Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557672

RESUMO

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Early-stage patients have a 30-50% probability of metastatic recurrence after surgical treatment. Here, we propose a new computational framework, Interpretable Biological Pathway Graph Neural Networks (IBPGNET), based on pathway hierarchy relationships to predict LUAD recurrence and explore the internal regulatory mechanisms of LUAD. IBPGNET can integrate different omics data efficiently and provide global interpretability. In addition, our experimental results show that IBPGNET outperforms other classification methods in 5-fold cross-validation. IBPGNET identified PSMC1 and PSMD11 as genes associated with LUAD recurrence, and their expression levels were significantly higher in LUAD cells than in normal cells. The knockdown of PSMC1 and PSMD11 in LUAD cells increased their sensitivity to afatinib and decreased cell migration, invasion and proliferation. In addition, the cells showed significantly lower EGFR expression, indicating that PSMC1 and PSMD11 may mediate therapeutic sensitivity through EGFR expression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores ErbB/genética , Proliferação de Células
2.
Clin Genet ; 102(4): 324-332, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35861243

RESUMO

Proteasome 26S, the eukaryotic proteasome, serves as the machinery for cellular protein degradation. It is composed of the 20S core particle and one or two 19S regulatory particles, composed of a base and a lid. To date, several human diseases have been associated with mutations within the 26S proteasome subunits; only one of them affects a base subunit. We now delineate an autosomal recessive syndrome of failure to thrive, severe developmental delay and intellectual disability, spastic tetraplegia with central hypotonia, chorea, hearing loss, micropenis and undescended testes, as well as mild elevation of liver enzymes. None of the affected individuals achieved verbal communication or ambulation. Ventriculomegaly was evident on MRI. Homozygosity mapping combined with exome sequencing revealed a disease-associated p.I328T PSMC1 variant. Protein modeling demonstrated that the PSMC1 variant is located at the highly conserved putative ATP binding and hydrolysis domain, and is suggested to interrupt a hydrophobic core within the protein. Fruit flies in which we silenced the Drosophila ortholog Rpt2 specifically in the eye exhibited an apparent phenotype that was highly rescued by the human wild-type PSMC1, yet only partly by the mutant PSMC1, proving the functional effect of the p.I328T disease-causing variant.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Doenças do Sistema Nervoso , Complexo de Endopeptidases do Proteassoma , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Drosophila , Humanos , Doenças do Sistema Nervoso/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome
3.
Am J Med Genet A ; 185(5): 1519-1524, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33634591

RESUMO

Three unrelated patients with similar microdeletions of chromosome 14q32.11 with shared phenotypes including language and developmental delay, and four overlapping genes -CALM1, TTC7B, PSMC1, and RPS6KA5 have been presented. All four genes are expressed in the brain and have haploinsufficiency scores, which reflect low tolerance to loss of function variation. An insight on the genes in the overlapping region, which may influence the resulting phenotype has been provided. Given the three patients' similar phenotypes and lack of normal variation in this region, it was suggested that this microdeletion may be associated with developmental and language delay.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Calmodulina/genética , Transtornos do Desenvolvimento da Linguagem/genética , Proteínas/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 14/genética , Hibridização Genômica Comparativa/métodos , Haploinsuficiência/genética , Humanos , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Linhagem , Fenótipo
4.
J Biol Chem ; 289(16): 11272-11281, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24596095

RESUMO

The 26S proteasome is the end point of the ubiquitin- and ATP-dependent degradation pathway. The 26S proteasome complex (26S PC) integrity and function has been shown to be highly dependent on ATP and its homolog nucleotides. We report here that the redox molecule NADH binds the 26S PC and is sufficient in maintaining 26S PC integrity even in the absence of ATP. Five of the 19S proteasome complex subunits contain a putative NADH binding motif (GxGxxG) including the AAA-ATPase subunit, Psmc1 (Rpt2). We demonstrate that recombinant Psmc1 binds NADH via the GxGxxG motif. Introducing the ΔGxGxxG Psmc1 mutant into cells results in reduced NADH-stabilized 26S proteasomes and decreased viability following redox stress induced by the mitochondrial inhibitor rotenone. The newly identified NADH binding of 26S proteasomes advances our understanding of the molecular mechanisms of protein degradation and highlights a new link between protein homeostasis and the cellular metabolic/redox state.


Assuntos
NADP/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Motivos de Aminoácidos , Animais , Estabilidade Enzimática/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , NADP/genética , Células NIH 3T3 , Oxirredução , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica/fisiologia
5.
Viruses ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34578385

RESUMO

African swine fever virus (ASFV) is prevalent in many countries and is a contagious and lethal virus that infects pigs, posing a threat to the global pig industry and public health. The interaction between the virus and the host is key to unlocking the mystery behind viral pathogenesis. A comprehensive understanding of the viral and host protein interaction may provide clues for developing new antiviral strategies. Here, we show a network of ASFV MGF360-9L protein interactions in porcine kidney (PK-15) cells. Overall, 268 proteins that interact with MGF360-9L are identified using immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS). Accordingly, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted, and the protein-protein interaction (PPI) network was created. It was speculated that the cellular proteins interacting with MGF360-9L are involved in protein binding, metabolism, and the innate immune response. Proteasome subunit alpha type (PSMA3), 26S protease regulatory subunit 4 (PSMC1), autophagy and beclin 1 regulator 1 (AMBRA1), and DEAD-box helicase 20 (DDX20) could interact with MGF360-9L in vitro. PSMA3 and PSMC1 overexpression significantly promoted ASFV replication, and MGF360-9L maintained the transcriptional level of PSMA3 and PSMC1. Here, we show the interaction between ASFV MGF360-9L and cellular proteins and elucidate the virus-host interaction network, which effectively provides useful protein-related information that can enable further study of the potential mechanism and pathogenesis of ASFV infection.


Assuntos
Vírus da Febre Suína Africana/genética , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Mapas de Interação de Proteínas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Febre Suína Africana/virologia , Animais , Células Cultivadas , Deleção de Genes , Ligação Proteica , Suínos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa