Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Cell ; 68(4): 731-744.e9, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149598

RESUMO

Bromodomain and extraterminal domain inhibitors (BETi) represent promising therapeutic agents for metastatic melanoma, yet their mechanism of action remains unclear. Here we interrogated the transcriptional effects of BETi and identified AMIGO2, a transmembrane molecule, as a BET target gene essential for melanoma cell survival. AMIGO2 is upregulated in melanoma cells and tissues compared to human melanocytes and nevi, and AMIGO2 silencing in melanoma cells induces G1/S arrest followed by apoptosis. We identified the pseudokinase PTK7 as an AMIGO2 interactor whose function is regulated by AMIGO2. Epigenomic profiling and genome editing revealed that AMIGO2 is regulated by a melanoma-specific BRD2/4-bound promoter and super-enhancer configuration. Upon BETi treatment, BETs are evicted from these regulatory elements, resulting in AMIGO2 silencing and changes in PTK7 proteolytic processing. Collectively, this study uncovers mechanisms underlying the therapeutic effects of BETi in melanoma and reveals the AMIGO2-PTK7 axis as a targetable pathway for metastatic melanoma.


Assuntos
Antineoplásicos/farmacologia , Elementos Facilitadores Genéticos , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Metástase Neoplásica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Cell Mol Life Sci ; 79(5): 276, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35504983

RESUMO

ROR1, ROR2, and PTK7 are Wnt ligand-binding members of the receptor tyrosine kinase family. Despite their lack of catalytic activity, these receptors regulate skeletal, cardiorespiratory, and neurological development during embryonic and fetal stages. However, their overexpression in adult tissue is strongly connected to tumor development and metastasis, suggesting a strong pharmacological potential for these molecules. Wnt5a ligand can activate these receptors, but lead to divergent signaling and functional outcomes through mechanisms that remain largely unknown. Here, we developed a cellular model by stably expressing ROR1, ROR2, and PTK7 in BaF3 cells that allowed us to readily investigate side-by-side their signaling capability and functional outcome. We applied proteomic profiling to BaF3 clones and identified distinctive roles for ROR1, ROR2, and PTK7 pseudokinases in modulating the expression of proteins involved in cytoskeleton dynamics, apoptotic, and metabolic signaling. Functionally, we show that ROR1 expression enhances cell survival and Wnt-mediated cell proliferation, while ROR2 and PTK7 expression is linked to cell migration. We also demonstrate that the distal C-terminal regions of ROR1 and ROR2 are required for receptors stability and downstream signaling. To probe the pharmacological modulation of ROR1 oncogenic signaling, we used affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent biotin identification (BioID) to map its interactome before and after binding of GZD824, a small molecule inhibitor previously shown to bind to the ROR1 pseudokinase domain. Our findings bring new insight into the molecular mechanisms of ROR1, ROR2, and PTK7, and highlight the therapeutic potential of targeting ROR1 with small molecule inhibitors binding to its vestigial ATP-binding site.


Assuntos
Proteômica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proliferação de Células , Ligantes , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais
3.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569547

RESUMO

Protein tyrosine kinase 7 (PTK7), a catalytically defective receptor tyrosine kinase (RTK), is often upregulated in various cancers. This study aimed to validate PTK7 as a target for breast cancer (BC) and investigate its oncogenic signaling mechanism. BC tissue analysis showed significantly elevated PTK7 mRNA levels, especially in refractory triple-negative breast cancer (TNBC) tissues, compared with normal controls. Similarly, BC cell lines exhibited increased PTK7 expression. Knockdown of PTK7 inhibited the proliferation of T-47D and MCF-7 hormone-receptor-positive BC cell-lines and of HCC1187, MDA-MB-231, MDA-MB-436, and MDA-MB-453 TNBC cells. PTK7 knockdown also inhibited the adhesion, migration, and invasion of MDA-MB-231, MDA-MB-436, and MDA-MB-453 cells, and reduced the phosphorylation levels of crucial oncogenic regulators including extracellular signal-regulated kinase (ERK), Akt, and focal adhesion kinase (FAK). Furthermore, PTK7 interacts with fibroblast growth factor receptor 1 (FGFR1) and epidermal growth factor receptor (EGFR) expressed in MDA-MB-231 cells. Knockdown of PTK7 decreased the growth-factor-induced phosphorylation of FGFR1 and EGFR in MDA-MB-231 cells, indicating its association with RTK activation. In conclusion, PTK7 plays a significant role in oncogenic signal transduction by enhancing FGFR1 and EGFR activation, influencing BC tumorigenesis and metastasis. Hence, PTK7 represents a potential candidate for targeted BC therapy, including TNBC.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Fosforilação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Moléculas de Adesão Celular/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
4.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269608

RESUMO

Recent biotechnological applications in the field of clinical oncology led to the identification of new biomarkers as molecular targets of cancer, and to broad developments in the field of personalized medicine. Aptamers are oligonucleotides (ssDNA or RNA) that are selected to specifically recognize a molecular target with high affinity and specificity. Based on this, new horizons for their use as molecular imaging probes are being explored. The objective of this work was to evaluate the Sgc8-c aptamer conjugated with Alexa Fluor 647 fluorophore as an imaging probe in a colon tumor xenograft mouse model, with potential application in molecular imaging. In this study, the LS174T cell line was used to induce colorectal adenocarcinoma in nude mice. After confirmation of PTK7 overexpression by immunohistochemistry, in vivo studies were performed. Pharmacokinetic, in vivo and ex vivo biodistribution imaging, and a competition assay were evaluated by fluorescence imaging. In vivo visualization of the probe in the tumors was assessed two hours after aptamer probe administration, exhibiting excellent tumor-to-background ratios in biodistribution studies and high specificity in the competition test. Our results demonstrated the functionality of Scg8-c as an imaging probe for colon cancer, with potential clinical applications.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias do Colo , Animais , Aptâmeros de Nucleotídeos/química , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico por imagem , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Imagem Molecular , Sondas Moleculares , Receptores Proteína Tirosina Quinases , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163215

RESUMO

Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Only 5% of all CRC cases are due to germline mutations in known predisposition genes, and the remaining genetic burden still has to be discovered. In this study, we performed whole-exome sequencing on six members of a Polish family diagnosed with CRC and identified a novel germline variant in the protein tyrosine kinase 7 (inactive) gene (PTK7, ENST00000230419, V354M). Targeted screening of the variant in 1705 familial CRC cases and 1674 healthy elderly individuals identified the variant in an additional familial CRC case. Introduction of this variant in HT-29 cells resulted in increased cell proliferation, migration, and invasion; it also caused down-regulation of CREB, p21 and p53 mRNA and protein levels, and increased AKT phosphorylation. These changes indicated inhibition of apoptosis pathways and activation of AKT signaling. Our study confirmed the oncogenic function of PTK7 and supported its role in genetic predisposition of familial CRC.


Assuntos
Moléculas de Adesão Celular/genética , Neoplasias Colorretais/genética , Receptores Proteína Tirosina Quinases/genética , Idoso , Moléculas de Adesão Celular/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Família , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Oncogenes , Linhagem , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Proteína Tirosina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma/métodos
6.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216292

RESUMO

Extracellular vesicles (EV) are released by virtually all cells and they transport biologically important molecules from the release site to target cells. Colorectal cancer (CRC) is a leading cause of cancer-related death cases, thus, it represents a major health issue. Although the EV cargo may reflect the molecular composition of the releasing cells and thus, EVs may hold a great promise for tumor diagnostics, the impact of intratumoral heterogeneity on the intensity of EV release is still largely unknown. By using CRC patient-derived organoids that maintain the cellular and molecular heterogeneity of the original epithelial tumor tissue, we proved that CD44high cells produce more organoids with a higher proliferation intensity, as compared to CD44low cells. Interestingly, we detected an increased EV release by CD44high CRC cells. In addition, we found that the miRNA cargos of CD44high and CD44low cell derived EVs largely overlapped and only four miRNAs were specific for one of the above subpopulations. We observed that EVs released by CD44high cells induced the proliferation and activation of colon fibroblasts more strongly than CD44low cells. However, this effect was due to the higher EV number rather than to the miRNA cargo of EVs. Collectively, we identified CRC subpopulations with different EV releasing capabilities and we proved that CRC cell-released EVs have a miRNA-independent effect on fibroblast proliferation and activation.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , MicroRNAs , Comunicação Celular , Neoplasias Colorretais/patologia , Vesículas Extracelulares/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Organoides/metabolismo
7.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216506

RESUMO

Protein tyrosine kinase 7 (PTK7), a catalytically defective receptor protein tyrosine kinase, is upregulated in tumor tissues and cell lines of esophageal squamous cell carcinoma (ESCC). We showed that PTK7 plays an oncogenic role in various ESCC cell lines. However, its role as an oncogene has not been demonstrated in vivo. Here, we examined the influence of PTK7 on the tumorigenic potential of ESCC KYSE-30 cells, which are known to establish xenograft tumors. Overexpression of PTK7 enhanced the proliferation, adhesion, wound healing, and migration of KYSE-30 cells, and these effects were reversed by the knockdown of PTK7. PTK7 overexpression and knockdown, respectively, increased and decreased the tyrosine phosphorylation of cellular proteins and the phosphorylation of ERK, AKT, and FAK, which are important for cell proliferation, survival, adhesion, and migration. Additionally, PTK7 overexpression and silencing, respectively, increased and decreased the weight, volume, and number of Ki-67-positive proliferating cells in xenograft tumors of KYSE-30 cells. Therefore, we propose that PTK7 plays an important role in the tumorigenesis of ESCC cells in vivo and is a potential therapeutic target for ESCC.


Assuntos
Carcinogênese/genética , Moléculas de Adesão Celular/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Xenoenxertos/metabolismo , Oncogenes/genética , Receptores Proteína Tirosina Quinases/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Fenótipo , Fosforilação/genética , Transdução de Sinais/genética
8.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293051

RESUMO

PTK7 is a catalytically defective receptor protein tyrosine kinase upregulated in various cancers, including esophageal squamous cell carcinoma (ESCC). In previous studies, we observed a positive correlation between PTK7 expression levels and tumorigenicity in various ESCC cell lines and xenograft mice with ESCC KYSE-30 cells. In this study, we analyzed the effects of anti-PTK7 monoclonal antibodies (mAbs) on the tumorigenic activity in KYSE-30 cells and in mouse xenograft models. PTK7 mAb-32 and mAb-43 bind with a high affinity to the extracellular domain of PTK7. PTK7 mAbs significantly reduced three-dimensional cell proliferation, adhesion, wound healing, and migration. PTK7 mAbs also reduce chemotactic invasiveness by decreasing MMP-9 secretion. PTK7 mAbs decreased actin cytoskeleton levels in the cortical region of KYSE-30 cells. PTK7 mAbs reduced the phosphorylation of ERK, SRC, and FAK. In a mouse xenograft model of ESCC using KYSE-30 cells, PTK7 mAbs reduced tumor growth in terms of volume, weight, and the number of Ki-67-positive cells. These results demonstrated that PTK7 mAbs can inhibit the tumorigenicity of ESCC at the cellular level and in vivo by blocking the function of PTK7. Considering the anticancer activities of PTK7 mAbs, we propose that PTK7 mAbs can be used in an effective treatment strategy for PTK7-positive malignancies, such as ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Metaloproteinase 9 da Matriz , Carcinoma de Células Escamosas/patologia , Xenoenxertos , Anticorpos Monoclonais/farmacologia , Antígeno Ki-67 , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Receptores Proteína Tirosina Quinases/metabolismo , Proliferação de Células
9.
Int Urogynecol J ; 32(11): 2993-2999, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33547906

RESUMO

INTRODUCTION AND HYPOTHESIS: Pelvic organ prolapse (POP) in women is associated with deficiency of elastic fibers, and fibulin-5 is known to be a critical protein in the synthesis of elastin. The purpose of this study is to investigate the related pathway for the synthesis of elastin via fibulin-5 using fibulin-5 knockout mice. METHODS: Fibulin-5 knockout mice were generated using the CRISPR/Cas9 system, and vaginal dilatation was used to mimic vaginal delivery. We divided the mice into three groups: Fbln5+/+ mice immediately after dilatation (Fbln5+/+ day0), Fbln5+/+ mice 3 days after dilatation (Fbln5+/+ day3) and Fbln5-/- mice 3 days after dilatation (Fbln5-/- day3). Proteins related to elastogenesis in the vaginal wall were measured by liquid chromatography mass spectrometry (LC-MS/MS) analysis, and differences in the expression of these proteins between the Fbln5-/- mice and the Fbln5+/+ mice were analyzed using western blotting. RESULTS: In the LC-MS/MS analysis, protein tyrosine kinase 7 (PTK7) was not detected in the Fbln5-/- day3 group, although the expression increased by > 1.5 times between the Fbln5+/+ day0 and day3 groups. PTK7 and ß-catenin are known to act in the Wnt/ß-catenin pathway, and both were upregulated after dilatation in the Fbln5+/+ mice, though not in the Fbln5-/- mice. CONCLUSION: Our findings suggest that these proteins are involved in elastogenesis via fibulin-5, and the impairment of these proteins might be the underlying cause of POP manifestation.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular , Receptores Proteína Tirosina Quinases/metabolismo , beta Catenina , Animais , Cromatografia Líquida , Dilatação , Proteínas da Matriz Extracelular/genética , Feminino , Camundongos , Camundongos Knockout , Estresse Mecânico , Espectrometria de Massas em Tandem , Regulação para Cima , Vagina , beta Catenina/metabolismo
10.
J Nanobiotechnology ; 19(1): 47, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588855

RESUMO

BACKGROUND: Protein tyrosine kinase 7 (PTK 7) is a membrane receptor, which can be found in various kinds of cancers. In view of this, detection of PTK 7 in the peripheral circulation would be an effective way for the early diagnosis of cancer. RESULTS: In this work, a multi-carbon dots and aptamer-based signal amplification ratiometric fluorescence probe was developed. The fluorescence of the aptamer-modified y-CDs and b-CDs were respectively chosen as the detection signal and interior label. The fluorescence of y-CDs was quenched by Fe3O4 and cDNA (complement to aptamer) compound without PTK 7, but recovered by the addition of PTK 7. Then, the free aptamer was cut by DNase I, which amplified the detection signal. The ratiometric fluorescence sensor for PTK 7 was established with the LOD of 0.016 ng mL-1. CONCLUSIONS: Summary, a multi-carbon dots and aptamer-based signal amplification ratiometric fluorescence probe was developed for the detection of protein tyrosine kinase 7. The developed probe was applied to PTK 7 detection in MCF-7 cells and human serum with satisfying results, thus indicating that this probe has huge potential in clinical practice.


Assuntos
Carbono/química , Fluorescência , Corantes Fluorescentes , Proteínas Tirosina Quinases/isolamento & purificação , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Células MCF-7 , Pontos Quânticos
11.
Handb Exp Pharmacol ; 269: 3-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34463853

RESUMO

Wnt signaling is critical for proper development of the embryo and for tissue homeostasis in the adult. Activation of this signaling cascade is initiated by binding of the secreted Wnts to their receptors. With the mammalian genome encoding multiple Wnts and Wnt receptors, a longstanding question in the field has been how Wnt-receptor specificities are achieved. Emerging from these studies is a picture of exquisite control over Wnt protein production, secretion, distribution, and receptor interactions, culminating in activation of downstream signaling cascades that control a myriad of biological processes. Here we discuss mechanisms by which Wnt protein activities are tuned and illustrate how the multiple layers of regulation can be leveraged for therapeutic interventions in disease.


Assuntos
Receptores Frizzled , Via de Sinalização Wnt , Adulto , Animais , Humanos , Proteínas Wnt
12.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502237

RESUMO

Neural crest (NC) cells are highly migratory cells that contribute to various vertebrate tissues, and whose migratory behaviors resemble cancer cell migration and invasion. Information exchange via dynamic NC cell-cell contact is one mechanism by which the directionality of migrating NC cells is controlled. One transmembrane protein that is most likely involved in this process is protein tyrosine kinase 7 (PTK7), an evolutionary conserved Wnt co-receptor that is expressed in cranial NC cells and several tumor cells. In Xenopus, Ptk7 is required for NC migration. In this study, we show that the Ptk7 protein is dynamically localized at cell-cell contact zones of migrating Xenopus NC cells and required for contact inhibition of locomotion (CIL). Using deletion constructs of Ptk7, we determined that the extracellular immunoglobulin domains of Ptk7 are important for its transient accumulation and that they mediate homophilic binding. Conversely, we found that ectopic expression of Ptk7 in non-NC cells was able to prevent NC cell invasion. However, deletion of the extracellular domains of Ptk7 abolished this effect. Thus, Ptk7 is sufficient at protecting non-NC tissue from NC cell invasion, suggesting a common role of PTK7 in contact inhibition, cell invasion, and tissue integrity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Movimento Celular , Inibição de Contato , Neoplasias Pulmonares/metabolismo , Crista Neural/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Polaridade Celular , Humanos , Neoplasias Pulmonares/patologia , Xenopus laevis
13.
Genesis ; 58(3-4): e23354, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31909537

RESUMO

To investigate microRNA (miR) functions in early eye development, we asked whether eye field transcription factors (EFTFs) are targets of miR-dependent regulation in Xenopus embryos. Argonaute (AGO) ribonucleoprotein complexes, including miRs and targeted mRNAs, were coimmunoprecipitated from transgenic embryos expressing myc-tagged AGO under the control of the rax1 promoter; mRNAs for all EFTFs coimmunoprecipitated with Ago in late neurulae. Computational predictions of miR binding sites within EFTF 3'UTRs identified miR-199a-3p ("miR-199") as a candidate regulator of EFTFs, and miR-199 was shown to regulate rax1 in vivo. Targeted overexpression of miR-199 led to small eyes, a reduction in EFTF expression, and reduced cell proliferation. Inhibition of interactions between mir-199 and the rax1 3'UTR reversed the small eye phenotype. Although targeted knockdown of miR-199 left the eye field intact, it reduced optic cup outgrowth and disrupted eye formation. Computational identification of candidate miR-199 targets within the Xenopus transcriptome led to the identification of ptk7 as a candidate regulator. Targeted overexpression of ptk7 resulted in abnormal optic cup formation and a reduction or loss of eye development, recapitulating the range of eye phenotypes seen following miR-199 knockdown. Our results indicate that miR-199 plays both positive and negative regulatory roles in eye development.


Assuntos
Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Interferência de RNA , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Estudos de Associação Genética , Mutação com Perda de Função , Organogênese/genética , Fenótipo , Ligação Proteica , Receptores Proteína Tirosina Quinases/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
14.
Dev Biol ; 453(1): 48-55, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125531

RESUMO

Protein Tyrosine Kinase 7 (PTK7) is as a critical regulator of canonical and non-canonical Wnt-signaling during embryonic development and cancer cell formation. Disrupting PTK7 activity perturbs vertebrate nervous system development, and also promotes human cancer formation. Observations in different model systems suggest a complex cross-talk between PTK7 protein and Wnt signaling. During Xenopus laevis nervous system development, we previously showed that PTK7 protein positively regulates canonical Wnt signaling by maintaining optimal LRP6 protein levels, but PTK7 also acts in concert with LRP6 protein to repress non-canonical Wnt activity. PTK7 is a transmembrane protein, but studies in cancer cells showed that PTK7 undergoes "shedding" by metalloproteases to different proteolytic fragments. Some PTK7 proteolytic fragments are oncogenic, being localized to alternative cytoplasmic and nuclear cell compartments. In this study we examined the biological activity of two proteolytic carboxyl-terminal PTK7 proteolytic fragments, cPTK7 622-1070 and cPTK7 726-1070 during early Xenopus nervous system development. We found that these smaller PTK7 proteolytic fragments have similar activity to full-length PTK7 protein to promote canonical Wnt-signaling via regulation of LRP6 protein levels. In addition to cancer systems, this study shows in vivo proof that these smaller PTK7 proteolytic fragments can recapitulate full-length PTK7 protein activity in diverse systems, such as vertebrate nervous system development.


Assuntos
Proteólise , Receptores Proteína Tirosina Quinases/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Biomarcadores/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Neurônios/metabolismo , Ligação Proteica , Receptores Proteína Tirosina Quinases/genética , Proteínas Wnt/metabolismo , Xenopus laevis/genética
15.
Cell Mol Neurobiol ; 40(7): 1087-1103, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31974907

RESUMO

Despite the emerging role of protein tyrosine kinase 7 (PTK7) as a Wnt co-receptor and the relevant functions of the Wnt family of proteins in spinal cord injury (SCI), the potential involvement of PTK7 in SCI is currently unknown. As a first essential step to shed light on this issue, we evaluated the spatio-temporal and cellular expression patterns of PTK7 in healthy and traumatically injured rat and human spinal cords. In the uninjured rats, PTK7 expression was observed in the ependymal epithelium, endothelial cells, meningeal fibronectin-expressing cells, and specific axonal tracts, but not in microglia, astrocytes, neurons, oligodendrocytes, or NG2+ cells. After rat SCI, the mRNA expression of PTK7 was significantly increased, while its spatio-temporal and cellular protein expression patterns also suffered evident changes in the injured region. Briefly, the expression of PTK7 in the affected areas was observed in axons, reactive astrocytes, NG2+ and fibronectin-expressing cells, and in a subpopulation of reactive microglia/macrophages and blood vessels. Finally, in both healthy and traumatically injured human spinal cords, PTK7 expression pattern was similar to that observed in the rat, although some specific differences were found. In conclusion, we demonstrate for the first time that PTK7 is constitutively expressed in the healthy adult rat and human spinal cord and that its expression pattern clearly varied after rat and human SCI which, to our knowledge, constitutes the first experimental evidence pointing to the potential involvement of this co-receptor in physiological and pathological spinal cord functioning.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Fibronectinas/metabolismo , Humanos , Macrófagos/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Ratos
16.
Pathol Int ; 70(10): 724-732, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32754978

RESUMO

Long non-coding RNA (lncRNA) MALAT1 has been confirmed to function as an oncogene in various solid tumors. MALAT1 level has been shown to be upregulated in relapsed acute lymphoblastic leukemia (ALL) patients, but the mechanism is unclear. This study aims to investigate the functional roles and underlying mechanisms of MALAT1 in ALL. MALAT1 and miR-205 expression were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). MTT assay and flow cytometry were performed to evaluate cell proliferation and apoptosis, respectively. Protein level of protein tyrosine kinase-7 (PTK7) was detected by Western blot assay. Dual luciferase reporter assay was conducted to confirm the binding of MALAT1 and miR-205, as well as miR-205 and PTK7. The levels of MALAT1 and PTK7 were upregulated in ALL samples. In contrast, miR-205 level was downregulated in ALL in ALL samples. Moreover, MALAT1 silencing or miR-205 overexpression restrained proliferation and promoted apoptosis of ALL cells. Mechanistically, MALAT1 sponged miR-205 to regulate PTK7 expression. In summary, MALAT1 affected ALL cell proliferation and apoptosis via regulating miR-205-PTK7 axis. Our results suggest that MALAT1-miR-205-PTK7 axis participates in the proliferation and apoptosis of ALL, which may provide a potential treatment target for ALL.


Assuntos
Apoptose/genética , Moléculas de Adesão Celular/metabolismo , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Longo não Codificante/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA Longo não Codificante/genética , Receptores Proteína Tirosina Quinases/genética , Regulação para Cima
17.
Dev Biol ; 438(1): 33-43, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29580943

RESUMO

Wolffian duct morphogenesis must be highly coordinated with its specialized function of providing an optimal microenvironment for sperm maturation. Without normal Wolffian duct morphogenesis, male infertility will result. Our previous study showed that mediolateral and radial intercalation of epithelial and mesenchymal cells respectively, were major drivers of ductal elongation and were regulated by protein tyrosine kinase 7 (PTK7), a member of the planar cell polarity (PCP) non-canonical Wnt pathway. To understand the mechanism by which PTK7 regulates cell rearrangement/intercalation, we investigated the integrity of the extracellular matrix (ECM) and the activity of intracellular cytoskeleton mediators following loss of Ptk7. Abnormal assembly of nephronectin, laminin, and collagen IV at the basement membrane and fibrosis-like deposition of fibrilla collagen in the interstitium were observed in Ptk7 knockout Wolffian ducts. Further, the activity levels of RAC1 and myosin II, two cytoskeleton mediators, decreased in the Ptk7 knockout mesenchyme compared to controls. In addition, in-vitro experiments suggested that alterations of ECM and cytoskeleton mediators resulted in changes in Wolffian duct morphogenesis. When in-vitro-cultured Wolffian ducts were treated with collagenase IV, the degree of cross-linked fibrilla collagen was reduced, Wolffian duct elongation and coiling were significantly reduced, and an expanded cyst-like duct was observed. When Wolffian ducts were treated with RAC1 inhibitor NSC23766, mesenchymal fibrilla collagen was disassembled, and Wolffian duct elongation was significantly reduced. Our findings provide evidence that PTK7 regulates ECM integrity and the activity levels of RAC1 and myosin II, which in turn regulates Wolffian duct morphogenesis and therefore, epididymal function.


Assuntos
Morfogênese/genética , Miosina Tipo II/metabolismo , Neuropeptídeos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ductos Mesonéfricos/embriologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Polaridade Celular/genética , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Laminina/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Análise de Sequência de RNA , Transdução de Sinais
18.
J Cell Sci ; 130(11): 1890-1903, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28420671

RESUMO

Protein tyrosine kinase 7 (PTK7) is an evolutionarily conserved transmembrane receptor with important roles in embryonic development and disease. Originally identified as a gene upregulated in colon cancer, it was later shown to regulate planar cell polarity (PCP) and directional cell movement. PTK7 is a Wnt co-receptor; however, its role in Wnt signaling remains controversial. Here, we find evidence that places PTK7 at the intersection of canonical and non-canonical Wnt signaling pathways. In presence of canonical Wnt ligands PTK7 is subject to caveolin-mediated endocytosis, while it is unaffected by non-canonical Wnt ligands. PTK7 endocytosis is dependent on the presence of the PTK7 co-receptor Fz7 (also known as Fzd7) and results in lysosomal degradation of PTK7. As we previously observed that PTK7 activates non-canonical PCP Wnt signaling but inhibits canonical Wnt signaling, our data suggest a mutual inhibition of canonical and PTK7 Wnt signaling. PTK7 likely suppresses canonical Wnt signaling by binding canonical Wnt ligands thereby preventing their interaction with Wnt receptors that would otherwise support canonical Wnt signaling. Conversely, if canonical Wnt proteins interact with the PTK7 receptor, they induce its internalization and degradation.


Assuntos
Caveolina 1/genética , Moléculas de Adesão Celular/genética , Receptores Proteína Tirosina Quinases/genética , Proteínas Wnt/genética , Via de Sinalização Wnt , Proteína Wnt3A/genética , Animais , Caveolina 1/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Clatrina/genética , Clatrina/metabolismo , Embrião não Mamífero , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células MCF-7 , Ligação Proteica , Estabilidade Proteica , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt3A/metabolismo , Xenopus laevis , beta Catenina/genética , beta Catenina/metabolismo
19.
Chemphyschem ; 20(4): 545-554, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30552789

RESUMO

By using the thickness shear mode acoustics method (TSM) and single-molecule force spectroscopy (SMFS) we studied the interactions between DNA aptamers (sgc8c) specific to the protein tyrosine kinase 7 (PTK7), which is localized in the membranes of leukemia lymphoblastics (MOLT-4), and lymphocyte (Jurkat) cell lines, as well with PTK7-negative U266 myeloid leukemia cells. The TSM method allowed the development of a highly sensitive, label-free biosensor for the detection leukemia cells with a limit of detection of (195±20) cells/mL. SMFS approved the high selectivity of the sgc8c aptamers to the PTK7 receptors at the cell surface and allowed determining the binding probability of the aptamers to the PTK7 receptors at different cell lines.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Leucemia/diagnóstico , Acústica , Moléculas de Adesão Celular/química , Linhagem Celular Tumoral , Humanos , Leucemia/sangue , Limite de Detecção , Receptores Proteína Tirosina Quinases/química
20.
Mol Cancer ; 17(1): 54, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29455652

RESUMO

Esophageal cancer is one of the most common types of cancer, which is a leading cause of cancer-related death worldwide. Based on histological behavior, it is mainly of two types (i) Esophageal squamous cell carcinoma (ESCC), and (ii) esophageal adenocarcinoma (EAD or EAC). In astronomically immense majority of malignancies, receptor tyrosine kinases (RTKs) have been kenned to play a consequential role in cellular proliferation, migration, and metastasis of the cells. The post-translational modifications (PTMs) including phosphorylation of tyrosine (pY) residue of the tyrosine kinase (TK) domain have been exploited for treatment in different malignancies. Lung cancer where pY residues of EGFR have been exploited for treatment purpose in lung adenocarcinoma patients, but we do not have such kind of felicitously studied and catalogued data in ESCC patients. Thus, the goal of this review is to summarize the studies carried out on ESCC to explore the role of RTKs, tyrosine kinase inhibitors, and their pertinence and consequentiality for the treatment of ESCC patients.


Assuntos
Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa