Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753498

RESUMO

The homeostasis of protein palmitoylation and depalmitoylation is essential for proper physiological functions in various tissues, in particular the central nervous system (CNS). The dysfunction of PPT1 (PPT1-KI, infantile neuronal ceroid lipofuscinosis [INCL] mouse model), which catalyze the depalmitoylation process, results in serious neurodegeneration accompanied by severe astrogliosis in the brain. Endeavoring to determine critical factors that might account for the pathogenesis in CNS by palm-proteomics, glial fibrillary acidic protein (GFAP) was spotted, indicating that GFAP is probably palmitoylated. Questions concerning if GFAP is indeed palmitoylated in vivo and how palmitoylation of GFAP might participate in neural pathology remain unexplored and are waiting to be investigated. Here we show that GFAP is readily palmitoylated in vitro and in vivo; specifically, cysteine-291 is the unique palmitoylated residue in GFAP. Interestingly, it was found that palmitoylated GFAP promotes astrocyte proliferation in vitro. Furthermore, we showed that PPT1 depalmitoylates GFAP, and the level of palmitoylated GFAP is overwhelmingly up-regulated in PPT1-knockin mice, which lead us to speculate that the elevated level of palmitoylated GFAP might accelerate astrocyte proliferation in vivo and ultimately led to astrogliosis in INCL. Indeed, blocking palmitoylation by mutating cysteine-291 into alanine in GFAP attenuate astrogliosis, and remarkably, the concurrent neurodegenerative pathology in PPT1-knockin mice. Together, these findings demonstrate that hyperpalmitoylated GFAP plays critical roles in regulating the pathogenesis of astrogliosis and neurodegeneration in the CNS, and most importantly, pinpointing that cysteine-291 in GFAP might be a valuable pharmaceutical target for treating INCL and other potential neurodegenerative diseases.


Assuntos
Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Tioléster Hidrolases/genética , Animais , Astrócitos/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Proteína Glial Fibrilar Ácida/genética , Gliose/genética , Humanos , Lipoilação , Camundongos , Camundongos Endogâmicos C57BL , Lipofuscinoses Ceroides Neuronais/genética
2.
Cancer Cell Int ; 22(1): 115, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277179

RESUMO

BACKGROUND: Adaptive resistance and side effects of sorafenib treatment result in unsatisfied survival of patients with hepatocellular carcinoma (HCC). Palmitoyl-protein thioesterase 1 (PPT1) plays a critical role in progression of various cancers. However, its role on prognosis and immune infiltrates in HCC remains unclarified. METHODS: By data mining in the Cancer Genome Atlas databases, the role of PPT1 in HCC were initially investigated. Furthermore, HCC cell lines Hep 3B and Hep 1-6 were treated with DC661 or siRNA against PPT1. The biological function of PPT1 was determined by CCK-8 test, colony formation assay, TUNEL staining, immunofluorescence staining, Western blot test, and PI-Annexin V apoptosis assays in vitro. Animal models of subcutaneous injection were applied to investigate the therapeutic role of targeting PPT1. RESULTS: We found that PPT1 levels were significantly upregulated in HCC tissues compared with normal tissues and were significantly associated with a poor prognosis. Multivariate analysis further confirmed that high expression of PPT1 was an independent risk factor for poor overall survival of HCC patients. We initially found that PPT1 was significantly upregulated in sorafenib-resistant cell lines established in this study. Upon sorafenib treatment, HCC cells acquired adaptive resistance by inducing autophagy. We found that DC661, a selective and potent small-molecule PPT1-inhibitor, induced lysosomal membrane permeability, caused lysosomal deacidification, inhibited autophagy and enhanced sorafenib sensitivity in HCC cells. Interestingly, this sensitization effect was also mediated by the induction mitochondrial pathway apoptosis. In addition, the expression level of PPT1 was associated with the immune infiltration in the HCC tumor microenvironment, and PPT1 inhibitor DC661 significantly enhanced the anti-tumor immune response by promoting dendritic cell maturation and further promoting CD8+ T cell activation. Moreover, DC661 combined with sorafenib was also very effective at treating tumor models in immunized mice. CONCLUSIONS: Our findings suggest that targeting PPT1 with DC661 in combination with sorafenib might be a novel and effective alternative therapeutic strategy for HCC.

3.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628400

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL), the most severe form of neuronal ceroid lipofuscinoses, is caused by mutations in the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). Typical symptoms of this disease include progressive psychomotor developmental retardation, visual failure, seizures, and premature death. Here, we investigated seizure activity and relevant pathological changes in PPT1 knock-in mice (PPT1 KI). The behavior studies in this study demonstrated that PPT1 KI mice had no significant seizure activity until 7 months of age, and local field potentials also displayed epileptiform activity at the same age. The expression levels of Iba-1 and CD68 demonstrated, by Western blot analysis, the inflammatory cytokine TNF-α content measured with enzyme-linked immunosorbent assay, and the number of microglia demonstrated by immunohistochemistry (IHC) were significantly increased at age of 7 months, all of which indicate microglia activation at an age of seizure onset. The increased expression of GFAP were seen at an earlier age of 4 months, and such an increase reached its peak at age of 6 months, indicating that astrocyte activation precedes microglia. The purinergic P2X7 receptor (P2X7R) is an ATP-sensitive ionic channel that is highly expressed in microglia and is fundamental to microglial activation, proliferation, cytokines release and epilepsy. We show that the ATP concentration in hippocampal tissue in PPT1 KI mice was increased using an enhanced ATP assay kit and demonstrated that the antagonist of P2X7R, A-438079, significantly reduced seizures in PPT1 KI mice. In contrast to glial cell activation and proliferation, a significant reduction in synaptic proteins GABAAR was seen in PPT1 KI mice. These results indicate that seizure in PPT1 KI mice may be associated with microglial activation involved in ATP-sensitive P2X7R signaling and impaired inhibitory neurotransmission.


Assuntos
Microglia , Lipofuscinoses Ceroides Neuronais , Tioléster Hidrolases , Trifosfato de Adenosina , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Lipofuscinoses Ceroides Neuronais/patologia , Convulsões/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
4.
Neurocase ; 27(2): 165-168, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33849402

RESUMO

IntroductionClassic onset of CLN1 disease is within the first year of life with developmental arrest, epilepsy and rapid progression. In an atypical variant of CLN1 disease onset is later in the juvenile epoch. Although epilepsy in the juvenile form of CLN1 often is less severe than in typical CLN1, treatment of seizures and status epilepticus may be challenging.Case presentationThe clinical course, misdiagnosis and epilepsy phenotype are presented in a girl with juvenile CLN1. Cognitive and neurologic regression started at age 5.5 years. Epilepsy was a major clinical issue as the patient suffered from focal seizures, recurrent status epilepticus and epilepsia partialis continua. In one episode of refractory status epilepticus, the patient had significant bradycardia associated with the intravenous infusion of levetiracetam. Diagnosis was made at the age of 12 years, based on palmitoyl protein-thioesterase (PPT) enzyme deficiency and genetic testing that documented a homozygous exon missense mutation in the CLN1 gene (PPT1, c.541G>A, p.Val181Met).DiscussionEpilepsy in all NCL patients is a major clinical issue and presumed related to neuronal excitation and epileptogenesis. The treatment of status epilepticus, in juvenile CLN1 patients, presents a particular challenge and requires monitoring of potential serious pharmacologic side effects of therapy.


Assuntos
Epilepsia , Criança , Pré-Escolar , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Éxons , Feminino , Humanos , Fenótipo
5.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948429

RESUMO

Dysfunctions in the endo-lysosomal system have been hypothesized to underlie neurodegeneration in major neurocognitive disorders due to Alzheimer's disease (AD), Frontotemporal Lobar Degeneration (FTLD), and Lewy body disease (DLB). The aim of this study is to investigate whether these diseases share genetic variability in the endo-lysosomal pathway. In AD, DLB, and FTLD patients and in controls (948 subjects), we performed a targeted sequencing of the top 50 genes belonging to the endo-lysosomal pathway. Genetic analyses revealed (i) four previously reported disease-associated variants in the SORL1 (p.N1246K, p.N371T, p.D2065V) and DNAJC6 genes (p.M133L) in AD, FTLD, and DLB, extending the previous knowledge attesting SORL1 and DNAJC6 as AD- and PD-related genes, respectively; (ii) three predicted null variants in AD patients in the SORL1 (p.R985X in early onset familial AD, p.R1207X) and PPT1 (p.R48X in early onset familial AD) genes, where loss of function is a known disease mechanism. A single variant and gene burden analysis revealed some nominally significant results of potential interest for SORL1 and DNAJC6 genes. Our data highlight that genes controlling key endo-lysosomal processes (i.e., protein sorting/transport, clathrin-coated vesicle uncoating, lysosomal enzymatic activity regulation) might be involved in AD, FTLD and DLB pathogenesis, thus suggesting an etiological link behind these diseases.


Assuntos
Doença de Alzheimer/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Predisposição Genética para Doença , Proteínas de Choque Térmico HSP40/genética , Proteínas Relacionadas a Receptor de LDL/genética , Doença por Corpos de Lewy/metabolismo , Proteínas de Membrana Transportadoras/genética , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Feminino , Degeneração Lobar Frontotemporal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença por Corpos de Lewy/genética , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA
6.
Mol Reprod Dev ; 86(8): 984-998, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31134714

RESUMO

Sertoli cells are a type of nurse cell in the seminiferous epithelium that are crucial for sustaining spermatogenesis by extending nutritional and energy support to the developing germ cells. Dysfunction of Sertoli cells could cause disordered spermatogenesis and reduced fertility in males. In this study, we focused on the expression and function of palmitoyl protein thioesterase 1 (PPT1), a lysosomal depalmitoylating enzyme, in Sertoli cells. Here, we show that PPT1 expression in Sertoli cells is responsive to cholesterol treatment and that specific knockout of Ppt1 in Sertoli cells causes male subfertility associated with poor sperm quality and a high ratio of sperm deformity. Specifically, Ppt1 deficiency leads to poor cell variably accompanied with abnormal lysosome accumulation and increased cholesterol levels in Sertoli cells. Further, Ppt1 deficiency results in poor adhesion of developing germ cells to Sertoli cells in the seminiferous epithelium, which is likely to be responsible for the reduced male fertility as a consequence of declines in sperm count and motility as well as a high incidence of sperm head deformity. In summary, PPT1 affects sperm quality and male fertility through regulating lysosomal function and cholesterol metabolism in Sertoli cells.


Assuntos
Colesterol/metabolismo , Fertilidade , Regulação Enzimológica da Expressão Gênica , Células de Sertoli/enzimologia , Espermatozoides/enzimologia , Tioléster Hidrolases/biossíntese , Animais , Masculino , Camundongos , Túbulos Seminíferos/citologia , Túbulos Seminíferos/enzimologia , Células de Sertoli/citologia , Contagem de Espermatozoides , Espermatozoides/citologia
7.
Appl Microbiol Biotechnol ; 103(3): 1351-1362, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30610282

RESUMO

The Ser/Thr protein phosphatase Ppt1 (yeast)/PP5 (humans) has been implicated in signal transduction-mediated growth and differentiation, DNA damage/repair, cell cycle progression, and heat shock responses. Little, however, is known concerning the functions of Ppt1/PP5 in filamentous fungi. In this study, the Ppt1 gene MaPpt1 was characterized in the insect pathogenic fungus, Metarhizium acridum. The MaPpt1 protein features a three-tandem tetratricopeptide repeat (TPR) domain and a peptidyl-prolyl cis-trans isomerase-like (PP2Ac) domain. Subcellular localization using an MaPpt1::eGFP fusion protein revealed that MaPpt1 was localized in the cytoplasm of spores, but gathered at the septa in growing hyphae. Targeted gene inactivation of MaPpt1 in M. acridum resulted in unexpected reprogramming of normal aerial conidiation to microcycle conidiation. Although overall vegetative growth was unaffected, a significant increase in conidial yield was noted in ΔMaPpt1. Stress-responsive phenotypes and virulence were largely unaffected in ΔMaPpt1. Exceptionally, ΔMaPpt1 displayed increased UV tolerance compared to wild type. Digital gene expression data revealed that MaPpt1 mediates transcription of sets of genes involved in conidiation, polarized growth, cell cycle, cell proliferation, DNA replication and repair, and some important signaling pathways. These data indicate a unique role for Ppt1 in filamentous fungal development and differentiation.


Assuntos
Metarhizium/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Proliferação de Células/genética , Reparo do DNA/genética , Replicação do DNA/genética , Deleção de Genes , Metarhizium/metabolismo , Transdução de Sinais/genética , Raios Ultravioleta
8.
Mol Genet Metab ; 124(1): 64-70, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29599076

RESUMO

We first characterized PPT1 and TPP1 enzymes in dried blood spots (DBS), plasma/serum, and leukocytes/lymphocytes using neuronal ceroid lipofuscinosis (NCL) 1 and 2 patients and control subjects. PPT1 enzyme had only one acid form in control DBS, plasma/serum, and leukocytes/lymphocytes and showed deficient activities in these samples from NCL 1 patients. Conversely, TPP1 enzymes in control DBS and leukocytes/lymphocytes consisted of two forms, an acidic form and a neutral form, whereas serum TPP1 enzyme had only a neutral form. In control subjects, the optimal pH of PPT1 enzyme in DBS, plasma/serum, and leukocytes/lymphocytes was 4.5 to 5.0 in the acidic form, whereas TPP1 enzyme in control DBS and leukocytes/lymphocytes was pH 4.5 and 6.5, respectively. In NCL 1 and 2, both PPT1 and TPP1 enzyme activities in DBS, plasma, and leukocytes/lymphocytes were markedly reduced in acidic pH, whereas heterozygotes of NCL 1 and 2 in the acidic form showed intermediate activities between patients and control subjects. In neutral conditions, pH 6.0, the PPT1 enzyme activities in NCL 1 patients showed rather higher residual activities and intermediate activities in heterozygotes in NCL 1, which was probably caused by mutated proteins in three cases with NCL 1 patients. TPP1 enzyme activities at neutral pH 6.5 to 7.0 in DBS and leukocytes/lymphocytes showed higher enzyme activities in NCL 2 patients and heterozygotes. The reason for the increases of neutral TPP1 enzyme activities at pH 6.5 to 7.0 in NCL 2 DBS and leukocytes/lymphocytes, is obscure, but possibly caused by secondary activation of neutral TPP1 enzyme due to the absence of the acidic form. Interestingly, TPP1 activity in serum only consisted of a neutral form, no acidic form, and was not deficient in any NCL 2 patient. Therefore, we can diagnose NCL 1 patients by plasma/serum enzyme assay of PPT1, but not diagnose NCL 2 by serum TPP1 enzyme assay. A pilot study of newborn screening of NCL 1 and 2 has been established by more than 1000 newborn DBS assays. Using this assay system, we will be able to perform newborn screening of NCL 1 and 2 by DBS.


Assuntos
Aminopeptidases/sangue , Dipeptidil Peptidases e Tripeptidil Peptidases/sangue , Leucócitos/química , Proteínas de Membrana/sangue , Triagem Neonatal/métodos , Lipofuscinoses Ceroides Neuronais/diagnóstico , Serina Proteases/sangue , Tioléster Hidrolases/sangue , Adulto , Criança , Pré-Escolar , Teste em Amostras de Sangue Seco/métodos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Recém-Nascido , Masculino , Mutação , Projetos Piloto , Tripeptidil-Peptidase 1
9.
BMC Neurol ; 18(1): 203, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541466

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinoses type I and type II (NCL1 and NCL2) also known as Batten disease are the commonly observed neurodegenerative lysosomal storage disorder caused by mutations in the PPT1 and TPP1 genes respectively. Till date, nearly 76 mutations in PPT1 and approximately 140 mutations, including large deletion/duplications, in TPP1 genes have been reported in the literature. The present study includes 34 unrelated Indian patients (12 females and 22 males) having epilepsy, visual impairment, cerebral atrophy, and cerebellar atrophy. METHODS: The biochemical investigation involved measuring the palmitoyl protein thioesterase 1 and tripeptidy peptidase l enzyme activity from the leukocytes. Based on the biochemical analysis all patients were screened for variations in either PPT1 gene or TPP1 gene using bidirectional Sanger sequencing. In cases where Sanger sequencing results was uninformative Multiplex Ligation-dependent Probe Amplification technique was employed. The online tools performed the protein homology modeling and orthologous conservation of the novel variants. RESULTS: Out of 34 patients analyzed, the biochemical assay confirmed 12 patients with NCL1 and 22 patients with NCL2. Molecular analysis of PPT1 gene in NCL1 patients revealed three known mutations (p.Val181Met, p.Asn110Ser, and p.Trp186Ter) and four novel variants (p.Glu178Asnfs*13, p.Pro238Leu, p.Cys45Arg, and p.Val236Gly). In the case of NCL2 patients, the TPP1 gene analysis identified seven known mutations and eight novel variants. Overall these 15 variants comprised seven missense variants (p.Met345Leu, p.Arg339Trp, p.Arg339Gln, p.Arg206Cys, p.Asn286Ser, p.Arg152Ser, p.Tyr459Ser), four frameshift variants (p.Ser62Argfs*19, p.Ser153Profs*19, p.Phe230Serfs*28, p.Ile484Aspfs*7), three nonsense variants (p.Phe516*, p.Arg208*, p.Tyr157*) and one intronic variant (g.2023_2024insT). No large deletion/duplication was identified in three NCL1 patients where Sanger sequencing study was normal. CONCLUSION: The given study reports 34 patients with Batten disease. In addition, the study contributes four novel variants to the spectrum of PPT1 gene mutations and eight novel variants to the TPP1 gene mutation data. The novel pathogenic variant p.Pro238Leu occurred most commonly in the NCL1 cohort while the occurrence of a known pathogenic mutation p.Arg206Cys dominated in the NCL2 cohort. This study provides an insight into the molecular pathology of NCL1 and NCL2 disease for Indian origin patients.


Assuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Serina Proteases/genética , Tioléster Hidrolases/genética , Povo Asiático/genética , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Índia , Lactente , Masculino , Mutação , Tripeptidil-Peptidase 1
10.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L559-L580, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596295

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by unresolved neutrophilic airway inflammation and is caused by chronic exposure to toxic gases, such as cigarette smoke (CS), in genetically susceptible individuals. Recent data indicate a role for damage-associated molecular patterns (DAMPs) in COPD. Here, we investigated the genetics of CS-induced DAMP release in 28 inbred mouse strains. Subsequently, in lung tissue from a subset of strains, the expression of the identified candidate genes was analyzed. We tested whether small interfering RNA-dependent knockdown of candidate genes altered the susceptibility of the human A549 cell line to CS-induced cell death and DAMP release. Furthermore, we tested whether these genes were differentially regulated by CS exposure in bronchial brushings obtained from individuals with a family history indicative of either the presence or absence of susceptibility for COPD. We observed that, of the four DAMPs tested, double-stranded DNA (dsDNA) showed the highest correlation with neutrophilic airway inflammation. Genetic analyses identified 11 candidate genes governing either CS-induced or basal dsDNA release in mice. Two candidate genes (Elac2 and Ppt1) showed differential expression in lung tissue on CS exposure between susceptible and nonsusceptible mouse strains. Knockdown of ELAC2 and PPT1 in A549 cells altered susceptibility to CS extract-induced cell death and DAMP release. In bronchial brushings, CS-induced expression of ENOX1 and ARGHGEF11 was significantly different between individuals susceptible or nonsusceptible for COPD. Our study shows that genetic variance in a mouse model is associated with CS-induced DAMP release, and that this might contribute to susceptibility for COPD.


Assuntos
Alarminas/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Fumar/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular , DNA/metabolismo , Regulação para Baixo/genética , Epitélio/metabolismo , Feminino , Haplótipos/genética , Humanos , Contagem de Leucócitos , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia
11.
Metab Brain Dis ; 32(1): 275-279, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27722792

RESUMO

Infantile CLN1 disease, also known as infantile neuronal ceroid lipofuscinosis, is a fatal childhood neurodegenerative disorder caused by mutations in the CLN1 gene. CLN1 encodes a soluble lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1), and it is still unclear why neurons are selectively vulnerable to the loss of PPT1 enzyme activity in infantile CLN1 disease. To examine the effects of PPT1 deficiency on several well-defined neuronal signaling and cell death pathways, different toxic insults were applied in cerebellar granule neuron cultures prepared from wild type (WT) and palmitoyl protein thioesterase 1-deficient (Ppt1 -/- ) mice, a model of infantile CLN1 disease. Glutamate uptake inhibition by t-PDC (L-trans-pyrrolidine-2,4-dicarboxylic acid) or Zn2+-induced general mitochondrial dysfunction caused similar toxicity in WT and Ppt1 -/- cultures. Ppt1 -/- neurons, however, were more sensitive to mitochondrial complex I inhibition by MPP+ (1-methyl-4-phenylpyridinium), and had significantly decreased sensitivity to chemical anoxia induced by the mitochondrial complex IV inhibitor, sodium azide. Our results indicate that PPT1 deficiency causes alterations in the mitochondrial respiratory chain.


Assuntos
Hipóxia Celular/fisiologia , Neurônios/metabolismo , Tioléster Hidrolases/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Tioléster Hidrolases/genética
12.
Acta Neuropathol ; 131(4): 621-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26659577

RESUMO

Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lysosomal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPα were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPα and the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPα is depalmitoylated by PPT1 and hence its substrate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involving lysosomal and synaptic proteins. Our findings establish a functional link between two forms of NCL and serve as a springboard for investigations of NCL disease pathways.


Assuntos
Encéfalo/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Tioléster Hidrolases/metabolismo , Animais , Encéfalo/patologia , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Proteínas de Choque Térmico HSP40/deficiência , Humanos , Lipoilação/genética , Lipoilação/fisiologia , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Mapas de Interação de Proteínas , Proteômica , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia , Transfecção
13.
Biochim Biophys Acta ; 1832(11): 1807-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23200925

RESUMO

In childhood the neuronal ceroid lipofuscinoses (NCL) are the most frequent lysosomal diseases and the most frequent neurodegenerative diseases but, in adulthood, they represent a small fraction among the neurodegenerative diseases. Their morphology is marked by: (i) loss of neurons, foremost in the cerebral and cerebellar cortices resulting in cerebral and cerebellar atrophy; (ii) an almost ubiquitous accumulation of lipopigments in nerve cells, but also in extracerebral tissues. Loss of cortical neurons is selective, indiscriminate depletion in early childhood forms occurring only at an advanced stage, whereas loss of neurons in subcortical grey-matter regions has not been quantitatively documented. Among the fourteen different forms of NCL described to date, CLN1 and CLN10 are marked by granular lipopigments, CLN2 by curvilinear profiles (CVPs), CLN3 by fingerprint profiles (FPPs), and other forms by a combination of these features. Among extracerebral tissues, lymphocytes, skin, rectum, skeletal muscle and, occasionally, conjunctiva are possible guiding targets for diagnostic identification, the precise type of NCL then requiring molecular analysis within the clinical and morphological context. Autosomal-recessive adult NCL has been linked molecularly to different childhood forms, i.e. CLN1, CLN5, and CLN6, whilst autosomal-dominant adult NCL, now designated as CLN4, is caused by a newly identified separate gene, DNAJC5. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.


Assuntos
Lipofuscinoses Ceroides Neuronais/patologia , Adulto , Humanos , Lipofuscinoses Ceroides Neuronais/classificação , Lipofuscinoses Ceroides Neuronais/genética , Tripeptidil-Peptidase 1
14.
Front Synaptic Neurosci ; 16: 1384625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798824

RESUMO

Palmitoylation and depalmitoylation represent dichotomic processes by which a labile posttranslational lipid modification regulates protein trafficking and degradation. The depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), is associated with the devastating pediatric neurodegenerative condition, infantile neuronal ceroid lipofuscinosis (CLN1). CLN1 is characterized by the accumulation of autofluorescent lysosomal storage material (AFSM) in neurons and robust neuroinflammation. Converging lines of evidence suggest that in addition to cellular waste accumulation, the symptomology of CLN1 corresponds with disruption of synaptic processes. Indeed, loss of Ppt1 function in cortical neurons dysregulates the synaptic incorporation of the GluA1 AMPA receptor (AMPAR) subunit during a type of synaptic plasticity called synaptic scaling. However, the mechanisms causing this aberration are unknown. Here, we used the Ppt1-/- mouse model (both sexes) to further investigate how Ppt1 regulates synaptic plasticity and how its disruption affects downstream signaling pathways. To this end, we performed a palmitoyl-proteomic screen, which provoked the discovery that Akap5 is excessively palmitoylated at Ppt1-/- synapses. Extending our previous data, in vivo induction of synaptic scaling, which is regulated by Akap5, caused an excessive upregulation of GluA1 in Ppt1-/- mice. This synaptic change was associated with exacerbated disease pathology. Furthermore, the Akap5- and inflammation-associated transcriptional regulator, nuclear factor of activated T cells (NFAT), was sensitized in Ppt1-/- cortical neurons. Suppressing the upstream regulator of NFAT activation, calcineurin, with the FDA-approved therapeutic FK506 (Tacrolimus) modestly improved neuroinflammation in Ppt1-/- mice. These findings indicate that the absence of depalmitoylation stifles synaptic protein trafficking and contributes to neuroinflammation via an Akap5-associated mechanism.

15.
FEBS Lett ; 598(9): 959-977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644468

RESUMO

Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.


Assuntos
Neoplasias , Humanos , Animais , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Aciltransferases/metabolismo , Aciltransferases/química , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/metabolismo , Acilação , Lipoilação , Processamento de Proteína Pós-Traducional , Doenças do Sistema Imunitário/enzimologia , Doenças do Sistema Imunitário/metabolismo
16.
Biosci Rep ; 43(5)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103469

RESUMO

Hepatocellular carcinoma (HCC) is the most frequent cancer worldwide with a poor prognosis. Unfortunately, there are few reports on effective biomarkers for HCC, identification of novel cancer targets is urgently needed. Lysosomes are central organelles for degradation and recycling processes in cells, and how lysosome-related genes are involved in the progression of hepatocellular carcinoma remains unclear. The aim of the present study was to identify key lysosome-related genes affecting HCC. In the present study, lysosome-related genes involved in HCC progression were screened based on the TCGA (The Cancer Genome Atlas) dataset. Differentially expressed genes (DEGs) were screened, and core lysosomal genes were obtained in combination with prognostic analysis and protein interaction networks. Two genes were associated with survival, and their prognostic value was validated by prognostic profiling. After mRNA expression validation and IHC, the palmitoyl protein thioesterase 1 (PPT1) gene was identified as an important lysosomal-related gene. We demonstrated that PPT1 promotes the proliferation of HCC cells in vitro. In addition, quantitative proteomics and bioinformatics analysis confirmed that PPT1 acts by affecting the metabolism, localization, and function of various macromolecular proteins. The present study reveals that PPT1 could be a promising therapeutic target for the treatment of HCC. These findings provided new insights into HCC and identified candidate gene prognosis signatures for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Prognóstico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Biologia Computacional , Lisossomos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Membrana/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
17.
Biol Trace Elem Res ; 201(3): 1398-1406, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35415819

RESUMO

To study the effect of the palmitoylation/depalmitoylation cycle on the inhibition of ɑ-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptor trafficking induced by aluminum (Al) in vitro. Five different doses of aluminum-maltolate complex (Al(mal)3) were administered to rat adrenal pheochromocytoma cells (PC12 cells) for three exposure time durations, and the cell activity was measured by the CCK-8 method to obtain the optimal doses and time of Al(mal)3 exposure. Following Al(mal)3 exposure, membrane protein (M) and total protein (T) were extracted. The expression levels of GluR1 and GluR2, which are AMPA receptor subunits, were determined by Western blot analysis, and the levels with respect to membrane and total protein were calculated. The ratio of membrane protein to total protein (M/T) was used to measure the rate of AMPA receptor transport. The palmitoylation levels of GluR1 and GluR2 were detected by immunoprecipitation-acyl-biotin exchange (IP-ABE) assay. Western blotting was performed to detect the protein expression of acyltransferase (zDHHC3) and palmitoyl protein thioesterase 1 (PPT1). Following depalmitoylation inhibitor (palmostatin B) treatment of PC12 cells, the effect of aluminum on AMPA receptor trafficking was detected through the aforementioned methods. With increasing Al(mal)3 doses administered to PC12 cells, a gradual decrease in the trafficking of AMPA receptor subunits GluR1 and GluR2 and in the palmitoylation levels of GluR1 and GluR2 was found; the expression of zDHHC3 was decreased; and the expression of PPT1 was increased. In addition, palmostatin B reduced the effects of Al(mal)3 on AMPA receptor palmitoylation and trafficking. Al can inhibit the trafficking of the AMPA receptor in vitro, and a decrease in the palmitoylation level of the AMPA receptor may be a mechanism of Al action. The palmitoylation/depalmitoylation cycle of the AMPA receptor is influenced by Al through the actions of zDHHC3 and PPT1.


Assuntos
Alumínio , Receptores de AMPA , Ratos , Animais , Receptores de AMPA/metabolismo , Alumínio/farmacologia , Alumínio/metabolismo , Lipoilação/fisiologia , Proteínas de Membrana/metabolismo
18.
Front Immunol ; 14: 1076587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006288

RESUMO

Background: Metabolic reprogramming is a well-known hallmark of cancer. Systematical identification of clinically relevant metabolic subtypes of Hepatocellular carcinoma (HCC) is critical to understand tumor heterogeneity and develop efficient treatment strategies. Methods: We performed an integrative analysis of genomic, transcriptomic, and clinical data from an HCC patient cohort in The Cancer Genome Atlas (TCGA). Results: Four metabolic subtypes were defined: mHCC1, mHHC2, mHCC3, and mHCC4. These subtypes had distinct differences in mutations profiles, activities of metabolic pathways, prognostic metabolism genes, and immune features. The mHCC1 was associated with poorest outcome and was characterized by extensive metabolic alterations, abundant immune infiltration, and increased expression of immunosuppressive checkpoints. The mHHC2 displayed lowest metabolic alteration level and was associated with most significant improvement in overall survival in response to high CD8+ T cell infiltration. The mHHC3 was a "cold-tumor" with low immune infiltration and few metabolic alterations. The mHCC4 presented a medium degree of metabolic alteration and high CTNNB1 mutation rate. Based on our HCC classification and in vitro study, we identified palmitoyl-protein thioesterase 1 (PPT1) was a specific prognostic gene and therapeutic target for mHCC1. Conclusion: Our study highlighted mechanistic differences among metabolic subtypes and identified potential therapeutic targets for subtype-specific treatment strategies targeting unique metabolic vulnerabilities. The immune heterogeneities across metabolic subtypes may help further clarify the association between metabolism and immune environment and guide the development of novel strategies through targeting both unique metabolic vulnerabilities and immunosuppressive triggers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Linfócitos T CD8-Positivos , Perfilação da Expressão Gênica , Genômica , Imunossupressores
19.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443736

RESUMO

Autophagy is a highly conserved and natural degradation process that helps maintain cell homeostasis through the elimination of old, worn, and defective cellular components, ensuring proper cell energy intake. The degradative pathway constitutes a protective barrier against diverse human diseases including cancer. Autophagy basal level has been reported to be completely dysregulated during the entire oncogenic process. Autophagy influences not only cancer initiation, development, and maintenance but also regulates cancer response to therapy. Currently, autophagy inhibitor candidates mainly target the early autophagy process without any successful preclinical/clinical development. Lessons learned from autophagy pharmaceutical manipulation as a curative option progressively help to improve drug design and to encounter new targets of interest. Combinatorial strategies with autophagy modulators are supported by abundant evidence, especially dealing with immune checkpoint inhibitors, for which encouraging preclinical results have been recently published. GNS561, a PPT1 inhibitor, is a promising autophagy modulator as it has started a phase 2 clinical trial in liver cancer indication, combined with atezolizumab and bevacizumab, an assessment without precedent in the field. This approach paves a new road, leading to the resurgence of anticancer autophagy inhibitors as an attractive therapeutic target in cancer.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Antineoplásicos/farmacologia , Autofagia
20.
Autophagy ; 18(3): 678-694, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34740311

RESUMO

Hepatocellular carcinoma is the most frequent primary liver cancer. Macroautophagy/autophagy inhibitors have been extensively studied in cancer but, to date, none has reached efficacy in clinical trials. In this study, we demonstrated that GNS561, a new autophagy inhibitor, whose anticancer activity was previously linked to lysosomal cell death, displayed high liver tropism and potent antitumor activity against a panel of human cancer cell lines and in two hepatocellular carcinoma in vivo models. We showed that due to its lysosomotropic properties, GNS561 could reach and specifically inhibited its enzyme target, PPT1 (palmitoyl-protein thioesterase 1), resulting in lysosomal unbound Zn2+ accumulation, impairment of cathepsin activity, blockage of autophagic flux, altered location of MTOR (mechanistic target of rapamycin kinase), lysosomal membrane permeabilization, caspase activation and cell death. Accordingly, GNS561, for which a global phase 1b clinical trial in liver cancers was just successfully achieved, represents a promising new drug candidate and a hopeful therapeutic strategy in cancer treatment.Abbreviations: ANXA5:annexin A5; ATCC: American type culture collection; BafA1: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CASP7: caspase 7; CASP8: caspase 8; CCND1: cyclin D1; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; CQ: chloroquine; iCCA: intrahepatic cholangiocarcinoma; DEN: diethylnitrosamine; DMEM: Dulbelcco's modified Eagle medium; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; HDSF: hexadecylsulfonylfluoride; IC50: mean half-maximal inhibitory concentration; LAMP: lysosomal associated membrane protein; LC3-II: phosphatidylethanolamine-conjugated form of MAP1LC3; LMP: lysosomal membrane permeabilization; MALDI: matrix assisted laser desorption ionization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; MTOR: mechanistic target of rapamycin kinase; MRI: magnetic resonance imaging; NH4Cl: ammonium chloride; NtBuHA: N-tert-butylhydroxylamine; PARP: poly(ADP-ribose) polymerase; PBS: phosphate-buffered saline; PPT1: palmitoyl-protein thioesterase 1; SD: standard deviation; SEM: standard error mean; vs, versus; Zn2+: zinc ion; Z-Phe: Z-Phe-Tyt(tBu)-diazomethylketone; Z-VAD-FMK: carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/farmacologia , Autofagossomos/metabolismo , Autofagia/fisiologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa