Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Mikrochim Acta ; 191(3): 128, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334814

RESUMO

A paper-based analytical device (PAD) with an integrated composite electrode has been designed and fabricated for non-enzymatic creatinine sensing. Reduced graphene oxide (rGO) was employed to modify the PAD so that it could function as a solid-contact transducer. A new macrocyclic pyrido-hexapeptide derivative was made and used as a special ionophore in the creatinine membrane sensor. The synthesized PAD showed a detection limit of 1.0 µM (S/N = 3) and a potentiometric response towards creatinine throughout a log-linear range of 2.0 µM-10 mM (R2 = 0.9998). The sensor shows significant selectivity for a few related substances, including ephedrine, codeine, ketamine, caffeine, urea, urate, carbinoxamine, and dextromethorphan. It has been established that the testing method is appropriate for the direct potentiometric detection of creatinine in a variety of human urine sample types. When an indicating electrode and a reference electrode are put on the same flexible disposable, this lets applications with a small sample volume be done. For point-of-care creatinine measurement, the developed paper-based analytical equipment is a good choice because it is affordable, easily accessible, and self-pumping (especially when combined with potentiometric detection).


Assuntos
Urinálise , Humanos , Creatinina , Potenciometria , Eletrodos
2.
Mikrochim Acta ; 191(4): 194, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472537

RESUMO

The increasing incidence of environmental concerns related to excessive use of pesticides, such as imidacloprid and carbendazim, poses risks to pollinators, water bodies, and human health, prompting regulatory scrutiny and bans in developed countries. In this study, we propose a portable smartphone-based biosensor for rapid and label-free colorimetric detection by using the gold-decorated polystyrene microparticles (Ps-AuNP) functionalized with specific aptamers to imidacloprid and carbendazim on a microfluidic paper-based analytical device (µ-PAD). Four aptamers were selected for the detection of these pesticides and their sensitivity and selectivity performance was evaluated. The sensitivity results show a detection limit for imidacloprid of 3.12 ppm and 1.56 ppm for carbendazim. The aptamers also exhibited high selectivity performance against other pesticides, such as thiamethoxam, fenamiphos, isoproturon, and atrazine. However, the platform presented cross-selectivity when detecting imidacloprid, carbendazim, and linuron, which is discussed herein. Overall, we present a promising platform for simple, on-site, and rapid colorimetric screening of specific pesticides, while highlighting the challenges of aptasensors in achieving selectivity amidst diverse molecular structures.


Assuntos
Benzimidazóis , Carbamatos , Neonicotinoides , Nitrocompostos , Praguicidas , Ouro/química , Praguicidas/análise , Smartphone
3.
Anal Bioanal Chem ; 415(26): 6449-6460, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37665340

RESUMO

This study investigated the colorimetric response of standard glucose, serum glucose, and nucleic acid assays on various paper surfaces with different wettability, including hydrophilic, hydrophobic, and nearly superhydrophobic surfaces. Water contact angles (WCA) formed by water droplets on each surface were measured using ImageJ software. The hydrophilic surface showed no contact angle, while the hydrophobic and nearly superhydrophobic surfaces exhibited contact angles of 115.667° and 133.933°, respectively. The colorimetric sensitivity of the standard glucose assay was analyzed on these surfaces, revealing enhanced sensitivity on the nearly superhydrophobic surface due to the high molecular crowding effect owing to its non-wetting behavior and eventually confined reaction product at the sample loading zone. The hydrophobic nature of the surface restricts the spreading and diffusion of the reaction product, leading to a controlled and localized concentration of the assay product leading to moderate colorimetric intensity. On the other hand, the hydrophilic surface showed the least enhancement in colorimetric sensitivity; this is attributed to the high wettability of the hydrophilic surface causing the reaction product to spread extensively, resulting in a larger area of dispersion and consequently a lower colorimetric intensity. The measured limit of detection (LOD) for nucleic acid on nearly superhydrophobic surfaces was found to be 16.15 ng/µL, which was almost four-fold lower than on hydrophilic surfaces (60.08 ng/µL). Additionally, the LODs of standard glucose and clinical serum samples were two-fold lower on nearly superhydrophobic surfaces compared to hydrophilic surfaces. Our findings clearly highlight the promising potential of utilizing superhydrophobic surfaces to significantly enhance colorimetric sensitivity in paper-based diagnostic applications. This innovative approach holds promise for advancing point-of-care diagnostics and improving disease detection in resource-limited settings.

4.
Sens Actuators B Chem ; 3782023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644326

RESUMO

As an easily disposable substrate with a microporous texture, paper is a well-suited, generic substrate to build analytical devices for studying bacteria. Using a multi-pass lasing process, cellulose-based laser-induced graphene (cLIG) with a sheet resistance of 43.7 ± 2.3 Ωsq-1 is developed and utilized in the fabrication of low-cost and environmentally-friendly paper sensor arrays. Two case studies with Pseudomonas aeruginosa and Escherichia coli demonstrate the practicality of the cLIG sensors for the electrochemical analysis of bacteria. The first study measures the time-dependent profile of phenazines released from both planktonic (up to 60 h) and on-chip-grown (up to 22 h) Pseudomonas aeruginosa cultures. While similarities do exist, marked differences in phenazine production are seen with cells grown directly on cLIG compared to the planktonic culture. Moreover, in planktonic cultures, pyocyanin levels increase early on and plateau around 20 h, while optical density measurements increase monotonically over the duration of testing. The second study monitors the viability and metabolic activity of Escherichia coli using a resazurin-based electrochemical assay. These results demonstrate the utility of cLIG paper sensors as an inexpensive and versatile platform for monitoring bacteria and could enable new opportunities in high-throughput antibiotic susceptibility testing, ecological studies, and biofilm studies.

5.
Microchem J ; 185: 108304, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36531593

RESUMO

Coronavirus disease 2019 (COVID-19) and influenza A are two respiratory infectious diseases with similar clinical manifestations. Because of the complex global epidemic situation of COVID-19, the distinction and diagnosis of COVID-19 and influenza A infected persons is crucial for epidemic prevention and control. In this study, tetrahedral DNA framework (TDF) was combined with a rotational paper-based analytical device, and the color change generated by the reaction between horseradish peroxidase (HRP) and 3,3'5,5'-tetramethylbenzidine (TMB)-H2O2 was used for grayscale signal analysis by ImageJ software. The quantitative detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A H1N1 virus were realized simultaneously. Under the optimal conditions, the paper-based analytical device showed a good linear relationship between the two viruses in the range of 10-14-10-8g/mL, and the two viruses were not affected by cross reaction. This sensor provides a convenient and reliable method for clinical rapid differentiation and diagnosis of COVID-19 and influenza A.

6.
Mikrochim Acta ; 191(1): 66, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158412

RESUMO

A user-friendly, cost-effectively, portable, and environmentally friendly colorimetric sensor for the quantitative determination of formaldehyde was developed based on the combining of microfluidic paper-based analytical device (µPAD), headspace microextraction (HSME), and digital image colorimetry. Coupling HSME and µPAD led to enhancements in selectivity and sensitivity of the sensor through sample cleanup and analyte enrichment. To construct the µPAD-HSME device, two pieces of paper as the sample and detection zone were placed facing each other so that a small common and sealed space was created between them. The color change occurred when the analyte in the gaseous form crossed this gap and reached the detection zone. Colorimetric sensing in the detection zone was performed based on the Hantzsch reaction. The color change in the detection zone was recorded by a smartphone and digital images were processed using image analysis software based on the RGB model. The influence of some key variables on the sensitivity of the method including derivatization reagent composition, sample volume, extraction temperature, and extraction time was studied and optimized. The linear dynamic range of the method was obtained in two ranges of 0.10-0.75 and 0.75-5.0 mg L-1 with a limit of detection of 0.03 mg L-1. The recoveries were in the range 80-126% for the quantification of formaldehyde in textile, milk, and wastewater samples.

7.
Anal Bioanal Chem ; 414(27): 7783-7791, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36068346

RESUMO

This work presents a microfluidic paper-based analytical device (µPAD) for the determination of sucrose using the Benedict's test. An asymmetric dumbbell-shaped hydrophobic barrier was produced by rubber stamping the barrier pattern onto a laboratory filter paper. Hydrochloric acid and solution containing sucrose were successively deposited onto the sample reservoir of the µPAD attached to a glass slide. The device was placed in a plastic bag and dipped into boiling water for accelerating the hydrolysis of sucrose into the reducing sugars. Then the Benedict's reagent was added at the narrow straight channel connecting the two circular zones of the µPAD, which was replaced in the plastic bag and heated again for reduction of Cu(II) by the reducing sugars. Precipitate of brick-red copper(I) oxide was formed. The image of the µPAD was recorded by a smartphone. The ratio of the red to blue intensities gave linear correlation with the concentration of sucrose in the range of 0.5-10% w/v. The relative standard deviation of the measurement was less than 5% for 2 and 4% w/v sucrose (n = 10), with limit of determination, calculated using standard deviation of regression divided by slope of calibration, of 0.26% w/v sucrose. The method was successfully validated using the dinitrosalicylic acid method for sucrose measurement. Percent recoveries of sucrose were evaluated using ten sugarcane samples. The recoveries were in the range of 89 to 101%, demonstrating that there were no significant sample matrix effects on the quantification.


Assuntos
Técnicas Analíticas Microfluídicas , Saccharum , Ácido Clorídrico , Indicadores e Reagentes , Microfluídica , Papel , Plásticos , Borracha , Sacarose , Água
8.
Luminescence ; 37(7): 1087-1097, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441450

RESUMO

Here, a simple and portable paper-based analytical device (PAD) based on the inherent capability of carbon quantum dots (CQDs) to serve as a great emitter for the bis(2,4,6-trichlorophenyl)oxalate (TCPO)-hydrogen peroxide (H2O2) chemiluminescence (CL) reaction is introduced for the detection of harmful mercury ions (Hg2+ ). The energy is transferred from the unstable reaction intermediate (1,2-dioxetanedione) to CQDs, as acceptors, and an intensive orange-red CL emission is generated at ~600 nm, which is equal to the fluorescence emission wavelength of CQDs. The analytical applicability of this system was examined for the determination of Hg2+ . It was observed that Hg2+ could significantly quench the produced emission, which can be attributed to the formation of a stable and nonluminescent Hg2+ -CQDs complex. Accordingly, a simple and rapid PAD was established for monitoring Hg2+ , with a limit of detection of 0.04 µg ml-1 . No interfering effect on the signal was found from other examined cations, indicating the acceptable specificity of the method. The designed assay was appropriately utilized to detect Hg2+ ions in cosmetic samples with high efficiency. It was characterized by its low cost, ease of use, and was facile but accurate and high selective for the detection of Hg2+ ions. In addition, the portability of this probe makes it suitable for on-site screening purposes.


Assuntos
Cosméticos , Mercúrio , Pontos Quânticos , Carbono , Peróxido de Hidrogênio , Íons , Limite de Detecção , Luminescência
9.
Mikrochim Acta ; 189(12): 445, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367608

RESUMO

A paper-based analytical device (PAD) is presented with colorimetric/electrochemical dual readouts for the simultaneous sensing of total chromium (Cr) and hexavalent chromium (Cr(VI)). This device consists of a homemade three-electrode system and a patterned paper chip, integrating multiple functions including electrochemical detection, fluid driving, online oxidation, and colorimetric detection. The fiberglass filter paper with a hydrophilic microchannel was used to achieve self-driving fluidics without external equipment. One end of the microchannel was integrated with a homemade three-electrode system to achieve sample loading and electrochemical detection. The middle region on the microchannel was modified with oxidizing reagents to perform online pretreatment, and the yield of Cr(III) oxidation can reach 97.9%, ensuring reliable colorimetric detection of total Cr at another end of the microchannel modified with chromogenic agents. With this device, the signals of Cr(VI) (the signal peak at 0.29 V vs. Ag/AgCl) and total Cr can be obtained in one single injection. After optimization, the limit of detection (LOD) of Cr(VI) and total Cr were 0.01 mg L-1 and 0.06 mg L-1 and the linear ranges were 0.05-3.0 mg L-1 and 0.2-3.0 mg L-1, respectively. The relative standard deviations (RSD) of the electrochemical testing of Cr(VI) results were in a range 1.3%-8.7% (n = 3), and the RSD values of the colorimetric testing of total Cr were between 0.7-9.2% (n = 3). The device's reliability was demonstrated by performing the practical speciation of Cr in tap water, river water, and electroplating wastewater while the recoveries obtained using the present method were in the range 93.5-106%. Overall, the proposed device provides high application prospect in the on-site rapid Cr speciation.


Assuntos
Cromo , Água , Reprodutibilidade dos Testes , Limite de Detecção
10.
Mikrochim Acta ; 189(7): 243, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657569

RESUMO

The development of the first microfluidic paper-based analytical device (µPAD) for the speciation of inorganic arsenic in environmental aqueous samples as arsenite (As(III)) and arsenate (As(V)) which implements hydride generation on a paper platform is described. The newly developed µPAD has a 3D configuration and uses Au(III) chloride as the detection reagent. Sodium borohydride is used to generate arsine in the device's sample zone by reducing As(III) in the presence of hydrochloric acid or both As(III) and As(V) (total inorganic As) in the presence of sulfuric acid. Arsine then diffuses across a hydrophobic porous polytetrafluoroethylene membrane into the device's detection zone where it reduces Au(III) to Au nanoparticles. This results in a color change which can be related to the concentration of As(III) or total inorganic As (i.e., As(III) and As(V)) concentration. Under optimal conditions, the µPAD is characterized by a limit of detection of 0.43 mg L-1 for total inorganic As (As(III) + As(V)) and 0.41 mg L-1 for As(III) and a linear calibration range in both cases of 1.2-8.0 mg As L-1. The newly developed µPAD-based method was validated by applying it to groundwater and freshwater samples and comparing the results with those obtained by conventional atomic spectrometric techniques.


Assuntos
Arsênio , Nanopartículas Metálicas , Arsênio/análise , Ouro , Microfluídica , Água/análise
11.
Environ Monit Assess ; 194(3): 190, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165783

RESUMO

Early and on-site detection of environmental contaminations and physicochemical parameters of seawater is increasingly preferred to guarantee hazard minimization in many settings. In this paper, we describe a combination of microfluidic paper-based sensors (µPADs) and an Android-based smartphone application (App) for simultaneous on-site quantification of phosphate (PO4-P), silicate (SiO3-Si) and nitrite (NO2-N) in coastal seawater samples. The developed App can on-site capture, process, and quantify the µPAD colorimetric outputs. This App uses an image processing algorithm for quantifying color intensity and relating the RGB components to the analyte concentrations. The GPS-tagged data can be stored on the smartphone or sent via social networks. The significant factors affecting the detection of the analytes were optimized using Box-Behnken design. Under optimized parameters, the proposed method presented the linear ranges between 5 and 100 µg L-1 for phosphate (R2 = 0.9909), 5 to 100 µg L-1 (R2 = 0.9819) for nitrite and 10 to 600 µg L-1 (R2 = 0.9933) for silicate. The LODs of the method for detection of phosphate, nitrite and silicate were 1.52 µg L-1, 0.61 µg L-1 and 3.74 µg L-1, respectively. The device was successfully used to simultaneous analyze and map the PO4-P, SiO3-Si and NO2-N of Bushehr coastal seawater samples (Iran). The results were confirmed by the lab-based conventional colorimetric methods using spectrophotometer.


Assuntos
Colorimetria , Nitritos , Monitoramento Ambiental , Microfluídica , Nitritos/análise , Papel , Fosfatos , Silicatos , Smartphone
12.
Anal Bioanal Chem ; 413(12): 3339-3347, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33715041

RESUMO

Speciation of chromium (Cr) was demonstrated using microfluidic paper-based analytical devices (µ-PADs) that permit the colorimetric determination of hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) via online oxidation. The µ-PADs consist of left and right channels that allow the simultaneous measurements of Cr(VI) and total Cr based on the colorimetric reaction of Cr(VI) with 1,5-diphenylcarbazide (DPC). For the determination of Cr(VI), a sample solution was directly reacted with DPC in the left channels whereas total Cr was determined in the right channels, which permitted online oxidation in the pretreatment zone containing cerium (IV) (Ce(IV)) followed by a colorimetric reaction with DPC. We found that the online oxidation of Cr(III) proceeded 100% whereas Ce(IV) inhibited the reaction of Cr(VI) with DPC. Therefore, speciation can be achieved by measuring the Cr(VI) and total Cr in the left and right channels followed by the subtraction of Cr(VI) from total Cr. The limits of detection and quantification were 0.008 and 0.02 mg L-1 for Cr(VI) and 0.07 and 0.1 mg L-1 for Cr(III) or total Cr, respectively. The linear dynamic ranges were 0.02-100 mg L-1 and 0.1-60 mg L-1 for Cr(VI) and Cr(III), respectively. The RSDs were less than 7.5%. The results obtained using µ-PADs were in good agreement with those obtained via ICP-OES with recoveries of 92-108% for Cr(III) and 108-110% for Cr (VI) using µ-PADs, and 106-110% for total Cr using ICP-OES. Thus, the µ-PADs could potentially be utilized for the speciation of chromium in developing countries where environmental pollution and the availability of sophisticated instruments are significant problems.

13.
Anal Bioanal Chem ; 413(18): 4625-4634, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661349

RESUMO

Herein we report a quantitative, multiplex assay for disease markers in plasma based on an integrated setup of a portable scanner and a disposable paper-based analytical device (PAD). The quantitative analysis relies on the digital colorimetric reading of the three-layer PAD with 30 assay sites for performing respective chromogenic reactions for plasma uric acid, glucose, and triglyceride, which are considered as important risk factors for cardiovascular diseases. A portable scanner with WiFi transmission capability was used to produce high-quality color images of the PADs and wirelessly transfer them to a smartphone or other mobile devices for data processing. The concentrations of biomarkers in both standard solutions and plasma samples can be directly obtained using a custom-designed smartphone app that is also capable of constructing calibration curves. The detection limits of uric acid, glucose, and triglyceride were determined to be 0.50 mg/dL, 0.84 mmol/L, and 14 mg/dL, respectively, which are below the normal limits and adequate for clinical validation. Owing to the distinct advantages-simple, portable, and cost-effective-this mobile assay protocol can be used for point-of-care (POC) settings or resource-limited situations, and potentially for the diagnosis and prevention of infectious diseases.


Assuntos
Glicemia/análise , Internet , Papel , Triglicerídeos/sangue , Ácido Úrico/sangue , Biomarcadores/sangue , Colorimetria/instrumentação , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Fatores de Risco , Smartphone , Tecnologia sem Fio
14.
Mikrochim Acta ; 188(4): 140, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772376

RESUMO

A microcapillary grooved paper-based analytical device capable of dual-mode sensing (colorimetric and electrochemical detection) was demonstrated for analysis of viscous samples (e.g., human saliva). Herein, a hollow capillary channel was constructed via laser engraved micropatterning functions as a micropump to facilitate viscous fluidic transport, which would otherwise impede analysis on paper devices. Using salivary thiocyanate as a model analyte, the proposed device was found to exhibit a promising sensing ability on paper devices without the need for sample pretreatment or bulky instrumentation, as normally required in conventional methods used for saliva analysis. An extensive linear dynamic range covering detection of salivary thiocyanate for both high and trace level regimes (5 orders of magnitude working range) was collectively achieved using the dual-sensing modes. Under optimal conditions, the limit of detection was 6 µmol L-1 with a RSD of less than 5%. An excellent stability for the µpumpPAD was also observed for over 30 days. Real sample analysis using the proposed device was found to be in line with the standard chromatographic method. Benefitting from simple fabrication and operation, portability, disposability, low sample volume (20 µL), and low cost (< 1 USD), the µpumpPAD is an exceptional alternative tool for the detection of various biomarkers in saliva specimens.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Papel , Saliva/química , Tiocianatos/análise , Colorimetria/instrumentação , Colorimetria/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Humanos , Indóis/química , Lasers , Limite de Detecção , Técnicas Analíticas Microfluídicas/instrumentação , não Fumantes , Compostos Organometálicos/química , Fumantes
15.
Electrophoresis ; 41(10-11): 867-874, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31667875

RESUMO

We report a microfluidic paper based analytical device implementing ion concentration polarization (ICP) for rapid pre-concentration of Escherichia coli in water. The fabricated device consists of a paper channel with a Nafion® membrane and in-built micro wire electrodes to supply electric voltage to induce the ICP effect. E. coli cells were stained with SYTO 9 and fluorescence was used as a sensing method. The device achieved high concentration factor up to 2 × 105 within minutes. The effect of total ion concentration, on ICP and fluorescence intensity was studied. The reported device and method are suitable and effective for detection of E. coli during ballast water quality monitoring, coastal water quality monitoring where high salinity water is present.


Assuntos
Escherichia coli/isolamento & purificação , Técnicas Analíticas Microfluídicas , Microbiologia da Água , Eletrodos , Desenho de Equipamento , Polímeros de Fluorcarboneto/química , Íons/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Papel , Cloreto de Sódio/química
16.
Anal Biochem ; 603: 113777, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445635

RESUMO

A cheap/rapid technique for the fabrication of µPADs is presented for point of care analysis. Hydrophobic channels were formed across the width of the paper by spraying hot pure wax. This biocompatible novel process yielded uniform 300 ± 5 µm hydrophilic microchannels on paper, without the use of the cleanroom, UV lamp, or organic solvents and was completed in a single step without the need for a hotplate. Hot wax is properly impregnated across paper thickness by spraying under optimized temperature and pressure. Our method is advantageous in the cost and ease of fabrication, process time (<1 min), the feasibility of mass-fabrication, readout, environmental considerations and multiplexing due to the embossed structure of remnant wax. The performance of the resulting µPAD was assessed on a multiplexed Uric acid and Nitride assay, bearing 95% of confidence level in the readout against standardized tests. A novel RGB processing app was developed for smart-phones to quantify colorimetric read-outs through a heuristic normalization equation that converts RGB to integer systems. This combinatorial sensor demonstrates a good linear range (up to 800 µM for Uric acid and 1250 µM for Nitride), low detection limit (100 µM for uric acid and 156 µM for nitride).


Assuntos
Biomarcadores/análise , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Ceras/química , Colorimetria , Desenho de Equipamento , Papel , Smartphone
17.
Anal Bioanal Chem ; 412(13): 3167-3176, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32303795

RESUMO

This work presents a portable microfluidic paper-based analytical device (micro-PAD) card for the quantification of total ammonia nitrogen in human saliva. The amount of total ammonia nitrogen in saliva can be an indicator of the status of the oral microbiome with potential correlation to kidney health problems. The developed micro-PAD card comprises twenty units consisting of three stacked layers of circular discs: the sample layer, paper discs impregnated with sodium hydroxide solution, the PTFE membrane layer, and the detection layer, paper discs impregnated with bromothymol blue. The twenty units were aligned on transparent laminating pouches laminated to form the micro-PAD card (7.5 cm × 10.5 cm). Saliva samples can be directly dispensed onto the micro-PAD card and the detection was achieved by the BTB indicator color change, from yellow to blue, after conversion of ammonium into ammonia and diffusion of the ammonia gas through a hydrophobic layer. The determination of total ammonia nitrogen in saliva using the developed micro-PAD card intended to be very simple method and operated without the need of laboratory equipment. A quantification limit of 11.3 NH4+mg L-1 and linear application range from up to 150 NH4+mg L-1 were obtained making it suitable for the expected concentrations of total ammonia nitrogen in human saliva. It was successfully applied to saliva samples and its validation obtained by comparison against a potentiometric method. The card is stable for at least 1 month making it ideal as a portable device for point-of-care diagnosis. Graphical Abstract.


Assuntos
Amônia/análise , Nitrogênio/análise , Papel , Saliva/química , Humanos , Limite de Detecção
18.
Anal Bioanal Chem ; 412(15): 3547-3557, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32246179

RESUMO

Paper-based analytical devices (PADs) have encountered a wealth of applications in recent years thanks to the numerous advantages of paper as a support. A silver nanoflower (AgNF) modified paper-based dual substrate for both surface-enhanced Raman spectroscopy (SERS) and ambient pressure paper spray mass spectrometry (PS-MS) was developed. AgNFs were immobilized on nylon-coated paper modified with silver and ethylenediamine. The developed substrate was characterized via scanning electron microscopy and infrared spectroscopy. The densely packed nanoscale petals of the AgNFs lead to a large number of so-called hot spots at their overlapping points, which result in an enhancement of the Raman signal. In addition, the presence of the AgNFs produces an increase in the sensitivity of the mass spectrometric analysis as compared with bare paper and nylon/Ag-coated paper. The dual substrate was evaluated for the identification and quantification of ketoprofen in aqueous standards as well as human saliva from healthy volunteers. The method enables the determination of ketoprofen with a limit of detection and limit of quantification via PS-MS of 0.023 and 0.076 mg L-1, respectively, with a relative standard deviation (RSD) of 3.4% at a concentration of 0.1 mg L-1. This dual substrate enables the simple and fast detection of ketoprofen with minimal sample preparation, providing complementary Raman and mass spectrometric information. Graphical abstract.

19.
Anal Bioanal Chem ; 412(11): 2517-2528, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32067065

RESUMO

Paper-based immunoassays are effective methods that employ microfluidic paper-based analytical devices (µPADs) for the rapid, simple, and accurate quantification of analytes in point-of-care diagnosis. In this study, we developed a wax-printed multilayered µPAD for the colorimetric detection of carcinoembryonic antigen (CEA), where the device contained a movable and rotatable detection layer to allow the µPAD to switch the state of the sample solutions, i.e., flowing or storing in the sensing zones. A smartphone with a custom-developed program served as an automated colorimetric reader to capture and analyze images from the µPAD, before calculating and displaying the test results. After optimizing the crucial conditions for the assay, the proposed method exhibited a wide linear dynamic range from 0.5 to 70 ng/mL, with a low CEA detection limit of 0.015 ng/mL. The clinical performance of this method was successfully validated using 50 positive and 40 negative human serum samples, thereby demonstrating the high sensitivity of 98.0% and specificity of 97.5% in the detection of CEA. The proposed method is greatly simplified compared with the cumbersome steps required for traditional immunoassays, but without any loss of accuracy and stability, as well as reducing the time needed to detect CEA. Complex and bulky instruments are replaced with a smartphone. The proposed detection platform could potentially be applied in point-of-care testing. Graphical abstract.


Assuntos
Antígeno Carcinoembrionário/sangue , Colorimetria/instrumentação , Papel , Smartphone , Antígeno Carcinoembrionário/análise , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Limite de Detecção
20.
Mikrochim Acta ; 187(10): 563, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920713

RESUMO

A paper-based visual fluorescence immunoassay is presented for the detection of matrix metalloproteinase-7 (MMP7) that is related to renal cancer. The method is based on the distance-dependent fluorescence quenching of CdTe quantum dots (QDs) on a nitrocellulose membrane by Ag+ following a sandwich-type immunoreaction on microtiter wells using silver nanoparticle (AgNP)-labeled secondary antibody- and primary antibody-coated microtiter wells. The silver nanoparticles captured in the well are dissolved with HNO3, while the quenching effect of QDs is based on silver ion-exchange reaction under 365-nm excitation light irradiation. Increasing concentration of released Ag+, thus higher concentration of the protein, leads to an increased distance of quenching on the nitrocellulose membrane. The paper-based immunoassay by combination of AgNP-assisted ion-exchange reaction with QD gives good distance-dependent responses and allows the detection of MMP7 at a concentration as low as 7.3 pg mL-1. The coefficients of variation are less than 6.9% and 12.4% for intra-assay and inter-assay, respectively. High specificity and long-term stability are achieved during the assay. Importantly, the testing of human serum samples using our strategy shows well-matched results with commercial human MMP7 ELISA kits. Graphical abstract A distance-dependent visual immunoassay is developed for the determination of serum matrix metalloproteinase-7 on CdTe quantum dot-impregnated paper with silver ion-exchange reaction.


Assuntos
Compostos de Cádmio/química , Nanopartículas Metálicas/química , Pontos Quânticos/metabolismo , Telúrio/química , Fluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa