DNA breaks is influenced by chromatin compaction. To identify chromatin regulators involved in the DNA damage response, we screened for genes that affect recovery following DNA damage using an RNAi library of chromatin regulators. We identified genes involved in chromatin remodeling, sister chromatid cohesion, and histone acetylation not previously associated with checkpoint recovery. Among these is the PHD finger protein 6 (PHF6), a gene mutated in Börjeson-Forssman-Lehmann syndrome and leukemic cancers. We find that loss of PHF6 dramatically compromises checkpoint recovery in G2 phase cells. Moreover, PHF6 is rapidly recruited to sites of DNA lesions in a PARP-dependent manner and required for efficient DNA repair through classical non-homologous end joining. These results indicate that PHF6 is a novel DNA damage response regulator that promotes end joining-mediated repair, thereby stimulating timely recovery from the G2 checkpoint.


Assuntos
Hipogonadismo , Deficiência Intelectual Ligada ao Cromossomo X , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades , Pontos de Checagem da Fase G2 do Ciclo Celular , Transtornos do Crescimento , Humanos
14.
Chin J Cancer Res ; 34(2): 83-94, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35685993

RESUMO

Objective: T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm of precursor T cells, however, detailed genome-wide sequencing of large T-LBL cohorts has not been performed due to its rarity. The purpose of this study was to identify putative driver genes in T-LBL. Methods: To gain insight into the genetic mechanisms of T-LBL development, we performed whole-exome sequencing on 41 paired tumor-normal DNA samples from patients with T-LBL. Results: We identified 32 putative driver genes using whole-exome sequencing in 41 T-LBL cases, many of which have not previously been described in T-LBL, such as Janus kinase 3 (JAK3), Janus kinase 1 (JAK1), Runt-related transcription factor 1 (RUNX1) and Wilms' tumor suppressor gene 1 (WT1). When comparing the genetic alterations of T-LBL to T-cell acute lymphoblastic leukemia (T-ALL), we found that JAK-STAT and RAS pathway mutations were predominantly observed in T-LBL (58.5% and 34.1%, respectively), whereas Notch and cell cycle signaling pathways mutations were more prevalent in T-ALL. Notably, besides notch receptor 1 (NOTCH1), mutational status of plant homeodomain (PHD)-like finger protein 6 (PHF6) was identified as another independent factor for good prognosis. Of utmost interest is that co-existence of PHF6 and NOTCH1 mutation status might provide an alternative for early therapeutic stratification in T-LBL. Conclusions: Together, our findings will not only provide new insights into the molecular and genetic mechanisms of T-LBL, but also have tangible implications for clinical practice.

15.
Cell Mol Life Sci ; 77(14): 2795-2813, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31562564

RESUMO

Neurofibrillary tangles of the Tau protein and plaques of the amyloid ß peptide are hallmarks of Alzheimer's disease (AD), which is characterized by the conversion of monomeric proteins/peptides into misfolded ß-sheet rich fibrils. Halting the fibrillation process and disrupting the existing aggregates are key challenges for AD drug development. Previously, we performed in vitro high-throughput screening for the identification of potent inhibitors of Tau aggregation using a proxy model, a highly aggregation-prone hexapeptide fragment 306VQIVYK311 (termed PHF6) derived from Tau. Here we have characterized a hit molecule from that screen as a modulator of Tau aggregation using in vitro, in silico, and in vivo techniques. This molecule, an anthraquinone derivative named Purpurin, inhibited ~ 50% of PHF6 fibrillization in vitro at equimolar concentration and disassembled pre-formed PHF6 fibrils. In silico studies showed that Purpurin interacted with key residues of PHF6, which are responsible for maintaining its ß-sheets conformation. Isothermal titration calorimetry and surface plasmon resonance experiments with PHF6 and full-length Tau (FL-Tau), respectively, indicated that Purpurin interacted with PHF6 predominantly via hydrophobic contacts and displayed a dose-dependent complexation with FL-Tau. Purpurin was non-toxic when fed to Drosophila and it significantly ameliorated the AD-related neurotoxic symptoms of transgenic flies expressing WT-FL human Tau (hTau) plausibly by inhibiting Tau accumulation and reducing Tau phosphorylation. Purpurin also reduced hTau accumulation in cell culture overexpressing hTau. Importantly, Purpurin efficiently crossed an in vitro human blood-brain barrier model. Our findings suggest that Purpurin could be a potential lead molecule for AD therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antraquinonas/farmacologia , Oligopeptídeos/genética , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Animais Geneticamente Modificados/genética , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/genética , Fosforilação/efeitos dos fármacos , Conformação Proteica em Folha beta/efeitos dos fármacos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética
16.
J Biol Chem ; 294(42): 15304-15317, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31439664

RESUMO

The aggregation of the tau protein into neurofibrillary tangles is believed to correlate with cognitive decline in several neurodegenerative disorders, including Alzheimer's disease. Recent studies suggest that tau's interactions with the cell membrane could serve as a toxicity pathway and also enhance fibrillation into paired helical filaments (PHFs). Conformational changes associated with tau-membrane interactions are poorly understood, and their characterization could improve our understanding of tau pathogenicity. In this study, we investigated the molecular level structural changes associated with the interaction of the tau hexapeptide PHF6 with model lipid membranes and characterized the effects of these interactions on membrane stability and peptide fibrillation. We used two PHF6 forms, the aggregation-prone PHF6 with N-terminal acetylation (Ac-PHF6) and the non-aggregation prone PHF6 with a standard N terminus (NH3+-PHF6). We found that both PHF6 peptides are neurotoxic and exhibit similar membrane-mediated changes, consisting of: 1) favorable interactions with anionic membranes, 2) membrane destabilization through lipid extraction, and 3) membrane-mediated fibrillation. The rate at which these changes occurred was the main difference between the two peptides. NH3+-PHF6 displayed slow membrane-mediated fibrillation after 6 days of incubation, whereas Ac-PHF6 adopted a ß-sheet conformation at the surface of the membrane within hours. Ac-PHF6 interactions with the membrane were also accompanied by membrane invagination and rapid membrane destabilization. Overall, our results reveal that membrane interactions could play a critical role in tau toxicity and fibrillation, and highlight that unraveling these interactions is important for significantly advancing the development of therapeutic strategies to manage tau-associated neurodegenerative diseases.


Assuntos
Membrana Celular/metabolismo , Emaranhados Neurofibrilares/metabolismo , Peptídeos/metabolismo , Proteínas tau/metabolismo , Acetilação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Membrana Celular/genética , Humanos , Emaranhados Neurofibrilares/genética , Peptídeos/genética , Peptídeos/toxicidade , Estrutura Secundária de Proteína , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/toxicidade
17.
Cell Biol Int ; 44(1): 117-126, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31329335

RESUMO

MiR-214 has been reported to act as a tumor suppressor or oncogene involved in various malignancies. However, the biological functions and molecular mechanisms of miR-214 in hepatocellular carcinoma (HCC) still remain unclear. Previous studies suggest that pyruvate dehydrogenase kinase 2 (PDK2) and plant homeodomain finger protein 6 (PHF6) may be involved in some tumor cell proliferation and migration. Therefore, we studied the relationship between PDK2/PHF6 and miR-214. The expression of miR-214, PDK2, and PHF6 was determined by quantitative real-time polymerase chain reaction in HCC tissues and cell lines. The Luciferase reporter assay was used to confirm the interaction between miR-214 and PDK2/PHF6. Cell proliferation, apoptosis, and migration were evaluated by cell counting kit-8 assay, flow cytometry, and transwell assay, respectively. The expressions levels of α-smooth muscle actin (α-SMA) and E-cadherin were detected via immunofluorescence assay. Here, we found that the expression of miR-214 decreased in HCC and was negatively correlated with PDK2 and PHF6. Moreover, PDK2 and PHF6 were the direct targets of miR-214 in HCC cells. Functional analysis showed that knockdown of PDK2 or PHF6 as well as miR-214 overexpression significantly suppressed cell proliferation and migration in HCC cells. Furthermore, we found that the suppression of cell proliferation and migration through PDK2 or PHF6 knockdown could be partially reversed by miR-214 down-regulation. Moreover, we demonstrated a decrease of mesenchymal cell marker α-SMA and increase of the epithelial marker E-cadherin after miR-214 overexpression, PDK2 knockdown or PHF6 knockdown, respectively, which also suggested that cell proliferation and migration were suppressed. Additionally, lactate and pyruvic acid production experiments confirmed miR-214 could suppress the HCC cell lactate and pyruvic acid levels by down-regulating PDK2/PHF6. In conclusion, MiR-214 may act as a tumor suppressor gene, presenting its suppressive role in cell proliferation and migration of HCC cells by targeting PDK2 and PHF6, and might provide a potential therapy target for patients with HCC.

18.
Biochim Biophys Acta Gen Subj ; 1862(7): 1565-1575, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29634991

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder which is characterized by the deposits of intra-cellular tau protein and extra-cellular amyloid-ß (Aß) peptides in the human brain. Understanding the mechanism of protein aggregation and finding compounds that are capable of inhibiting its aggregation is considered to be highly important for disease therapy. METHODS: We used an in vitro High-Throughput Screening for the identification of potent inhibitors of tau aggregation using a proxy model; a highly aggregation-prone hexapeptide fragment 306VQIVYK311 derived from tau. Using ThS fluorescence assay we screened a library of 2401 FDA approved, bio-active and natural compounds in attempt to find molecules which can efficiently modulate tau aggregation. RESULTS: Among the screened compounds, palmatine chloride (PC) alkaloid was able to dramatically reduce the aggregation propensity of PHF6 at sub-molar concentrations. PC was also able to disassemble preformed aggregates of PHF6 and reduce the amyloid content in a dose-dependent manner. Insights obtained from MD simulation showed that PC interacted with the key residues of PHF6 responsible for ß-sheet formation, which could likely be the mechanism of inhibition and disassembly. Furthermore, PC could effectively inhibit the aggregation of full-length tau and disassemble preformed aggregates. CONCLUSIONS: We found that PC possesses "dual functionality" towards PHF6 and full-length tau, i.e. inhibit their aggregation and disassemble pre-formed fibrils. GENERAL SIGNIFICANCE: The "dual functionality" of PC is valuable as a disease modifying strategy for AD, and other tauopathies, by inhibiting their progress and reducing the effect of fibrils already present in the brain.


Assuntos
Alcaloides de Berberina/farmacologia , Fragmentos de Peptídeos/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos , Neoplasias das Glândulas Suprarrenais/patologia , Amiloide/efeitos dos fármacos , Amiloide/ultraestrutura , Dicroísmo Circular , Simulação por Computador , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/química , Feocromocitoma/patologia , Agregação Patológica de Proteínas , Células Tumorais Cultivadas , Proteínas tau/química
19.
BMC Genomics ; 18(1): 403, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539120

RESUMO

BACKGROUND: Intellectual Disability (ID) is among the most common global disorders, yet etiology is unknown in ~30% of patients despite clinical assessment. Whole genome sequencing (WGS) is able to interrogate the entire genome, providing potential to diagnose idiopathic patients. METHODS: We conducted WGS on eight children with idiopathic ID and brain structural defects, and their normal parents; carrying out an extensive data analyses, using standard and discovery approaches. RESULTS: We verified de novo pathogenic single nucleotide variants (SNV) in ARID1B c.1595delG and PHF6 c.820C > T, potentially causative de novo two base indels in SQSTM1 c.115_116delinsTA and UPF1 c.1576_1577delinsA, and de novo SNVs in CACNB3 c.1289G > A, and SPRY4 c.508 T > A, of uncertain significance. We report results from a large secondary control study of 2081 exomes probing the pathogenicity of the above genes. We analyzed structural variation by four different algorithms including de novo genome assembly. We confirmed a likely contributory 165 kb de novo heterozygous 1q43 microdeletion missed by clinical microarray. The de novo assembly resulted in unmasking hidden genome instability that was missed by standard re-alignment based algorithms. We also interrogated regulatory sequence variation for known and hypothesized ID genes and present useful strategies for WGS data analyses for non-coding variation. CONCLUSION: This study provides an extensive analysis of WGS in the context of ID, providing genetic and structural insights into ID and yielding diagnoses.


Assuntos
Deficiência Intelectual/genética , Sequenciamento Completo do Genoma , Criança , Genoma Humano/genética , Humanos , Mutação INDEL , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
20.
Chemistry ; 23(40): 9618-9624, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28544138

RESUMO

Inhibiting the toxic aggregation of amyloid-ß and the tau protein, the key pathological agents involved in Alzheimer's, is a leading approach in modulating disease progression. Using an aggregative tau-derived model peptide, Ac-PHF6-NH2 , the substitution of its amino acids with proline, a known efficient ß-breaker, is shown to reduce self-assembly. This effect is attributed to the steric hindrance created by the proline substitution, which results in disruption of the ß-sheet formation process. Moreover, several of the proline-substituted peptides inhibit the aggregation of Ac-PHF6-NH2 amyloidogenic peptide. Two of these modified inhibitors also disassemble pre-formed Ac-PHF6-NH2 fibrils and one inhibits induced cytotoxicity of the fibrils. Taken together, these lead ß-breaker peptides may be developed into novel Alzheimer's disease therapeutics.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Prolina/química , Proteínas tau/química , Amiloide/metabolismo , Amiloide/toxicidade , Animais , Sobrevivência Celular , Humanos , Oligopeptídeos/metabolismo , Células PC12 , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Ratos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa