Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biopolymers ; 113(5): e23486, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35148427

RESUMO

The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.


Assuntos
Planetas , Polímeros , Géis , Poliésteres
2.
Orig Life Evol Biosph ; 50(1-2): 87-96, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32034615

RESUMO

Lethal radiation, low vacuum pressure and low temperatures - this is how space welcomes organisms. Crossing of immense interstellar distances inflates the exposure time of biological material to harmful space conditions. This paper discusses the intriguing possibility of a life-bearing exoplanet being ejected from its planetary system and carrying life across interstellar distances (nomadic = free floating = rogue planet). The proposed interstellar panspermia mechanism reduces the exposure time to space conditions and provides multiple chances for interactions between microbes-bearing rock debris and exoplanets within system the nomadic object encountered on its way. The testing strategy is outlined and discussed in the paper, including testable predictions the proposed hypothesis makes.


Assuntos
Exobiologia , Origem da Vida , Planetas , Meio Ambiente Extraterreno , Probabilidade
3.
Proc Natl Acad Sci U S A ; 114(26): 6689-6693, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28611223

RESUMO

We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.


Assuntos
Vida , Planetas , Astros Celestes
4.
AIDS Rev ; 26(2): 80-91, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936811

RESUMO

The creation of the universe out of nothing (ex nihilo) is attributable to the eternal God. Would a direct divine intervention be needed for other singular events, such as the origin of life? Taking apart the human being, created to image and resemblance of God, we argue that current scientific knowledge allows us to rationally admit a continuity between the origins of the universe and the emergence of life on Earth. Although the irruption of living beings from inert matter is a leap or discontinuity in creation, a direct intervention of God would not be indispensable. The initial impulse of creation, with matter and energy in a space-time imbalance, could have triggered reactions between the different elements and a self-organization of metabolites, in accordance with natural physical-chemistry laws. This paradoxical increase of complexity ended with a transition from chemistry to biology. It happened when independence, metabolism, heritability, and life cycle took place in a protocellular unit. In this way, the emergence of life on earth could be part of an evolutionary dynamic of the timeless God's creative act.


Assuntos
Planeta Terra , Origem da Vida , Humanos , Evolução Biológica
5.
Astrobiology ; 22(12): 1400-1413, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36475963

RESUMO

The interstellar objects 1I/'Oumuamua and 2I/Borisov confirm the long-held expectation that bodies from one stellar system will be carried to another, allowing, in principle, interstellar panspermia. Life might be transferred between stellar systems, depending on the nature of the bodies and how they escaped their systems. 2I/Borisov appears to be a comet, with no more likelihood of carrying life than Solar System comets. In contrast, the nature of 1I/'Oumuamua has been difficult to determine. We review various hypotheses for its origin, including ejection of N2 ice from the surface of an exo-Pluto, formation in a molecular cloud by freezing of H2, and a derelict solar sail of alien construction. Of these, the N2 ice fragment hypothesis is uniquely falsifiable, plausible, and completely consistent with all observations. The possibility of interstellar panspermia would be made more probable if 'Oumuamua originated on a dwarf planet rather than a comet, although substantial challenges to transfer of life would remain. Of proposed mechanisms for interstellar panspermia, transfer of life via rocky meteoroids is perhaps less improbable.


Assuntos
Gelo , Abelhas , Animais
6.
Astrobiology ; 22(12): 1443-1451, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475964

RESUMO

It may be that habitable planets are common but life is rare. If future advances in telescopes increasingly suggest this is so, humankind might feel motivated to seed lifeless planets with resilient terrestrial organisms or synthetic forms designed to thrive on the target planet. A useful mechanism for achieving this goal at a relatively low cost is to use interstellar comets transiting the Solar System to convey microbial cargoes toward nearby planetary systems, where they could disseminate the inoculum via their dust trails. Conversely, it is conceivable that terrestrial life was deliberately seeded in this matter, a hypothesis that could be tested if we found evidence for life on other Solar System bodies that displayed common basic biochemical signatures. Our scenario raises a number of ethical and technological challenges that need to be addressed.

7.
Astrobiology ; 22(12): 1379-1391, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475958

RESUMO

Panspermia is the philosophical proposition that the precursors of life are present in space and able to initiate life on reaching a suitable environment (especially the Earth). Only in the past century has the subject advanced from the lowly status of a dreamy hypothesis to a vibrant new science that is testable and observable. This history of panspermia presents the major figures associated with such hypotheses. It examines their motives, methods, and arguments, situated when possible in their historical context and culture rather than their impact on the present. From antiquity to the early modern period (1500-1800), the debates on the plurality of worlds and panspermia overlapped considerably. In the later modern period (1800 to the present), the narrative thread interweaves panspermia with the origin of life and the theory of evolution, and we can see authentic inputs from scientists rather than philosophers. In the interests of concision, I have omitted topics such as the Search for Extraterrestrial Intelligence, the exploration of the solar system by probes and landers, planetary protection (the inverse of panspermia), and the discovery of exoplanets. The historical literature is sometimes confusing: to correct for that, I have personally examined the original sources of every work cited rather than simply accepting the published findings of other scholars at face value.

8.
Astrobiology ; 21(7): 845-852, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33978458

RESUMO

The ability of tardigrades to survive impact shocks in the kilometer per second and gigapascal range was investigated. When rocks impact planetary surfaces, the impact speeds and shock pressures are in the kilometer per second and gigapascal range. This investigation tested whether tardigrades can survive in impacts typical of those that occur naturally in the Solar System. We found that they can survive impacts up to 0.9 km s-1, which is equivalent to 1.14 GPa shock pressure, but cannot survive impacts above this. This is significantly less than the static pressure limit and has implications for tardigrade survival in panspermia models. The potential survival of tardigrades in impacts of terrestrial impact ejecta on the Moon is shown to be impossible for the average lunar impact speed of such ejecta. However, a notable fraction (around 40%) of such ejecta impact at vertical speeds low enough to permit survival. Similarly, martian impact ejecta striking Phobos, for example, at a typical impact speed will not permit viable transfer of tardigrade-like organisms, but if a fraction of such material had a lower impact speed, survival may be possible. We also consider the implications of this for the collection of viable samples by spacecraft transiting the plumes of icy water worlds such as Europa and Enceladus. We have found the limit on survival of shocks to be around 1 GPa, which is instrumental in determining appropriate mission scenarios and collection methods for the acquisition of viable materials.


Assuntos
Meio Ambiente Extraterreno , Marte , Exobiologia , Gelo , Sistema Solar
9.
Life (Basel) ; 11(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34440576

RESUMO

There are two types of rogue planets, sub-brown dwarfs and "rocky" rogue planets. Sub-brown dwarfs are unlikely to be habitable or even host life, but rocky rogue planets may have a liquid ocean under a thick atmosphere or an ice layer. If they are overlain by an insulating ice layer, they are also referred to as Steppenwolf planets. However, given the poor detectability of rocky rogue planets, there is still no direct evidence of the presence of water or ice on them. Here we discuss the possibility that these types of rogue planets could harbor unicellular organisms, conceivably based on a variety of different energy sources, including chemical, osmotic, thermal, and luminous energy. Further, given the theoretically predicted high number of rogue planets in the galaxy, we speculate that rogue planets could serve as a source for galactic panspermia, transferring life to other planetary systems.

10.
Biosystems ; 206: 104441, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33965445

RESUMO

All SETI (Search for Extraterrestrial Intelligence) programmes that were conceived and put into practice since the 1960s have been based on anthropocentric ideas concerning the definition of intelligence on a cosmic-wide scale. Brain-based neuronal intelligence, augmented by AI, are currently thought of as being the only form of intelligence that can engage in SETI-type interactions, and this assumption is likely to be connected with the dilemma of the famous Fermi paradox. We argue that high levels of intelligence and cognition inherent in ensembles of bacteria are much more likely to be the dominant form of cosmic intelligence, and the transfer of such intelligence is enabled by the processes of panspermia. We outline the main principles of bacterial intelligence, and how this intelligence may be used by the planetary-scale bacterial system, or the bacteriosphere, through processes of biological tropism, to connect to any extra-terrestrial microbial forms, independently of human interference.


Assuntos
Fenômenos Fisiológicos Bacterianos/genética , Cognição/fisiologia , Exobiologia/métodos , Inteligência/fisiologia , Bactérias/genética , Humanos
11.
Astrobiology ; 21(12): 1451-1460, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449275

RESUMO

The Tanpopo experiment was the first Japanese astrobiology mission on board the Japanese Experiment Module Exposed Facility on the International Space Station (ISS). The experiments were designed to address two important astrobiological topics, panspermia and the chemical evolution process toward the generation of life. These experiments also tested low-density aerogel and monitored the microdebris environment around low Earth orbit. The following six subthemes were identified to address these goals: (1) Capture of microbes in space: Estimation of the upper limit of microbe density in low Earth orbit; (2) Exposure of microbes in space: Estimation of the survival time course of microbes in the space environment; (3) Capture of cosmic dust on the ISS and analysis of organics: Detection of the possible presence of organic compounds in cosmic dust; (4) Alteration of organic compounds in space environments: Evaluation of decomposition time courses of organic compounds in space; (5) Space verification of the Tanpopo hyper-low-density aerogel: Durability and particle-capturing capability of aerogel; (6) Monitoring of the number of space debris: Time-dependent change in space debris environment. Subthemes 1 and 2 address the panspermia hypothesis, whereas 3 and 4 address the chemical evolution. The last two subthemes contribute to space technology development. Some of the results have been published previously or are included in this issue. This article summarizes the current status of the Tanpopo experiments.


Assuntos
Exobiologia , Voo Espacial , Poeira Cósmica/análise , Planeta Terra , Meio Ambiente Extraterreno , Japão , Compostos Orgânicos/análise , Astronave
12.
Astrobiology ; 21(12): 1494-1504, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34694920

RESUMO

To investigate microbial viability and DNA damage, dried cell pellets of the radiation-resistant bacterium Deinococcus radiodurans were exposed to various space environmental conditions at the Exposure Facility of the International Space Station (ISS) as part of the Tanpopo mission. Mutation analysis was done by sequencing the rpoB gene encoding RNA polymerase ß-subunit of the rifampicin-resistant mutants. Samples included bacteria exposed to the space environment with and without exposure to UV radiation as well as control samples held in the ISS cabin and at ground. The mutation sites of the rpoB gene obtained from the space-exposed and ISS/ground control samples were similar to the rpoB mutation sites previously reported in D. radiodurans. Most mutations were found at or near the rifampicin binding site in the RNA polymerase ß-subunit. Mutation sites found in UV-exposed samples were mostly shared with non-exposed and ISS/ground control samples. These results suggest that most mutations found in our experiments were induced during procedures that were applied across all treatments: preparation, transfer from our laboratory to the ISS, return from the ISS, and storage before analysis. Some mutations may be enhanced by specific factors in the space experiments, but the mutations were also found in the spontaneous and control samples. Our experiment suggests that the dried cells of the microorganism D. radiodurans can travel without space-specific deterioration that may induce excess mutations relative to travel at Earth's surface. However, upon arrival at a recipient location, they must still be able to survive and repair the general damage induced during travel.


Assuntos
Deinococcus , Voo Espacial , Deinococcus/genética , Deinococcus/metabolismo , Viabilidade Microbiana , Mutação , Raios Ultravioleta
13.
Astrobiology ; 21(2): 177-190, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064954

RESUMO

The Solar System is becoming increasingly accessible to exploration by robotic missions to search for life. However, astrobiologists currently lack well-defined frameworks to quantitatively assess the chemical space accessible to life in these alien environments. Such frameworks will be critical for developing concrete predictions needed for future mission planning, both to determine the potential viability of life on other worlds and to anticipate the molecular biosignatures that life could produce. Here, we describe how uniting existing methods provides a framework to study the accessibility of biochemical space across diverse planetary environments. Our approach combines observational data from planetary missions with genomic data catalogued from across Earth and analyzed using computational methods from network theory. To demonstrate this, we use 307 biochemical networks generated from genomic data collected across Earth and "seed" these networks with molecules confirmed to be present on Saturn's moon Enceladus. By expanding through known biochemical reaction space starting from these seed compounds, we are able to determine which products of Earth's biochemistry are, in principle, reachable from compounds available in the environment on Enceladus, and how this varies across different examples of life from Earth (organisms, ecosystems, planetary-scale biochemistry). While we find that none of the 307 prokaryotes analyzed meet the threshold for viability, the reaction space covered by this process can provide a map of possible targets for detection of Earth-like life on Enceladus, as well as targets for synthetic biology approaches to seed life on Enceladus. In cases where biochemistry is not viable because key compounds are missing, we identify the environmental precursors required to make it viable, thus providing a set of compounds to prioritize for detection in future planetary exploration missions aimed at assessing the ability of Enceladus to sustain Earth-like life or directed panspermia.


Assuntos
Ecossistema , Exobiologia , Planeta Terra , Meio Ambiente Extraterreno , Lua , Planetas
14.
Bioinformation ; 17(2): 331-336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234393

RESUMO

At one spectrum extreme, Astrobiology conjectures that for exoplanets with Goldilocks conditions, terrestrial-like life is inevitable. Moreover, it is envisaged that via panspermia, terrestrial-like life and its precursors are transferred among galaxies, stars, and within solar systems via transiting comets, asteroids, and planetoids. In addition, expelled stars, which have solar systems, it is inferred, transfer life as well. However, at the other extreme, we propose a paradigm shift that on some planets, subject to non- Goldilocks conditions, metal machine life could arise, ab initio, and evolve viruses, intelligence, and civilizations, conjointly. Accordingly, intelligent mechanized civilizations could readily and efficiently commence space exploration. Furthermore, as a counter paradigm shift, such civilizations could experiment and produce non-metallic life, based on carbon and other non-metal elements, under suitable conditions, related to Goldilocks life. Even a single example of validated interstellar or intergalactic communication received on the Earth would support the existence of life elsewhere. However, the communication platform should not be restricted to electromagnetic radiation. Other platforms should be included as well - one such example, which would require sophisticated technology, is neutrino communication. This is the case for any advanced civilization, be it metal-machine based, biological-based, and carbon-based. In sum, civilizations based on machine life, would be highly productive due to the longevity and hardiness of machine life. However, significant caveats are raised in this brief report, because possibly dissimilar psychologies and intelligence may lead to conflicts between metal machine life and biological life, inter-paradigm conflict.

15.
Adv Genet ; 106: 123-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33081922

RESUMO

The possibility that the clouds of Venus are habitats for microorganisms has been discussed for several decades. Over the past two decades evidence to support this point of view has grown with new data from space probes and space exploration. In this article we argue that microorganisms are likely to be widely present in the clouds of Venus, and may under certain conditions have a ready route to Earth. Such transfers could occur by the action of the solar wind that leads to expulsion of parts of the atmosphere laden with microorganisms. The expelled material forms a comet-like tail in the antisolar direction and during inferior conjunctions of Venus could lead to injections of bacteria and other microorganisms onto the Earth. In situations of very low sunspot activity as now prevails, with a consequent weakening of the magnetopause this flux of microbes will be considerably enhanced. The inferior conjunction of 4 June 2020 together with the prevailing deep minimum in the sunspot cycle provides a combination of circumstances that is particularly favorable to such a process.


Assuntos
Microbiota/genética , Origem da Vida , Atmosfera , Planeta Terra
16.
Front Microbiol ; 11: 1792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849408

RESUMO

Space exposure experiments from the last 15 years have unexpectedly shown that several terrestrial organisms, including some multi-cellular species, are able to survive in open space without protection. The robustness of bdelloid rotifers suggests that these tiny creatures can possibly be added to the still restricted list of animals that can deal with the exposure to harsh condition of space. Bdelloids are one of the smallest animals on Earth. Living all over the world, mostly in semi-terrestrial environments, they appear to be extremely stress tolerant. Their desiccation tolerance at any stage of their life cycle is known to confer tolerance to a variety of stresses including high doses of radiation and freezing. In addition, they constitute a major scandal in evolutionary biology due to the putative absence of sexual reproduction for at least 60 million years. Adineta vaga, with its unique characteristics and a draft genome available, was selected by ESA (European Space Agency) as a model system to study extreme resistance of organisms exposed to space environment. In this manuscript, we documented the resistance of desiccated A. vaga individuals exposed to increasing doses of X-ray, protons and Fe ions. Consequences of exposure to different sources of radiation were investigated in regard to the cellular type including somatic (survival assay) and germinal cells (fertility assay). Then, the capacity of A. vaga individuals to repair DNA DSB induced by different source of radiation was investigated. Bdelloid rotifers represent a promising model in order to investigate damage induced by high or low LET radiation. The possibility of exposure both on hydrated or desiccated specimens may help to decipher contribution of direct and indirect radiation damage on biological processes. Results achieved through this study consolidate our knowledge about the radioresistance of A. vaga and improve our capacity to compare extreme resistance against radiation among living organisms including metazoan.

17.
Front Microbiol ; 11: 2050, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983036

RESUMO

The hypothesis called "panspermia" proposes an interplanetary transfer of life. Experiments have exposed extremophilic organisms to outer space to test microbe survivability and the panspermia hypothesis. Microbes inside shielding material with sufficient thickness to protect them from UV-irradiation can survive in space. This process has been called "lithopanspermia," meaning rocky panspermia. We previously proposed sub-millimeter cell pellets (aggregates) could survive in the harsh space environment based on an on-ground laboratory experiment. To test our hypothesis, we placed dried cell pellets of the radioresistant bacteria Deinococcus spp. in aluminum plate wells in exposure panels attached to the outside of the International Space Station (ISS). We exposed microbial cell pellets with different thickness to space environments. The results indicated the importance of the aggregated form of cells for surviving in harsh space environment. We also analyzed the samples exposed to space from 1 to 3 years. The experimental design enabled us to get and extrapolate the survival time course to predict the survival time of Deinococcus radiodurans. Dried deinococcal cell pellets of 500 µm thickness were alive after 3 years of space exposure and repaired DNA damage at cultivation. Thus, cell pellets 1 mm in diameter have sufficient protection from UV and are estimated to endure the space environment for 2-8 years, extrapolating the survival curve and considering the illumination efficiency of the space experiment. Comparison of the survival of different DNA repair-deficient mutants suggested that cell aggregates exposed in space for 3 years suffered DNA damage, which is most efficiently repaired by the uvrA gene and uvdE gene products, which are responsible for nucleotide excision repair and UV-damage excision repair. Collectively, these results support the possibility of microbial cell aggregates (pellets) as an ark for interplanetary transfer of microbes within several years.

18.
Adv Genet ; 106: 1-4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33081918

RESUMO

This current volume is, in many ways, a 2020 update to the important 1999-2000 compendium by Sir Fred Hoyle and Professor N. Chandra Wickramasinghe's "Astronomical Origins of life: Steps towards Panspermia." The emerging new paradigm of biology that connects life on Earth with the wider cosmos is covered in considerable depth showing that terrestrial biological evolution is best understood as a cosmically derived habitat and an interconnected genetic system. The various chapters here discuss all aspects of this interconnectedness, particularly relevant now in this time of the coronavirus pandemic (COVID-19) as the human race reacts to the many microbes and viral pathogens that arrive regularly from space.


Assuntos
Evolução Biológica , Meio Ambiente , Exobiologia , Interações Hospedeiro-Patógeno/fisiologia , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Doença/etiologia , Ecossistema , Meio Ambiente Extraterreno , Humanos , Modelos Biológicos , Origem da Vida , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2
19.
Adv Genet ; 106: 5-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33081926

RESUMO

A range of astronomical observations are shown to be in accord with the theory of cometary panspermia. This theory posits that comets harbor a viable biological component in the form of bacteria and viruses that led to origin and evolution of life on Earth. The data includes (1) infrared, visual and ultraviolet spectra of interstellar dust, (2) infrared spectra of the dust released from comet Halley in 1986, (3) infrared spectra of comet Hale-Bopp in 1997, (4) near and mid-infrared spectra of comet Tempel I in 2005, (5) the discovery of an amino acid and degradation products attributable to biology in the material recovered from the Stardust Mission in 2009, (6) jets from comet Lovejoy showing both a sugar and Ethyl alcohol and finally, (7) a diverse set of data that has emerged from the Rosetta mission. The conjunction of all the available data points to cometary biology and interstellar panspermia as being inevitable.


Assuntos
Poeira Cósmica , Origem da Vida , Aminoácidos , Animais , Bactérias , Humanos , Vírus
20.
Adv Genet ; 106: 21-43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33081924

RESUMO

In this Chapter we discuss the various mechanisms that are available for the possible transfer of cosmic microbial living systems from one cosmic habitat to another. With the 100 or so habitable planets that are now known to exist in our galaxy alone transfers of cometary dust carrying life including fragments of icy planetoids/asteroids would be expected to occur on a routine basis. It is thus easy to view the galaxy as a single connected "biosphere" of which our planet Earth is a minor component. The Hoyle-Wickramasinghe Panspermia paradigm provides a cogent biological rationale for the actual widespread existence of Lamarckian modes of inheritance in terrestrial systems (which we review here). Thus the Panspermia paradigm provides the raison d'etre for Lamarckian Inheritance. Under a terrestrially confined neoDarwinian viewpoint such an association may have been thought spurious in the past. Our aim here is to outline the main evidence for rapid terrestrial-based Lamarckian-based evolutionary hypermutation processes dependent on reverse transcription-coupled mechanisms among others. Such rapid adaptation mechanisms would be consistent with the effective cosmic spread of living systems. For example, a viable, or cryo-preserved, living system traveling through space in a protective matrix will of necessity need to adapt rapidly and proliferate on landing in a new cosmic niche. Lamarckian mechanisms thus come to the fore and supersede the slow (blind and random) genetic processes expected under neoDarwinian Earth centred theories.


Assuntos
Origem da Vida , Animais , Evolução Biológica , Ecossistema , Galáxias , Humanos , Microbiota , Planetas , Transcrição Reversa/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa