Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Neuroendocrinology ; 114(1): 64-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37703838

RESUMO

INTRODUCTION: The proposed evolutionary origins and corresponding nomenclature of bilaterian gonadotropin-releasing hormone (GnRH)-related neuropeptides have changed tremendously with the aid of receptor deorphanization. However, the reclassification of the GnRH and corazonin (CRZ) signaling systems in Lophotrochozoa remains unclear. METHODS: We characterized GnRH and CRZ receptors in the mollusk Pacific abalone, Haliotis discus hannai (Hdh), by phylogenetic and gene expression analyses, bioluminescence-based reporter, Western blotting, substitution of peptide amino acids, in vivo neuropeptide injection, and RNA interference assays. RESULTS: Two Hdh CRZ-like receptors (Hdh-CRZR-A and Hdh-CRZR-B) and three Hdh GnRH-like receptors (Hdh-GnRHR1-A, Hdh-GnRHR1-B, and Hdh-GnRHR2) were identified. In phylogenetic analysis, Hdh-CRZR-A and -B grouped within the CRZ-type receptors, whereas Hdh-GnRHR1-A/-B and Hdh-GnRHR2 clustered within the GnRH/adipokinetic hormone (AKH)/CRZ-related peptide-type receptors. Hdh-CRZR-A/-B and Hdh-GnRHR1-A were activated by Hdh-CRZ (pQNYHFSNGWHA-NH2) and Hdh-GnRH (pQISFSPNWGT-NH2), respectively. Hdh-CRZR-A/-B dually coupled with the Gαq and Gαs signaling pathways, whereas Hdh-GnRHR1-A was linked only with Gαq signaling. Analysis of substituted peptides, [I2S3]Hdh-CRZ and [N2Y3H4]Hdh-GnRH, and in silico docking models revealed that the N-terminal amino acids of the peptides are critical for the selectivity of Hdh-CRZR and Hdh-GnRHR. Two precursor transcripts for Hdh-CRZ and Hdh-GnRH peptides and their receptors were mainly expressed in the neural ganglia, and their levels increased in starved abalones. Injection of Hdh-CRZ peptide into abalones decreased food consumption, whereas Hdh-CRZR knockdown increased food consumption. Moreover, Hdh-CRZ induced germinal vesicle breakdown in mature oocytes. CONCLUSION: Characterization of Hdh-CRZRs and Hdh-GnRHRs and their cognate peptides provides new insight into the evolutionary route of GnRH-related signaling systems in bilaterians.


Assuntos
Hormônio Liberador de Gonadotropina , Neuropeptídeos , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Filogenia , Invertebrados/genética , Invertebrados/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais
2.
Neuroendocrinology ; 114(5): 453-467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38142675

RESUMO

INTRODUCTION: Neuropeptides regulate vital physiological processes in multicellular organisms, including growth, reproduction, metamorphosis, and feeding. Recent transcriptome analyses have revealed neuropeptide genes with potential roles in vertebrate and invertebrate growth and reproduction. Among these genes, haliotid growth-associated peptide (HGAP) was identified as a novel gene in abalone. METHODS: This study focused on HGAP in Pacific abalone (Haliotis discus hannai), where the complete cDNA sequence named Hdh-HGAP was identified and characterized. Samples from different experiments, such as metamorphosis, juvenile abalone growth, gonad development stages, muscle remodeling, and starvation, were collected for mRNA expression analysis. RESULTS: The sequence spans 552 bp, encoding 96 amino acids with a molecular weight of 10.96 kDa. Expression analysis revealed that Hdh-HGAP exhibited higher levels in muscle tissue. Notably, during metamorphosis, Hdh-HGAP exhibited greater expression in the trochophore, veliger, and juvenile stages than in the cell division stages. Regarding growth patterns, Hdh-HGAP was highly expressed during rapid growth compared to stunted, minimal, and normal growth. In gonadal development, Hdh-HGAP mRNA reached its highest expression level during the ripening stage, indicating a potential role in gonadal cell proliferation and maturation. The in vivo effects of GnRH on gonad development and the expression of the Hdh-HGAP neuropeptide indicate its involvement in regulating reproduction in Pacific abalone. While tissue remodeling is primarily governed by immune genes, Hdh-HGAP was also upregulated during muscle tissue remodeling. Conversely, Hdh-HGAP was downregulated during prolonged starvation. CONCLUSION: This study marks the first comprehensive exploration of the Hdh-HGAP neuropeptide gene in Pacific abalone, shedding light on its involvement in growth, reproduction, metamorphosis, tissue remodeling, and response to starvation, although regulatory mechanisms are mostly unknown.


Assuntos
Gastrópodes , Metamorfose Biológica , Neuropeptídeos , Reprodução , Animais , Gastrópodes/crescimento & desenvolvimento , Gastrópodes/genética , Gastrópodes/metabolismo , Metamorfose Biológica/fisiologia , Reprodução/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Inanição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
3.
Curr Issues Mol Biol ; 45(12): 10079-10096, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38132475

RESUMO

The development of a shell is a complex calcium metabolic process involving shell matrix proteins (SMPs). In this study, we describe the isolation, characterization, and expression of SMP5 and investigate its potential regulatory role in the shell biomineralization of Pacific abalone Haliotis discus hannai. The full-length Hdh-SMP5 cDNA contains 685 bp and encodes a polypeptide of 134 amino acids. Structurally, the Hdh-SMP5 protein belongs to the EF-hand-binding superfamily, which possesses three EF-hand Ca2+-binding regions and is rich in aspartic acid. The distinct clustering patterns in the phylogenetic tree indicate that the amino acid composition and structure of this protein may vary among different SMPs. During early development, significantly higher expression was observed in the trochophore and veliger stages. Hdh-SMP5 was also upregulated during shell biomineralization in Pacific abalone. Long periods of starvation cause Hdh-SMP5 expression to decrease. Furthermore, Hdh-SMP5 expression was observed to be significantly higher under thermal stress at temperatures of 15, 30, and 25 °C for durations of 6 h, 12 h, and 48 h, respectively. Our study is the first to characterize Hdh-SMP5 comprehensively and analyze its expression to elucidate its dynamic roles in ontogenetic development, shell biomineralization, and the response to starvation and thermal stress.

4.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686194

RESUMO

Pacific abalone is a high-value, commercially important marine invertebrate. It shows low growth as well as individual and yearly growth variation in aquaculture. Marker-assisted selection breeding could potentially resolve the problem of low and variable growth and increase genetic gain. Expression of quantitative trait loci (QTLs) for growth-related traits, viz., body weight, shell length, and shell width were analyzed at the first, second, and third year of age using an F1 cross population. A total of 37 chromosome-wide QTLs were identified in linkage groups 01, 02, 03, 04, 06, 07, 08, 10, 11, 12, and 13 at different ages. None of the QTLs detected at any one age were expressed in all three age groups. This result suggests that growth-related traits at different ages are influenced by different QTLs in each year. However, multiple-trait QTLs (where one QTL affects all three traits) were detected each year that are also age-specific. Eleven multiple-trait QTLs were detected at different ages: two QTLs in the first year; two QTLs in the second year; and seven QTLs in the third year. As abalone hatcheries use three-year-old abalone for breeding, QTL-linked markers that were detected at the third year of age could potentially be used in marker-assisted selection breeding programs.


Assuntos
Gastrópodes , Locos de Características Quantitativas , Animais , Aquicultura , Peso Corporal , Gastrópodes/genética
5.
Mol Phylogenet Evol ; 168: 107392, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033672

RESUMO

Aquaporins (AQPs) are a group of proteins that evolved to mediate specific permeation of water and other small solutes, playing important roles in osmoregulation and nutrition, especially for aquatic animals. Genome-wide characterization of the AQP family in a typical mollusc, Pacific abalone, suggested that tandem duplication and retroduplication led to the dramatic expansion and diversification of AQP genes. Structural analysis indicated that tandem duplicated AQPs showed abnormal characteristics. The conserved amino acids in the key site of the Ar/R region were replaced by the others. These substitutions altered the pore diameter and properties of the inner surface and could accommodate the pass through of other molecules except water. Functional analysis indicated that abnormal Ar/R region of the tandemly adjacent members led to the different permeability, suggesting the neofunctionalization of tandemly duplicated genes. Mutation analysis indicated that at the key site of Ar/R region, just a single amino acid substitute could alter the permeability of HdAQPs, further explaining the mechanism of neofunctionalization between the tandem duplicated HdAQPs. Our observations provided strong evidence that duplication and subsequent neofunctionalization have led to structural and functional diversity of AQPs in Pacific abalone, providing insights into the evolution of AQPs in molluscs.


Assuntos
Aquaporinas , Gastrópodes , Animais , Aquaporinas/genética , Gastrópodes/genética , Genoma , Moluscos/genética , Filogenia
6.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054883

RESUMO

Genes that influence the growth of Pacific abalone (Haliotis discus hannai) may improve the productivity of the aquaculture industry. Previous research demonstrated that the differential expression of a gene encoding a C-type lectin domain-containing protein (CTLD) was associated with a faster growth in Pacific abalone. We analyzed this gene and identified an open reading frame that consisted of 145 amino acids. The sequence showed a significant homology to other genes that encode CTLDs in the genus Haliotis. Expression profiling analysis at different developmental stages and from various tissues showed that the gene was first expressed at approximately 50 days after fertilization (shell length of 2.47 ± 0.13 mm). In adult Pacific abalone, the gene was strongly expressed in the epipodium, gill, and mantle. Recombinant Pacific abalone CTLD purified from Escherichia coli exhibited antimicrobial activity against several Gram-positive bacteria (Bacillus subtilis, Streptococcus iniae, and Lactococcus garvieae) and Gram-negative bacteria (Vibrio alginolyticus and Vibrio harveyi). We also performed bacterial agglutination assays in the presence of Ca2+, as well as bacterial binding assays in the presence of the detergent dodecyl maltoside. Incubation with E. coli and B. subtilis cells suggested that the CTLD stimulated Ca2+-dependent bacterial agglutination. Our results suggest that this novel Pacific abalone CTLD is important for the pathogen recognition in the gastropod host defense mechanism.


Assuntos
Bactérias/efeitos dos fármacos , Gastrópodes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Lectinas Tipo C/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Sequência de Bases , Gastrópodes/genética , Perfilação da Expressão Gênica , Lectinas Tipo C/química , Lectinas Tipo C/genética , Especificidade de Órgãos , Conformação Proteica
7.
Fish Shellfish Immunol ; 84: 485-490, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30339844

RESUMO

This study investigated the oxidative stress and hemocyte responses of Pacific abalone exposed to various water temperatures (4, 6, 8, and 10 °C) and salinities (26, 30, and 34 psu) for 7 days, to identify their tolerance ranges of temperature and salinity. The survival rate of Pacific abalone ranged from 98.7 to 100% at 8 °C and 10 °C, but dropped to 25-55% at 4 °C at all levels of salinity. The levels of superoxide dismutase and glutathione in the hemolymph were significantly higher at 4 °C and 6 °C than in the controls in all salinity groups, indicating that these temperatures induced greater stress in the Pacific abalone. Total hemocyte count was lowest at 6 °C in the 26 psu group. The percentages of apoptotic and necrotic cells were higher in the 26 psu group than in the other salinity groups, and higher in the 4 °C and 6 °C groups than in the other temperature groups. These results indicate that the lowest tolerance to water temperature and salinity in the Pacific abalone was 8 °C and 30 psu, respectively.


Assuntos
Antioxidantes/metabolismo , Apoptose/genética , Temperatura Baixa/efeitos adversos , Gastrópodes/fisiologia , Regulação da Expressão Gênica/imunologia , Hemolinfa/metabolismo , Salinidade , Animais , Gastrópodes/genética , Gastrópodes/imunologia , Longevidade/imunologia
8.
Zoolog Sci ; 36(4): 339-347, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34664905

RESUMO

Gonadotropin-releasing hormone (GnRH) is an important regulator of reproductive function in various vertebrates and invertebrates. In the present study, we have identified the GnRH-like peptide cDNA and peptide from the cerebral ganglion (CG) of the Pacific abalone, Haliotis discus hannai. Pacific abalone GnRH-like peptide (hdhGnRH-like peptide) cDNA encodes precursor, which possesses the typical organization of the known mollusk GnRH-like peptide precursors, including a hydrophobic signal peptide, GnRH-like peptide, and a cleavage site followed by a GAP-like peptide region. Three hdhGnRH-like peptides, pQNYHFSNGWHAamide (hdhGnRH-11amide), pQNYHFSNGWHA (hdhGnRH-11OH), and pQNYHFSNGWHAG (hdhGnRH-12OH), were determined from the acid/acetone extract of the CG by mass spectrometry (LC-MS/MS) analysis. The hdhGnRH-like peptide mRNA expression was detected not only in the CG but also in gonads, and hdhGnRH-11amide was also detected in the extract of gonads. The mRNA expression of hdhGnRH-like peptide in the CG was lower in spawned males than in non-spawned animals, while no change in hdhGnRH-like peptide mRNA expression was shown in both ovulated and non-ovulated abalone. The hdhGnRH-11amide induces spawning and ovulation of both mature males and females in a concentration-dependent fashion following intramuscular injection. These results indicate that three hdhGnRH-like peptides are yielded from a single hdhGnRH-like peptide precursor, and that at least hdhGnRH-11amide is involved in the control of reproduction of the Pacific abalone.

9.
BMC Genomics ; 19(1): 915, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545311

RESUMO

BACKGROUND: The Pacific abalone, Haliotis discus hannai, is the most important cultivated abalone in China. Improving abalone muscle growth and increasing the rate of growth are important genetic improvement programs in this industry. MicroRNAs are important small noncoding RNA molecules that regulate post-transcription gene expression. However, no miRNAs have been reported to regulate muscle growth in H. discus hannai. RESULTS: we profiled six small RNA libraries for three large abalone individuals (L_HD group) and three small individuals (S_HD group) using RNA sequencing technology. A total of 205 miRNAs, including 200 novel and 5 known miRNAs, were identified. In the L_HD group, 3 miRNAs were up-regulated and 7 were down-regulated compared to the S_HD specimens. Bioinformatics analysis of miRNA target genes revealed that miRNAs participated in the regulation of cellular metabolic processes, the regulation of biological processes, the Wnt signaling pathway, ECM-receptor interaction, and the MAPK signaling pathway, which are associated with regulating growth. Bone morphogenetic protein 7 (BMP7) was verified as a target gene of hdh-miR-1984 by a luciferase reporter assay and we examined the expression pattern in different developmental stages. CONCLUSION: This is the first study to demonstrate that miRNAs are related to the muscle growth of H. discus hannai. This information could be used to study the mechanisms of abalone muscle growth. These DE-miRNAs may be useful as molecular markers for functional genomics and breeding research in abalone and closely related species.


Assuntos
Gastrópodes/genética , MicroRNAs/metabolismo , Músculos/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Sequência de Bases , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Análise por Conglomerados , Biologia Computacional , Regulação da Expressão Gênica , Biblioteca Gênica , Redes Reguladoras de Genes , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Desenvolvimento Muscular/genética , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA
10.
Fish Shellfish Immunol ; 47(2): 986-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26549175

RESUMO

Cathepsin L, an immune-related protein, was purified from the hepatopancreas of Pacific abalone (Haliotis discus hannai) by ammonium sulfate precipitation and column chromatographies of SP-Sepharose and Sephacryl S-200 HR. Purified cathepsin L appeared as two bands with molecular masses of 28.0 and 28.5 kDa (namely cathepsin La and Lb) on SDS-PAGE under reducing conditions, suggesting that it is a glycoprotein. Peptide mass fingerprinting (PMF) analysis revealed that peptide fragments of 95 amino acid residues was high similarity to cathepsin L of pearl oyster (Pinctada fucata). The optimal temperature and pH of cathepsin L were 35 °C and pH 5.5. Cathepsin L was particularly inhibited by cysteine proteinase inhibitors of E-64 and leupeptin, while it was activated by metalloproteinase inhibitors EDTA and EGTA. The full-length cathepsin L cDNA was further cloned from the hepatopancreas by rapid PCR amplification of cDNA ends (RACE). The open reading frame of the enzyme was 981 bp, encoding 327 amino acid residues, with a conserved catalytic triad (Cys134, His273 and Asn293), a potential N-glycosylation site and conserved ERFNIN, GNYD, and GCGG motifs, which are characteristics of cathepsin L. Western blot and proteinase activity analysis revealed that the expression and enzyme activity of cathepsin L were significantly up-regulated in hepatopancreas at 8 h following Vibrio parahaemolyticus infection, demonstrating that cathepsin L is involved in the innate immune system of abalone. Our present study for the first time reported the purification, characterization, molecular cloning, and tissue expression of cathepsin L in abalone.


Assuntos
Catepsina L/genética , Gastrópodes/genética , Gastrópodes/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Catepsina L/química , Catepsina L/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Gastrópodes/enzimologia , Hepatopâncreas/enzimologia , Hepatopâncreas/imunologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
11.
Int J Mol Sci ; 16(11): 27520-34, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26593905

RESUMO

The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.


Assuntos
Gastrópodes/crescimento & desenvolvimento , Gastrópodes/genética , Regulação da Expressão Gênica , Característica Quantitativa Herdável , Transcriptoma , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Especificidade de Órgãos/genética
12.
Int J Biol Macromol ; 268(Pt 1): 131733, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649080

RESUMO

Up to now, it has been believed that invertebrates are unable to synthesize ascorbic acid (AA) in vivo. However, in the present study, the full-length CDs (Coding sequence) of L-gulonolactone oxidase (GLO) from Pacific abalone (Haliotis discus hannai Ino) were obtained through molecular cloning. The Pacific abalone GLO contained a FAD-binding domain in the N-termination, and ALO domain and conserved HWAK motif in the C-termination. The GLO gene possesses 12 exons and 11 introns. The Pacific abalone GLO was expressed in various tissues, including the kidney, digestive gland, gill, intestine, muscle and mantle. The GLO activity assay revealed that GLO activity was only detected in the kidney of Pacific abalone. After a 100-day feeding trial, dietary AA levels did not significantly affect the survival, weight gain, daily increment in shell length, and feed conversion ratio of Pacific abalone. The expression of GLO in the kidney was downregulated by dietary AA. These results implied that the ability to synthesize AA in abalone had not been lost. From the evolutionary perspective, the loss of GLO occurred independently as an independent event by matching with the genomes of various species. The positive selection analysis revealed that the GLO gene underwent purifying selective pressure during its evolution. In conclusion, the present study provided direct evidence to prove that the GLO activity and the ability to synthesize AA exist in abalone. The AA synthesis ability in vertebrates might have originated from invertebrates dating back 930.31 million years.


Assuntos
Ácido Ascórbico , Gastrópodes , L-Gulonolactona Oxidase , Animais , Ácido Ascórbico/biossíntese , Ácido Ascórbico/metabolismo , Gastrópodes/genética , Gastrópodes/enzimologia , L-Gulonolactona Oxidase/genética , L-Gulonolactona Oxidase/metabolismo , Filogenia , Sequência de Aminoácidos , Clonagem Molecular , Evolução Molecular
13.
Int J Biol Macromol ; 277(Pt 3): 134449, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098680

RESUMO

Pacific abalone (Haliotis discus hannai) is a marine gastropod mollusc with significant economic importance in both global fisheries and aquaculture. However, studies exploring the gonadal development and regulatory mechanisms of Haliotis discus hannai are limited. This study aimed to explore whether the vasa gene acted as a molecular marker for germ cells. Initially, the vasa gene was successfully cloned using the cDNA-end rapid amplification technique. The cloned gene had a 2478-bp-long open reading frame and encoded 825 amino acids. Then, a recombinant expression vector was constructed based on the Vasa protein, and an 87-kDa recombinant protein was prepared. Subsequently, a polyclonal antibody was prepared using the purified recombinant protein. The enzyme-linked immunosorbent assay (ELISA) confirmed the titer of the antibody to be ≥512 K. The immunohistochemical analysis revealed that Vasa was widely expressed in oogonia, Stage I oocytes, spermatogonia, and primary spermatocytes. The specific expression of Vasa in the hermaphroditic gonads of abalone was assessed using western blotting to investigate the effects of different photoperiods (12 L:12D, 24 L:0D, 18 L:6D, and 6 L:18D) on the gonadal development of abalone (P < 0.05), with higher expression levels observed in the ovarian proliferative and spermary maturing stages compared with other developmental stages (P < 0.05). Additionally, Vasa exhibited the highest expression in the spermary and ovary under a photoperiod of 18 L:6D (P < 0.05). These data demonstrated the key role of Vasa in developing germ cells in abalone. They shed light upon the molecular mechanism through which the photoperiod influenced Vasa expression and regulated gonadal development in abalone. The findings might provide theoretical references for analyzing the differentiation pattern of abalone germ cells and the genetic improvement and conservation of germplasm resources.

14.
Sci Total Environ ; 903: 166683, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652388

RESUMO

Urbanization has led to increasing use of artificial light at night (ALAN), which has rapidly become an important source of pollution in many cities. To identify the ALAN effects on the embryonic development of the Pacific abalone Haliotis discus hannai, we first exposed larvae to natural light with a light period of 12 L:12D (control, Group CTR). We then exposed larvae to three different light regimes. Larvae in Group NL were exposed to full spectrum artificial light from 18:00 to 00:00 to simulate the lighting condition at night, whereas Groups BL and YL were illuminated at the same time interval with 450 nm of short-wavelength blue light and 560 nm of long-wavelength orange light, respectively, to simulate billboard lighting at night. There were significantly higher hatching success and metamorphosis rates of larvae in Group BL than in Group YL or CTR (P < 0.05). The larvae in Group YL had the highest abnormality rate and took the longest time to complete metamorphosis. Transcriptomic studies revealed significantly higher expression levels of genes related to RNA transport, DNA replication, and protein processing in endoplasmic reticulum pathways in Group BL compared to the other groups. In the metabolomic analysis, we identified prostaglandin B1, tyramine, d-fructose 6-phosphate, L-adrenaline, leukotriene C4, and arachidonic acid as differential metabolic markers, as they play a vital part in helping larvae adapt to different ALAN conditions. Multi-omics correlation analysis of pairwise comparisons between all of the groups suggested that the biosynthesis of unsaturated fatty acids (FAs) and arachidonic acid metabolism pathways were significantly enriched (P < 0.05). Further quantitative analysis of the fatty acid (FA) contents revealed that 42 out of 50 FAs were down-regulated in Group BL and up-regulated in Group YL, which suggested that the synthesis, catabolism, and metabolism of FAs are crucial for the larval response to different spectral components of ALAN. For the first time, we report positive rather than negative effects of artificial blue light at night on the embryonic development of a benthic marine species. These results are significant for unbiased and full-scale assessment of the ecological effects of ALAN and for understanding the structural stability of the marine benthic community.

15.
Antioxidants (Basel) ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36670971

RESUMO

Catalase is a crucial enzyme of the antioxidant defense system responsible for the maintenance of cellular redox homeostasis. The aim of the present study was to evaluate the molecular regulation of catalase (Hdh-CAT) in stress physiology, innate immunity, testicular development, metamorphosis, and cryopreserved sperm of Pacific abalone. Hdh-CAT gene was cloned from the digestive gland (DG) of Pacific abalone. The 2894 bp sequence of Hdh-CAT had an open reading frame of 1506 bp encoding 501 deduced amino acids. Fluorescence in situ hybridization confirmed Hdh-CAT localization in the digestive tubules of the DG. Hdh-CAT was induced by different types of stress including thermal stress, H2O2 induction, and starvation. Immune challenges with Vibrio, lipopolysaccharides, and polyinosinic-polycytidylic acid sodium salt also upregulated Hdh-CAT mRNA expression and catalase activity. Hdh-CAT responded to cadmium induced-toxicity by increasing mRNA expression and catalase activity. Elevated seasonal temperature also altered Hdh-CAT mRNA expression. Hdh-CAT mRNA expression was relatively higher at the trochophore larvae stage of metamorphosis. Cryopreserved sperm showed significantly lower Hdh-CAT mRNA expression levels compared with fresh sperm. Hdh-CAT mRNA expression showed a relationship with the production of ROS. These results suggest that Hdh-CAT might play a role in stress physiology, innate immunity, testicular development, metamorphosis, and sperm cryo-tolerance of Pacific abalone.

16.
Biomolecules ; 13(1)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36671494

RESUMO

FMRFamide-related peptides are neuropeptides involved in a wide range of biological processes, including reproduction and larval development. To characterize the involvement of FMRFamide in the reproduction and larval development of Pacific abalone Haliotis discus hannai, an FMRFamide cDNA (Hdh-FMRF2) was cloned from the cerebral ganglion (CG). Fluorescence in situ hybridization and qRT-PCR were performed for functional characterization. The Hdh-FMRF2 cDNA encoded 204 deduced amino acids that contained a putative signal peptide and four FaRP domains. The major population of Hdh-FMRF2 neuronal cell bodies was localized in the cortex of CG. Hdh-FMRF2 mRNA expression was significantly upregulated in CG during the mature stage of gonadal development and effective accumulative temperature (EAT) exposed abalone in both sexes. In the induced spawning event, Hdh-FMRF2 expression was significantly upregulated during spawning in males. However, no upregulation was observed in females, suggesting Hdh-FMRF2 might inhibit gamete release in female abalone. These results revealed Hdh-FMRF2 as a reproduction related peptide. Furthermore, mRNA expression in larval development suggested that this peptide was also involved in larval development during development of Pacific abalone. Collectively, this study provides evidence of possible involvement of an FMRFamide neuropeptide in the reproduction and larval development of Pacific abalone.


Assuntos
Neuropeptídeos , Reprodução , Masculino , Feminino , Animais , DNA Complementar , FMRFamida/genética , Hibridização in Situ Fluorescente , Reprodução/genética , Peptídeos/genética , Neuropeptídeos/genética , RNA Mensageiro/genética , Larva/genética , Larva/metabolismo
17.
Int J Mol Sci ; 13(9): 10750-10764, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109820

RESUMO

The small abalone, Haliotis diversicolor supertexta, of the family Haliotidae, is one of the most important species of marine shellfish in eastern Asia. Over the past few decades, this species has drastically declined in Korea. Thus, hatchery-bred seeds have been released into natural coastal areas to compensate for the reduced fishery resources. However, information on the genetic background of the small abalone is scarce. In this study, 20 polymorphic microsatellite DNA markers were identified using next-generation sequencing techniques and used to compare allelic variation between wild and released abalone populations in Korea. Using high-throughput genomic sequencing, a total of 1516 (2.26%; average length of 385 bp) reads containing simple sequence repeats were obtained from 86,011 raw reads. Among the 99 loci screened, 28 amplified successfully, and 20 were polymorphic. When comparing allelic variation between wild and released abalone populations, a total of 243 different alleles were observed, with 18.7 alleles per locus. High genetic diversity (mean heterozygosity = 0.81; mean allelic number = 15.5) was observed in both populations. A statistical analysis of the fixation index (F(ST)) and analysis of molecular variance (AMOVA) indicated limited genetic differences between the two populations (F(ST) = 0.002, p > 0.05). Although no significant reductions in the genetic diversity were found in the released population compared with the wild population (p > 0.05), the genetic diversity parameters revealed that the seeds released for stock abundance had a different genetic composition. These differences are likely a result of hatchery selection and inbreeding. Additionally, all the primer pair sets were effectively amplified in another congeneric species, H. diversicolor diversicolor, indicating that these primers are useful for both abalone species. These microsatellite loci may be valuable for future aquaculture and population genetic studies aimed at developing conservation and management plans for these two abalone species.


Assuntos
Gastrópodes/genética , Repetições de Microssatélites , Animais , Espécies em Perigo de Extinção , Pesqueiros , Variação Genética , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo Genético
18.
Front Cell Dev Biol ; 10: 935667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927989

RESUMO

Pacific abalone, Haliotis discus hannai, is a highly commercial seafood in Southeast Asia. The present study aimed to determine the influence of saccharides and vitamins on post-thaw sperm quality, ATP content, fertilization capacity, hatching capacity, and mRNA content of motility and fertilization-associated genes of Pacific abalone. Sperm cryopreserved using saccharides improved the post-thaw sperm quality including motility, acrosome integrity (AI), plasma membrane integrity (PMI), and mitochondrial membrane potential (MMP). However, vitamins (l-ascorbic acid) did not result in any significant improvement in sperm quality. Sperm cryopreserved using saccharides also improved ATP content, DNA integrity, and mRNA content of motility and fertilization-associated genes of post-thaw sperm than sperm cryopreserved without saccharides. Among sperm cryopreserved using different saccharides, post-thaw sperm quality indicators (except PMI) and mRNA content of motility and fertilization-associated genes did not show significant differences between sperm cryopreserved using 3% sucrose (S) combined with 8% dimethyl sulfoxide (DMSO) and sperm cryopreserved using 1% glucose (G) combined with 8% ethylene glycol (EG). However, sperm cryopreserved using 3% S + 8% DMSO showed higher post-thaw sperm quality (motility: 58.4 ± 2.9%, AI: 57.1 ± 3.2%, PMI: 65.3 ± 3.3%, and MMP: 59.1 ± 3.2%), ATP content (48.4 ± 1.8 nmol/ml), and % DNA in tail (2.09 ± 0.20%) than sperm cryopreserved using other saccharides. When sperms were cryopreserved using 3% S + 8% DMSO, the mRNA content of motility (heat shock protein 70, HSP70; heat shock protein 90, HSP90; protein kinase A, PKA-C; axonemal protein 66.0, Axpp66.0; and tektin-4) and fertilization-associated (sperm protein 18 kDa, SP18 kDa) genes were higher than in sperm cryopreserved using other saccharides. However, changes in the mRNA contents of these genes were insignificant between sperm cryopreserved using 3% S + 8% DMSO and 1% G + 8% EG. Taken together, these results indicate that cryopreservation using 3% S + 8% DMSO can improve post-thaw sperm quality and mRNA contents better than other examined cryoprotectants. The present study suggests that 3% S + 8% DMSO is a suitable cryoprotectant for sperm cryopreservation and molecular conservation of this valuable species.

19.
Front Cell Dev Biol ; 10: 870743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547812

RESUMO

As structural components of sperm, tektins are thought to play a fundamental role in sperm flagellar motility. In this study, Tektin-4 (Hdh-TEKT4) gene was successfully cloned and characterized from the testis tissue in Pacific abalone, Haliotis discus hannai. The full-length cDNA of Hdh-TEKT4 was 1,983 bp, with a coding region of 1,350 bp encoding 51.83 kDa putative protein of 449 deduced amino acids. Hdh-TEKT4 contains a tektin domain including a nonapeptide signature motif (RPGVDLCRD). Fluorescence in situ hybridization revealed that Hdh-TEKT4 localized in the spermatids of Pacific abalone testis. qRT-PCR analysis showed that Hdh-TEKT4 was predominantly expressed in testis tissues. Hdh-TEKT4 mRNA expression was upregulated during the fully mature testicular developmental stage in both seasonal development and EAT exposed abalone. Furthermore, mRNA expression of Hdh-TEKT4 was significantly higher in sperm with higher motility than in sperm with lower motility during peak breeding season, induced spawning activity stages, and after cryopreservation in different cryoprotectants. Taken together, these results indicate that the expression of Hdh-TEKT4 in Pacific abalone sperm might have a positive correlation with sperm motility.

20.
Biology (Basel) ; 11(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36290349

RESUMO

Growth factors are mostly secreted proteins that play key roles in an organism's biophysical processes through binding to specific receptors on the cell surface. The mollusk-like growth factor (MLGF) is a novel cell signaling protein in the adenosine deaminase-related growth factor (ADGF) subfamily. In this study, the MLGF gene was cloned and characterized from the digestive gland tissue of Pacific abalone and designated as Hdh-MLGF. The transcribed full-length sequence of Hdh-MLGF was 1829 bp long with a 1566 bp open reading frame (ORF) encoding 521 amino acids. The deduced amino acid sequence contained a putative signal peptide and two conserved adenosine deaminase domains responsible for regulating molecular function. Fluorescence in situ hybridization localized Hdh-MLGF in the submucosa layer of digestive tubules in the digestive gland. The mRNA expression analysis indicated that Hdh-MLGF expression was restricted to the digestive gland in the adult Pacific abalone. However, Hdh-MLGF mRNA expressions were observed in all stages of embryonic and larval development, suggesting Hdh-MLGF might be involved in the Pacific abalone embryonic and larval development. This is the first study describing Hdh-MLGF and its involvement in the Pacific abalone embryonic and larval development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa