Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Top Microbiol Immunol ; 436: 3-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243838

RESUMO

This chapter is an introduction to phosphoinositide 3-kinases (PI3K), with class I PI3Ks as the central focus. First, the various PI3K isoforms in class I are presented with emphasis on their overall structure, subunits, subunit constitutive domains, domain-domain interactions, and functional relevance. This structural analysis is followed by a comprehensive history of seminal investigations into PI3K activity. Next, we highlight the divergent roles of the isoforms: PI3Kα, PI3Kß, PI3Kδ, and PI3Kγ. This section details signaling pathways in which these PI3K isoforms are involved, including the key upstream regulators of PI3K activity and some downstream cellular effects. Nodes of the PI3K pathway are also presented. Inhibitors of some isoforms are discussed to give an overview of the basis of some immunotherapies that are being used to target cell signaling. Finally, the chapter ends with a discussion of the dysregulation of PI3Ks in diseases including APDS, asthma, arthritis, and oncogenic mutations.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Biologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Transdução de Sinais/fisiologia
2.
BMC Genomics ; 20(1): 855, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31726983

RESUMO

BACKGROUND: Annelids exhibit remarkable postembryonic developmental abilities. Most annelids grow during their whole life by adding segments through the action of a segment addition zone (SAZ) located in front of the pygidium. In addition, they show an outstanding ability to regenerate their bodies. Experimental evidence and field observations show that many annelids are able to regenerate their posterior bodies, while anterior regeneration is often limited or absent. Syllidae, for instance, usually show high abilities of posterior regeneration, although anterior regeneration varies across species. Some syllids are able to partially restore the anterior end, while others regenerate all lost anterior body after bisection. Here, we used comparative transcriptomics to detect changes in the gene expression profiles during anterior regeneration, posterior regeneration and regular growth of two syllid species: Sphaerosyllis hystrix and Syllis gracilis; which exhibit limited and complete anterior regeneration, respectively. RESULTS: We detected a high number of genes with differential expression: 4771 genes in S. hystrix (limited anterior regeneration) and 1997 genes in S. gracilis (complete anterior regeneration). For both species, the comparative transcriptomic analysis showed that gene expression during posterior regeneration and regular growth was very similar, whereas anterior regeneration was characterized by up-regulation of several genes. Among the up-regulated genes, we identified putative homologs of regeneration-related genes associated to cellular proliferation, nervous system development, establishment of body axis, and stem-cellness; such as rup and JNK (in S. hystrix); and glutamine synthetase, elav, slit, Hox genes, ß-catenin and PL10 (in S. gracilis). CONCLUSIONS: Posterior regeneration and regular growth show no significant differences in gene expression in the herein investigated syllids. However, anterior regeneration is associated with a clear change in terms of gene expression in both species. Our comparative transcriptomic analysis was able to detect differential expression of some regeneration-related genes, suggesting that syllids share some features of the regenerative mechanisms already known for other annelids and invertebrates.


Assuntos
Anelídeos/genética , Perfilação da Expressão Gênica , Regeneração/genética , Transcriptoma , Animais , Anelídeos/anatomia & histologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala
3.
J Dev Biol ; 11(3)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606490

RESUMO

Naidids are tiny, transparent freshwater oligochaetes, which are well known for their ability to propagate asexually. Despite the fact that sexually mature individuals and cocoons with embryos are sometimes found in nature, in long-period laboratory cultures, worms reproduce agametically only. In this paper, we showed, for the first time, the expression of Vasa, Piwi, and Pl10 homologs in mature Pristina longiseta worms with well-developed reproductive system structures and germ cells. Although the animals have been propagated asexually by paratomic fission for over 20 years in our lab, some individuals become sexualized under standard conditions for our laboratory culture and demonstrate various stages of maturation. The fully matured animals developed a complete set of sexual apparatus including spermatheca, atrium, seminal vesicles, and ovisac. They also had a clitellum and were able to form cocoons. The cues for the initiation of sexual maturation are still unknown for P. longiseta; nevertheless, our data suggest that the laboratory strain of P. longiseta maintains the ability to become fully sexually mature and to establish germline products even after a long period of agametic reproduction. On the other hand, many of the sexualized worms formed a fission zone and continued to reproduce asexually. Thus, in this species, the processes of asexual reproduction and sexual maturation do not preclude each other, and Vasa, Piwi, and Pl10 homologs are expressed in both somatic and germline tissue including the posterior growth zone, fission zone, nervous system, germline cells, and gametes.

4.
Mol Biochem Parasitol ; 236: 111259, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31958469

RESUMO

The RNA helicase Vasa plays a pivotal role in the development of the germ line. To decipher the functional roles of vasa/PL10-like genes in the human blood fluke Schistosoma mansoni, we performed RNA interference followed by the analysis of the ovary in the adult female. Double-stranded RNA targeting the schistosome vasa-like gene Smvlg1 reduced the volume of the ovary. Changes in morphology of the ovary were analysed using carmine red-staining of the parasites followed by a novel confocal laser scanning microscopy (CLSM)-based approach to control for natural autofluorescence in female schistosome tissues. The reduction in the ovary volume may have been promoted by the loss of germ cells. By contrast, significant differences were not apparent in the number of eggs produced or hatching rate of eggs laid by the female schistosomes transfected with Smvlg1-specific dsRNA. The findings suggested a role for S. mansoni vasa/PL10-like gene -1 in germ cell development within the schistosome ovary that might impact in the pathogenesis and disease transmission by this neglected tropical disease pathogen.


Assuntos
Genes de Helmintos , Ovário , Schistosoma mansoni , Animais , RNA Helicases DEAD-box/genética , Feminino , Expressão Gênica , Genitália , Microscopia Confocal/métodos , Ovário/anatomia & histologia , Ovário/citologia , Ovário/metabolismo , Interferência de RNA , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Transfecção/métodos
5.
Int J Biol Sci ; 5(1): 64-73, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19159016

RESUMO

Planarian flatworms have an impressive regenerative power. Although their embryonic development is still poorly studied and is highly derived it still displays some simple characteristics. We have identified SpolvlgA, a Schmidtea polychroa homolog of the DDX3/PL10 DEAD-box RNA helicase DjvlgA from the planarian species Dugesia japonica. This gene has been previously described as being expressed in planarian adult stem cells (neoblasts), as well as the germ line. Here we present the expression pattern of SpolvlgA in developing embryos of S. polychroa and show that it is expressed from the first cleavage rounds in blastomere cells and blastomere-derived embryonic cells. These cells are undifferentiated cells that engage in a massive wave of differentiation during stage 5 of development. SpolvlgA expression highlights this wave of differentiation, where nearly all previous structures are substituted by blastomere-derived embryonic cells. In late stages of development SpolvlgA is expressed in most proliferating and differentiating cells. Thus, SpolvlgA is a gene expressed in planarian embryos from the first stages of development and a good marker for the zygote-derived cell lineage in these embryos. Expression in adult worms is also monitored and is found in the planarian germ line, where it is showed to be expressed in spermatogonia, spermatocytes and differentiating spermatids.


Assuntos
Blastômeros/metabolismo , RNA Helicases DEAD-box/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Helminto/metabolismo , Planárias/enzimologia , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , RNA Helicases DEAD-box/classificação , RNA Helicases DEAD-box/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Hibridização In Situ , Masculino , Microscopia Confocal , Dados de Sequência Molecular , Filogenia , Planárias/embriologia , Planárias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Testículo/citologia , Testículo/embriologia , Testículo/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa