Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.631
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555312

RESUMO

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Assuntos
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fusarium/genética , Genômica
2.
BMC Plant Biol ; 24(1): 824, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227804

RESUMO

The accumulation of secondary metabolites in Panax ginseng Meyer (P. ginseng) exhibits significant geographical variation, normally due to environmental factors. The current study aimed at elucidating the key environmental factors modulating the accumulation of secondary metabolites in P. ginseng. Plant and the associated soil samples were collected from ten geographical locations within the latitudinalrange of 27.09°N - 42.39°N and longitudinal range of 99.28°E - 128.19°E. 12 secondary metabolites in P. ginseng toots were measured. And the correlation between secondary metabolites with a series of soil properties and 7 climatic factors were investigated through Pearson's correlation, mantel test, random forest and pathway analysis. The results revealed that climatic factors were stronger drivers of ginseng secondary metabolite profile than soil nutrients. Specifically, temperature seasonality (TS) and soil available phosphorus (AP) were the most effective environments to have significantly and positively influence on the secondary metabolites of ginseng. This findings contribute to identifying optimal cultivation areas for P. ginseng, and hopefully establishing methods for interfering/shaping microclimate for cultivating high-quality P. ginseng.


Assuntos
Ginsenosídeos , Panax , Fósforo , Estações do Ano , Solo , Temperatura , Panax/metabolismo , Panax/crescimento & desenvolvimento , Panax/química , Fósforo/análise , Fósforo/metabolismo , Ginsenosídeos/análise , Ginsenosídeos/metabolismo , Solo/química
3.
BMC Plant Biol ; 24(1): 47, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216888

RESUMO

Panax ginseng is an important medicinal plant, and ginsenosides are the main bioactive molecules of ginseng. The TCP (TBI, CYC, PCF) family is a group of transcription factors (TFs) that play an important role in plant growth and development, hormone signalling and synthesis of secondary metabolites. In our study, 78 PgTCP transcripts were identified from the established ginseng transcriptome database. A phylogenetic tree analysis showed that the 67 PgTCP transcripts with complete open reading frames were classified into three subfamilies, including CIN, PCF, and CYC/TB1. Protein structure analysis showed that PgTCP genes had bHLH structures. Chromosomal localization analysis showed that 63 PgTCP genes were localized on 17 of the 24 chromosomes of the Chinese ginseng genome. Expression pattern analysis showed that PgTCP genes differed among different lineages and were spatiotemporally specific. Coexpression network analysis indicated that PgTCP genes were coexpressed and involved in plant activities or metabolic regulation in ginseng. The expression levels of PgTCP genes from class I (PCF) were significantly downregulated, while the expression levels of PgTCP genes from class II (CIN and CYC/TB1) were upregulated, suggesting that TCP genes may be involved in the regulation of secondary metabolism in ginseng. As the PgTCP26-02 gene was found to be related to ginsenoside synthesis, its predicted protein structure and expression pattern were further analysed. Our results provide new insights into the origin, differentiation, evolution and function of the PgTCP gene family in ginseng, as well as the regulation of plant secondary metabolism.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/metabolismo , Panax/genética , Panax/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
4.
BMC Plant Biol ; 24(1): 105, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342903

RESUMO

BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.


Assuntos
Panax notoginseng , Plantas Medicinais , Nitrogênio/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Simulação de Acoplamento Molecular , Melhoramento Vegetal , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443797

RESUMO

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Assuntos
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilação da Expressão Gênica
6.
BMC Plant Biol ; 24(1): 549, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872078

RESUMO

Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.


Assuntos
Acetatos , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas , Panax , Filogenia , Proteínas de Plantas , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Panax/genética , Panax/metabolismo , Panax/efeitos dos fármacos , Acetatos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Ginsenosídeos
7.
Appl Environ Microbiol ; : e0228723, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235242

RESUMO

The composition and stability of the microbial community structure of roots and root zone soils play a key role in the healthy growth of plants. We examined the distribution characteristics of phenolic acids and saponins, as well as microbial communities in the root space (root endosphere, rhizoplane soil, rhizosphere soil, and bulk soil) of healthy and root rot disease-affected Panax notoginseng. The results showed that after infection with root rot, the rhizoplane soil exhibited significant decreases in organic matter and hydrolyzable nitrogen and significant increases in available phosphorus, available potassium, and total nitrogen. The contents of phenolic acids (except benzoic acid) and ginsenoside Rg2 in the root endosphere significantly increased. Ferulic acid and p-hydroxybenzoic acid in the rhizoplane soil significantly increased. Rhodococcus increased significantly in the root endosphere, rhizoplane, and rhizosphere soil; Nitrospira decreased significantly in the rhizoplane, rhizosphere, and bulk soil; and Plectosphaerella decreased significantly in the root endosphere and rhizoplane soil. Moreover, the accumulation of most autotoxins can promote the growth of pathogens. In summary, the spatial autotoxic substances and microbial community differences in P. notoginseng roots jointly induce the occurrence of root rot.IMPORTANCEPanax notoginseng is highly susceptible to soil-borne diseases induced during planting, and root rot, which usually occurs in the root and stem parts of the plant, is the most severe. We divided the root environment of P. notoginseng into four parts (root endosphere, rhizoplane soil, rhizosphere soil, and bulk soil) and studied it with unplanted soil as the control. In this study, we examined the changes in the content of autotoxic substances in the root space of P. notoginseng, along with the interplay between these substances and microorganisms. This study revealed the mechanism underlying root rot and provided a theoretical basis for alleviating continuous cropping obstacles in P. notoginseng.

8.
BMC Microbiol ; 24(1): 317, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223475

RESUMO

BACKGROUND: Rusted root rot is one of the most common root diseases in Panax ginseng, and Cylindrocarpon destructans is one of the main pathogenic fungus. The objective of this study was to screen and explore the extracts of biocontrol bacteria isolated from ginseng rhizosphere soil against Cylindrocarpon destructans. RESULTS: Bacterial strains Bacillus amyloliquefaciens YY8 and Enterobacteriacea YY115 were isolated and found to exhibit in vitro antifungal activity against C. destructans. A combination of crude protein extract from B. amyloliquefaciens YY8 and ethyl acetate extract from Enterobacteriacea YY115 in a 6:4 ratio exhibited the strongest antifungal activity against C. destructans. Measurements of electrical conductivity, protein content, and nucleic acid content in suspension cultures of C. destructans treated with a mixture extracts indicated that the extracts disrupted the cell membranes of rusted root rot mycelia, resulting in the leakage of electrolytes, proteins, and nucleic acids from the cells, and ultimately inhibiting the growth of C. destructans. The combined extracts suppressed the infection of ginseng roots discs by C. destructans effectively. CONCLUSION: The extracts obtained from the two bacterial strains effectively inhibited C. destructans in P. ginseng. It can provide scientific basis for the development of new biological control pesticides, reduce the use of chemical pesticides, and promote the sustainable development of agriculture.


Assuntos
Bacillus amyloliquefaciens , Enterobacteriaceae , Panax , Doenças das Plantas , Raízes de Plantas , Panax/microbiologia , Panax/química , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Microbiologia do Solo , Rizosfera , Acetatos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Agentes de Controle Biológico/farmacologia
9.
Arch Microbiol ; 206(4): 176, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493413

RESUMO

The stems and leaves of Panax notoginseng contain high saponins, but they are often discarded as agricultural waste. In this study, the predominant ginsenosides Rg1, Rc, and Rb2, presented in the stems and leaves of ginseng plants, were biotransformed into value-added rare ginsenosides F1, compound Mc1 (C-Mc1), and Rd2, respectively. A fungal strain YMS6 (Penicillium sp.) was screened from the soil as a biocatalyst with high selectivity for the deglycosylation of major ginsenosides. Under the optimal fermentation conditions, the yields of F1, C-Mc1, and Rd2 were 97.95, 68.64, and 79.58%, respectively. This study provides a new microbial resource for the selective conversion of protopanaxadiol-type and protopanaxatriol-type major saponins into rare ginsenosides via the whole-cell biotransformation and offers a solution for the better utilization of P. notoginseng waste.


Assuntos
Ginsenosídeos , Saponinas , Agricultura , Biotransformação
10.
Pharmacol Res ; 204: 107203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719196

RESUMO

Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.


Assuntos
Panax notoginseng , Panax notoginseng/química , Humanos , Animais , Sistema Imunitário/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia
11.
Pharm Res ; 41(3): 513-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383935

RESUMO

BACKGROUND: Panax notoginseng saponins (PNS) are commonly used first-line drugs for treating cerebral thrombosis and stroke in China. However, the synchronized and targeted delivery of active ingredients in traditional Chinese medicine (TCM) poses a significant challenge for modern TCM formulations. METHODS: Bovine serum albumin (BSA) was modified using 2-methacryloyloxyethyl phosphorylcholine (MPC), an analog of acetylcholine, and subsequently adsorbed the major PNS onto the modified albumin to produce MPC-BSA@PNS nanoparticles (NPs). This novel delivery system facilitated efficient and synchronized transport of PNS across the blood-brain barrier (BBB) through active transport mediated by nicotinic acetylcholine receptors. RESULTS: In vitro experiments demonstrated that the transport rates of R1, Rg1, Rb1, and Rd across the BBB were relatively synchronous in MPC-BSA@PNS NPs compared to those in the PNS solution. Additionally, animal experiments revealed that the brain-targeting efficiencies of R1 + Rg1 + Rb1 in MPC-BSA@PNS NPs were 2.02 and 7.73 times higher than those in BSA@PNS NPs and the free PNS group, respectively. CONCLUSIONS: This study presents a simple and feasible approach for achieving the targeted delivery of complex active ingredient clusters in TCM.


Assuntos
Panax notoginseng , Saponinas , Animais , Acetilcolina , Encéfalo , Albuminas
12.
Microb Ecol ; 87(1): 54, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512483

RESUMO

Chemical soil fumigation (CSF) and reductive soil disinfestation (RSD) have been proven to be effective agricultural strategies to improve soil quality, restructure microbial communities, and promote plant growth in soil degradation remediation. However, it is still unclear how RSD and CSF ensure soil and plant health by altering fungal communities. Field experiments were conducted to investigate the effects of CSF with chloropicrin, and RSD with animal feces on soil properties, fungal communities and functional composition, and plant physiological characteristics were evaluated. Results showed that RSD and CSF treatment improved soil properties, restructured fungal community composition and structure, enhanced fungal interactions and functions, and facilitated plant growth. There was a significant increase in OM, AN, and AP contents in the soil with both CSF and RSD treatments compared to CK. Meanwhile, compared with CK and CSF, RSD treatment significantly increased biocontrol Chaetomium relative abundance while reducing pathogenic Neonectria relative abundance, indicating that RSD has strong inhibition potential. Furthermore, the microbial network of RSD treatment was more complex and interconnected, and the functions of plant pathogens, and animal pathogen were decreased. Importantly, RSD treatment significantly increased plant SOD, CAT, POD activity, SP, Ca, Zn content, and decreased MDA, ABA, Mg, K, and Fe content. In summary, RSD treatment is more effective than CSF treatment, by stimulating the proliferation of probiotic communities to further enhance soil health and plant disease resistance.


Assuntos
Microbiota , Micobioma , Panax , Solo/química , Agricultura/métodos , Microbiologia do Solo
13.
Bioorg Chem ; 152: 107758, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216197

RESUMO

GFRS is the conversion product of Panax ginseng Meyer berry after citric acid heat treatment, which is rich in rare ginsenosides. However, the anti-melanin role of GFRS in the regulation of skin pigmentation and its material basis remains unclear. To compare the anti-melanin activity before and after citric acid heat treatment, we determined the effects of GFS and GFRS on tyrosinase activity and melanin lever under α-MSH stimulation and found the potential anti-melanin effect of GFRS. Further, Western blot and immunofluorescence methods were used to reveal the mechanism by which GFRS detects anti-melanin activity by promoting autophagy flux levels. In zebrafish models, GFRS inhibited endogenous melanin and tyrosinase better than arbutin and promoted the accumulation of autophagy levels in vivo. To determine the material basis of the anti-melanin effect of GFRS, HPLC was used to isolate and prepare 12 ginsenosides from GFRS, and their activity evaluation and structure-activity relationship analysis were performed. The results showed that the inhibitory effect of GFRS on melanin was Rg3 > Rg5 > Rk1 > Rd. Molecular docking showed that their docking fraction with mushroom tyrosinase was significantly better than that of arbutin, but the presence of C-20 glycosylation decreased the anti-melanin activity of Rd. To maximize the content of Rg3, Rg5, and Rk1, we optimized the process by using citric acid heat treatment of ginsenoside Rd and found that citric acid heat treatment at 100°C almost completely transformed Rd and obtained a high content of active ingredients. In summary, our data demonstrated that GFRS exerted anti-melanin effects by inducing autophagy. It was further revealed that Rg3, Rg5, and Rk1, as effective active components, could be enriched by the improved process of converting ginsenoside Rd by citric acid heat treatment.


Assuntos
Autofagia , Ácido Cítrico , Ginsenosídeos , Temperatura Alta , Melaninas , Panax , Peixe-Zebra , Panax/química , Melaninas/metabolismo , Melaninas/antagonistas & inibidores , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Animais , Relação Estrutura-Atividade , Autofagia/efeitos dos fármacos , Ácido Cítrico/química , Ácido Cítrico/farmacologia , Estrutura Molecular , Frutas/química , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores
14.
Biol Pharm Bull ; 47(1): 240-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246611

RESUMO

Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.


Assuntos
Ginsenosídeos , Panax , Humanos , Animais , Camundongos , Ginsenosídeos/farmacologia , Proteína Morfogenética Óssea 4 , Proliferação de Células , Cabelo , Extratos Vegetais/farmacologia
15.
Cell Biochem Funct ; 42(7): e4115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264203

RESUMO

In this study, the protective effects of Panax notoginseng saponins (PNS) against gamma radiation-induced DNA damage and associated physiological alterations in Swiss albino mice were investigated. Exposure to gamma radiation led to a dose-dependent increase in cytokinesis-blocked micronuclei (CBMN) double-strand DNA breaks (DSBs), dicentric aberrations (DC), formation in peripheral blood mononuclear cells. However, pretreatment with PNS at concentrations of 1, 5, and 10 µg/mL significantly attenuated the frequencies of DC and CBMN in a concentration-dependent manner. PNS administration before radiation exposure also reduced radiation-induced DSBs in BL, indicating protection against reactive oxygen species generation and DNA damage. Notably, pretreatment with PNS at 10 µg/mL prevented the overexpression of γ-H2AX, proteins associated with DNA damage response, in irradiated mice. In addition, in vivo studies showed intraperitoneal administration of PNS (25 mg/kg body weight) for 1 h before radiation exposure mitigated lipid peroxidation levels and restored antioxidant status, countering oxidative damage induced by gamma radiation. Furthermore, PNS pretreatment reversed the decrease in hemoglobin (Hb) content, white blood cell count, and red blood cell count in irradiated mice, indicating preservation of hematological parameters. Overall, PNS demonstrated an anticlastogenic effect by modulating radiation-induced DSBs and preventing oxidative damage, thus highlighting its potential as a protective agent against radiation-induced DNA damage and associated physiological alterations. Clinically, PNS will be beneficial for cancer patients undergoing radiotherapy, but their pharmacological properties and toxicity profiles need to be studied.


Assuntos
Raios gama , Panax notoginseng , Saponinas , Animais , Raios gama/efeitos adversos , Saponinas/farmacologia , Camundongos , Panax notoginseng/química , Humanos , Masculino , Dano ao DNA/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Protetores contra Radiação/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia
16.
Plant Cell Rep ; 43(3): 73, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379012

RESUMO

KEY MESSAGE: PnNAC2 positively regulates saponin biosynthesis by binding the promoters of key biosynthetic genes, including PnSS, PnSE, and PnDS. PnNAC2 accelerates flowering through directly associating with the promoters of FT genes. NAC transcription factors play an important regulatory role in both terpenoid biosynthesis and flowering. Saponins with multiple pharmacological activities are recognized as the major active components of Panax notoginseng. The P. notoginseng flower is crucial for growth and used for medicinal and food purposes. However, the precise function of the P. notoginseng NAC transcription factor in the regulation of saponin biosynthesis and flowering remains largely unknown. Here, we conducted a comprehensive characterization of a specific NAC transcription factor, designated as PnNAC2, from P. notoginseng. PnNAC2 was identified as a nuclear-localized protein with transcription activator activity. The expression profile of PnNAC2 across various tissues mirrored the accumulation pattern of total saponins. Knockdown experiments of PnNAC2 in P. notoginseng calli revealed a significant reduction in saponin content and the expression level of pivotal saponin biosynthetic genes, including PnSS, PnSE, and PnDS. Subsequently, Y1H assays, dual-LUC assays, and electrophoretic mobility shift assays (EMSAs) demonstrated that PnNAC2 exhibits binding affinity to the promoters of PnSS, PnSE and PnDS, thereby activating their transcription. Additionally, an overexpression assay of PnNAC2 in Arabidopsis thaliana witnessed the acceleration of flowering and the induction of the FLOWERING LOCUS T (FT) gene expression. Furthermore, PnNAC2 demonstrated the ability to bind to the promoters of AtFT and PnFT genes, further activating their transcription. In summary, these results revealed that PnNAC2 acts as a multifunctional regulator, intricately involved in the modulation of triterpenoid saponin biosynthesis and flowering processes.


Assuntos
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Triterpenos/metabolismo , Flores/genética , Flores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Biochem Genet ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836961

RESUMO

Panax japonicus Meyer, a perennial herb of the dicotyledonaceae family Araliaceae, is a rare folk traditional Chinese medicine, known as "the king of herbal medicine" in China. To understand the genes involved in secondary pathways under drought and salt stress, the transcriptomic analysis of P. japonicus is of vital importance. The transcriptome of underground rhizomes, stems, and leaves under drought and salt stress in P. japonicus were performed using the Illumina HiSeq platform. After de novo assembly of transcripts, expression profiling and identified differentially expressed genes (DEGs) were performed. Furthermore, putative functions of identified DEGs correlated with ginsenoside in P. japonicus were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis. A total of 221,804 unigenes were obtained from the transcriptome of P. japonicus. The further analysis revealed that 10,839 unigenes were mapped to 91 KEGG pathways. Furthermore, a total of two metabolic pathways of P. japonicus in response to drought and salt stress related to triterpene saponin synthesis were screened. The sesquiterpene and triterpene metabolic pathways were annotated and finally putatively involved in ginsenoside content and correlation analysis of the expression of these genes were analyzed to identify four genes, ß-amyrin synthase, isoprene synthase, squalene epoxidase, and 1-deoxy-D-ketose-5-phosphate synthase, respectively. Our results paves the way for screening highly expressed genes and mining genes related to triterpenoid saponin synthesis. It also provides valuable references for the study of genes involved in ginsenoside biosynthesis and signal pathway of P. japonicus.

18.
Chem Biodivers ; : e202401329, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363736

RESUMO

Vietnamese ginseng (Panax vietnamensis Ha & Grushv.) represents one of the famous Panax spp. for valuable applications in both traditional and modern medicine; in which, its rhizome part has mainly been used as the medicinal materials based on the bioactive ginsenosides such as ginsenoside Rb1, ginsenoside Rg1, ginsenoside Rd, and majonoside R2. In modern medicine, the development of medicinal materials and utilization of medicinal plants are crucially based on standard bioactive ingredients, so this study to evaluate the leaves of Vietnamese ginseng as source of bioactive ginsenoside led to the identification of seven ginsenosides (1-7). Of them, ginsenoside Rd (2) and pseudoginsenoside RS1 (5) showed inhibitory effects on acetylcholinesterase in vitro with the IC50 values of 47.13 and 79.58 µM and supported by molecular docking analysis, in which ginsenoside Rd (2) and pseudoginsenoside RS1 (5) could play as allosteric inhibitors with high binding affinity (-8.5 and -9.4 kcal/mol) as evidenced by hydrogen bonding and hydrophobic interactions. The findings provided the scientific evidence for using the leaves of Vietnamese ginseng as an alternative source to the roots to enhance memory in traditional medicine as well as for further research on the anti-dementia effects of 2 and 5.

19.
Chem Biodivers ; : e202402002, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363708

RESUMO

The dried root of Panax notoginseng is a medicinal and food ingredient. Panax notoginseng polysaccharides (PNPs) have physicochemical properties, which have not been fully elucidated. This study aimed to identify a method to separate the PNP fractions and investigate their activities. PNPs were prepared from roots by hot water extraction, deproteinization, and decolorization. PNP20, PNP40, and PNP60 fractions were isolated through stepwise ethanol precipitation at 20%, 40%, and 60% concentrations, respectively. The three polysaccharide fractions were characterized using chromatography, spectroscopy, and thermogravimetric analysis, and their moisture retention, antioxidant, and tyrosinase-inhibition properties were evaluated. Monosaccharide composition analysis showed that the three PNPs contained mannose (Man), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in different molar ratios. HPGPC analysis demonstrated that the polysaccharides precipitated with higher ethanol concentrations had lower molecular weights (Mw). Furthermore, it was observed that all PNPs have certain moisturizing and hygroscopic properties and antioxidant activities, with PNP60 showing better antioxidant properties and a competitive mixture of hygroscopic properties and tyrosinase inhibition. The chemical composition and structural characteristics of PNPs could affect their functional attributes. PNP60 has the potential to be a moisturizer and antioxidant and could be used in the development of cosmetic ingredients.

20.
Chem Biodivers ; : e202400480, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818674

RESUMO

Male infertility is identified by the inability of a man to successfully impregnate his fertile female partner, even following a year of regular unprotected sexual intercourse. About half of all infertility cases are attributed to what is known as "male factor" infertility. The escalating prevalence of male infertility in the contemporary era across the globe can be largely attributed to environmental pollution, which is the common etiological factor due to the ubiquitous presence of the environmental contaminants. Bisphenol A is recognized as an endocrine-disrupting chemical that has adverse effects on both male and female reproductive systems. On the other hand, numerous studies have demonstrated that Panax ginseng possessed the potential to improve male infertility parameters; promote spermatogenesis, recover the quality and motility of sperm and enhance testicular functions as it acted as a natural androgen supplement. The objective of this review is to offer a summary of the findings obtained from the current research data on the insult of bisphenol A (BPA) on male infertility and its supposed mode of action, as well as shed light on the potent ameliorative role of Panax ginseng extract, with a special focus on the mechanism behind its action. This review delivers a clear understanding of BPA mechanism of action on male infertility and the presumed risks deriving from its exposure. Also, this review provides evidence for the functional role of Panax ginseng extract in restoring male fertility.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa