Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.779
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(38): e2311412120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695893

RESUMO

I propose that there exists in natural and artificial environments a class of resonant oscillations that can be excited directly by a steady, zero-frequency force such as that of wind, water, electric field. A member of this class comprises two normally independent oscillating modes of a system, for example, a building or bridge, which, separately, cannot be driven by a zero-frequency force. Agreeing on terms of collaboration, the two modes engage in a joint oscillation powered by the steady zero-frequency force in which they drive each other, one directly and the other parametrically. I observed a bimodal vibration belonging to this class in a home shower where the two modes are the pendulum excursion and the torsional twisting of a freely suspended showerhead which break into a joint oscillation above a threshold value of the water flow rate. I advance a theoretical model which predicts and explains the main features of the observations. The model constitutes an extension to two modes of a proposal and demonstration in 1883 by Lord Rayleigh and Michael Faraday for the excitation of a single resonant mode by modulating a system parameter at twice the resonance frequency. The proposal is credited with the launching of parametric physics. The Experiments section of this report consists of three linked video clips photographed in the home shower which support the basic theoretical assumptions. The ubiquity of zero-frequency forces, such as that of wind, and their direct conversion to alternating on-resonance system vibrations endows the class with an amplified destructive potential with implications for structural stability.

2.
Proc Natl Acad Sci U S A ; 120(32): e2300980120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527345

RESUMO

In quantum gases, two-body interactions are responsible for a variety of instabilities that depend on the characteristics of both trapping and interactions. These instabilities can lead to the appearance of new structures or patterns. We report on the Floquet engineering of such a parametric instability, on a Bose-Einstein condensate held in a time-modulated optical lattice. The modulation triggers a destabilization of the condensate into a state exhibiting a density modulation with a new spatial periodicity. This new crystal-like order, which shares characteristic correlation properties with a supersolid, directly depends on the modulation parameters: The interplay between the Floquet spectrum and interactions generates narrow and adjustable instability regions, leading to the growth, from quantum or thermal fluctuations, of modes with a density modulation noncommensurate with the lattice spacing. This study demonstrates the production of metastable exotic states of matter through Floquet engineering and paves the way for further studies of dissipation in the resulting phase and of similar phenomena in other geometries.

3.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36653900

RESUMO

Microbial communities are highly dynamic and sensitive to changes in the environment. Thus, microbiome data are highly susceptible to batch effects, defined as sources of unwanted variation that are not related to and obscure any factors of interest. Existing batch effect correction methods have been primarily developed for gene expression data. As such, they do not consider the inherent characteristics of microbiome data, including zero inflation, overdispersion and correlation between variables. We introduce new multivariate and non-parametric batch effect correction methods based on Partial Least Squares Discriminant Analysis (PLSDA). PLSDA-batch first estimates treatment and batch variation with latent components, then subtracts batch-associated components from the data. The resulting batch-effect-corrected data can then be input in any downstream statistical analysis. Two variants are proposed to handle unbalanced batch x treatment designs and to avoid overfitting when estimating the components via variable selection. We compare our approaches with popular methods managing batch effects, namely, removeBatchEffect, ComBat and Surrogate Variable Analysis, in simulated and three case studies using various visual and numerical assessments. We show that our three methods lead to competitive performance in removing batch variation while preserving treatment variation, especially for unbalanced batch $\times $ treatment designs. Our downstream analyses show selections of biologically relevant taxa. This work demonstrates that batch effect correction methods can improve microbiome research outputs. Reproducible code and vignettes are available on GitHub.


Assuntos
Microbiota , Projetos de Pesquisa , Análise dos Mínimos Quadrados , Análise Discriminante
4.
Proc Natl Acad Sci U S A ; 119(52): e2202962119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534811

RESUMO

Stellate cells (SC) in the medial entorhinal cortex manifest intrinsic membrane potential oscillatory patterns. Although different theoretical frameworks have been proposed to explain these patterns, a robust unifying framework that jointly accounts for intrinsic heterogeneities and stochasticity is missing. Here, we first performed in vitro patch-clamp electrophysiological recordings from rat SCs and found pronounced cell-to-cell variability in their characteristic physiological properties, including peri-threshold oscillatory patterns. We demonstrate that noise introduced into two independent populations (endowed with deterministic or stochastic ion-channel gating kinetics) of heterogeneous biophysical models yielded activity patterns that were qualitatively similar to electrophysiological peri-threshold oscillatory activity in SCs. We developed spectrogram-based quantitative metrics for the identification of valid oscillations and confirmed that these metrics reliably captured the variable-amplitude and arhythmic oscillatory patterns observed in electrophysiological recordings. Using these quantitative metrics, we validated activity patterns from both heterogeneous populations of SC models, with each model assessed with multiple trials of different levels of noise at distinct membrane depolarizations. Our analyses unveiled the manifestation of stochastic resonance (detection of the highest number of valid oscillatory traces at an optimal level of noise) in both heterogeneous populations of SC models. Finally, we show that a generalized network motif comprised of a slow negative feedback loop amplified by a fast positive feedback loop manifested stochastic bifurcations and stochastic resonance in the emergence of oscillations. Together, through a unique convergence of the degeneracy and stochastic resonance frameworks, our unifying framework centered on heterogeneous stochastic bifurcations argues for state-dependent emergence of SC oscillations.


Assuntos
Córtex Entorrinal , Neurônios , Ratos , Animais , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Modelos Neurológicos , Potenciais da Membrana/fisiologia , Ativação do Canal Iônico , Processos Estocásticos
5.
Nano Lett ; 24(28): 8550-8557, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953564

RESUMO

In this study, we present a novel platform based on scanning microwave microscopy for manipulating and detecting tiny vibrations of nanoelectromechanical resonators using a single metallic tip. The tip is placed on the top of a grounded silicon nitride membrane, acting as a movable top gate of the coupled resonator. We demonstrate its ability to map mechanical modes and investigate mechanical damping effects in a capacitive coupling scheme, based on its spatial resolution. We also manipulate the energy transfer coherently between the mode of the scanning tip and the underlying silicon nitride membrane, via parametric coupling. Typical features of optomechanics, such as anti-damping and electromechanically induced transparency, have been observed. Since the microwave optomechanical technology is fully compatible with quantum electronics and very low temperature conditions, it should provide a powerful tool for studying phonon tunnelling between two spatially separated vibrating elements, which could potentially be applied to quantum sensing.

6.
Nano Lett ; 24(29): 8988-8995, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985015

RESUMO

Exciton-polaritons, hybrid quasiparticles from the strong coupling of excitons and cavity photons in semiconductor microcavities, offer a platform for exploring quantum coherence and nonlinear optical properties. The unique polariton parametric scattering (PPS) laser is of interest for its potential in quantum technologies and nonlinear devices. However, direct resonant excitation of polaritons in strong-coupling microcavities is challenging. This study proposes an innovative two-photon absorption (TPA) pump mechanism to address this. We observe TPA-driven PPS lasing in a strongly coupled microcavity at room temperature. High K-value exciton injections promote coherent stimulated emission of polariton scattering through intermode channels. Angle-resolved spectra confirm a TPA process, showing evolution from pump-state to signal-state. Hanbury Brown-Twiss measurement of second-order correlation g2(τ) of signal state indicates a phase transition from a classical thermal state to a quantum coherent state. Theoretical modeling provides insights into the physical mechanisms of PPS. Our work advances nonlinear phenomena exploration in strongly coupled light-matter systems, contributing to quantum polaritonics and nonlinear optics.

7.
Diabetologia ; 67(5): 822-836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388753

RESUMO

AIMS/HYPOTHESIS: A precision medicine approach in type 2 diabetes could enhance targeting specific glucose-lowering therapies to individual patients most likely to benefit. We aimed to use the recently developed Bayesian causal forest (BCF) method to develop and validate an individualised treatment selection algorithm for two major type 2 diabetes drug classes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA). METHODS: We designed a predictive algorithm using BCF to estimate individual-level conditional average treatment effects for 12-month glycaemic outcome (HbA1c) between SGLT2i and GLP1-RA, based on routine clinical features of 46,394 people with type 2 diabetes in primary care in England (Clinical Practice Research Datalink; 27,319 for model development, 19,075 for hold-out validation), with additional external validation in 2252 people with type 2 diabetes from Scotland (SCI-Diabetes [Tayside & Fife]). Differences in glycaemic outcome with GLP1-RA by sex seen in clinical data were replicated in clinical trial data (HARMONY programme: liraglutide [n=389] and albiglutide [n=1682]). As secondary outcomes, we evaluated the impacts of targeting therapy based on glycaemic response on weight change, tolerability and longer-term risk of new-onset microvascular complications, macrovascular complications and adverse kidney events. RESULTS: Model development identified marked heterogeneity in glycaemic response, with 4787 (17.5%) of the development cohort having a predicted HbA1c benefit >3 mmol/mol (>0.3%) with SGLT2i over GLP1-RA and 5551 (20.3%) having a predicted HbA1c benefit >3 mmol/mol with GLP1-RA over SGLT2i. Calibration was good in hold-back validation, and external validation in an independent Scottish dataset identified clear differences in glycaemic outcomes between those predicted to benefit from each therapy. Sex, with women markedly more responsive to GLP1-RA, was identified as a major treatment effect modifier in both the UK observational datasets and in clinical trial data: HARMONY-7 liraglutide (GLP1-RA): 4.4 mmol/mol (95% credible interval [95% CrI] 2.2, 6.3) (0.4% [95% CrI 0.2, 0.6]) greater response in women than men. Targeting the two therapies based on predicted glycaemic response was also associated with improvements in short-term tolerability and long-term risk of new-onset microvascular complications. CONCLUSIONS/INTERPRETATION: Precision medicine approaches can facilitate effective individualised treatment choice between SGLT2i and GLP1-RA therapies, and the use of routinely collected clinical features for treatment selection could support low-cost deployment in many countries.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Humanos , Feminino , Diabetes Mellitus Tipo 2/complicações , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Hipoglicemiantes/efeitos adversos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Liraglutida/uso terapêutico , Teorema de Bayes , Glucose , Fenótipo , Receptor do Peptídeo Semelhante ao Glucagon 1
8.
Hippocampus ; 34(1): 2-6, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37904663

RESUMO

Episodic counterfactual thinking (ECT) consists of imagining alternative outcomes to past personal events. Previous research has shown that ECT shares common neural substrates with episodic future thinking (EFT): our ability to imagine possible future events. Both ECT and EFT have been shown to critically depend on the hippocampus, and past research has explored hippocampal engagement as a function of the perceived plausibility of an imagined future event. However, the extent to which the hippocampus is modulated by perceived plausibility during ECT is unknown. In this study, we combine two functional magnetic resonance imaging datasets to investigate whether perceived plausibility modulates hippocampal activity during ECT. Our results indicate that plausibility parametrically modulates hippocampal activity during ECT, and that such modulation is confined to the left anterior portion of the hippocampus. Moreover, our results indicate that this modulation is positive, such that increased activity in the left anterior hippocampus is associated with higher ratings of ECT plausibility. We suggest that neither effort nor difficulty alone can account for these results, and instead suggest possible alternatives to explain the role of the hippocampus during the construction of plausible and implausible ECT.


Assuntos
Memória Episódica , Pensamento , Imaginação , Hipocampo/diagnóstico por imagem , Lobo Temporal , Imageamento por Ressonância Magnética/métodos
9.
Am J Epidemiol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38973750

RESUMO

The 2018 World Cancer Research Fund/American Institute for Cancer Research recommends sustained strategies of physical activity and diet for cancer prevention, but evidence for long-term prostate cancer risk is limited. Using observational data from 27,859 men in the Health Professionals Follow-up Study, we emulated a target trial of recommendation-based physical activity and dietary strategies and 26-year risks of prostate cancer, adjusting for risk factors via the parametric g-formula. Compared with no intervention, limiting sugar-sweetened beverages showed a 0.4% (0.0-0.9%) lower risk of lethal (metastatic or fatal) disease and 0.5% (0.1-0.9%) lower risk of fatal disease. Restricting consumption of processed foods showed a 0.4-0.9% higher risk of all prostate cancer outcomes. Estimated risk differences for clinically significant disease were close to null for strategies involving fruits and non-starchy vegetables, whole grains and legumes, red meat, and processed meat, as well as under a joint strategy of physical activity and diet. Compared with a "low adherence" strategy, maintaining recommended physical activity levels showed a 0.4% (0.1-0.8%) lower risk of lethal and 0.5% (0.2-0.8%) lower risk of fatal disease. Adhering to specific components of current physical activity and dietary recommendations may help to prevent lethal and fatal prostate cancer over 26 years.

10.
Hum Brain Mapp ; 45(10): e26782, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38989630

RESUMO

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.


Assuntos
Doença de Alzheimer , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/normas , Reprodutibilidade dos Testes , Doença de Alzheimer/fisiopatologia , Masculino , Feminino , Idoso , Modelos Neurológicos , Teorema de Bayes
11.
Biostatistics ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37805939

RESUMO

Joint modeling of longitudinal data such as quality of life data and survival data is important for palliative care researchers to draw efficient inferences because it can account for the associations between those two types of data. Modeling quality of life on a retrospective from death time scale is useful for investigators to interpret the analysis results of palliative care studies which have relatively short life expectancies. However, informative censoring remains a complex challenge for modeling quality of life on the retrospective time scale although it has been addressed for joint models on the prospective time scale. To fill this gap, we develop a novel joint modeling approach that can address the challenge by allowing informative censoring events to be dependent on patients' quality of life and survival through a random effect. There are two sub-models in our approach: a linear mixed effect model for the longitudinal quality of life and a competing-risk model for the death time and dropout time that share the same random effect as the longitudinal model. Our approach can provide unbiased estimates for parameters of interest by appropriately modeling the informative censoring time. Model performance is assessed with a simulation study and compared with existing approaches. A real-world study is presented to illustrate the application of the new approach.

12.
Magn Reson Med ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014982

RESUMO

PURPOSE: To develop a self-supervised learning method to retrospectively estimate T1 and T2 values from clinical weighted MRI. METHODS: A self-supervised learning approach was constructed to estimate T1, T2, and proton density maps from conventional T1- and T2-weighted images. MR physics models were employed to regenerate the weighted images from the network outputs, and the network was optimized based on loss calculated between the synthesized and input weighted images, alongside additional constraints based on prior information. The method was evaluated on healthy volunteer data, with conventional mapping as references. The reproducibility was examined on two 3.0T scanners. Performance in tumor characterization was inspected by applying the method to a public glioblastoma dataset. RESULTS: For T1 and T2 estimation from three weighted images (T1 MPRAGE, T1 gradient echo sequences, and T2 turbo spin echo), the deep learning method achieved global voxel-wise error ≤9% in brain parenchyma and regional error ≤12.2% in six types of brain tissues. The regional measurements obtained from two scanners showed mean differences ≤2.4% and correlation coefficients >0.98, demonstrating excellent reproducibility. In the 50 glioblastoma patients, the retrospective quantification results were in line with literature reports from prospective methods, and the T2 values were found to be higher in tumor regions, with sensitivity of 0.90 and specificity of 0.92 in a voxel-wise classification task between normal and abnormal regions. CONCLUSION: The self-supervised learning method is promising for retrospective T1 and T2 quantification from clinical MR images, with the potential to improve the availability of quantitative MRI and facilitate brain tumor characterization.

13.
J Urol ; 212(2): 299-309, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38758680

RESUMO

PURPOSE: The Prostate Imaging Reporting and Data System (PI-RADS) score is standard of care for clinically significant prostate cancer (csPCa) diagnosis. The PRIMARY score (prostate-specific membrane antigen [PSMA]-positron emission tomography [PET]/CT) also has high diagnostic accuracy for csPCa. This study aimed to develop an easily calculated combined (P) score for csPCa detection (International Society of Urological Pathology [ISUP] ≥2) incorporating separately read PI-RADS and PRIMARY scores, with external validation. MATERIALS AND METHODS: Two datasets of men with suspected PCa, no prior biopsy, recent MRI and 68Ga-PSMA-11-PET/CT, and subsequent transperineal biopsy were evaluated. These included the development sample (n = 291, 56% csPCa) a prospective trial and the validation sample (n = 227, 67% csPCa) a multicenter retrospective database. Primary outcome was detection of csPCa (ISUP ≥2), with ISUP ≥ 3 cancer detection a secondary outcome. Score performance was evaluated by area under the curve, sensitivity, specificity, and decision curve analysis. RESULTS: The 5-point combined (P) score was developed in a prospective dataset. In the validation dataset, csPCa was identified in 0%, 20%, 52%, 96%, and 100% for P score 1 to 5. The area under the curve was 0.93 (95% CI: 0.90-0.96), higher than PI-RADS 0.89 (95% CI: 0.85-0.93, P = .039) and PRIMARY score alone 0.84 (95% CI: 0.79-0.89, P < .001). Splitting scores at 1/2 (negative) vs 3/4/5 (positive), P score sensitivity was 94% (95% CI: 89-97) compared to PI-RADS 89% (95% CI: 83-93) and PRIMARY score 86% (95% CI: 79-91). For ISUP ≥ 3, P score sensitivity was 99% (95% CI: 95-100) vs 94% (95% CI: 88-98) and 92% (95% CI: 85-97) for PI-RADS and PRIMARY scores respectively. A maximum standardized uptake value > 12 (P score 5) was ISUP ≥ 2 in all cases with 93% ISUP ≥ 3. CONCLUSIONS: The P score is easily calculated and improves accuracy for csPCa over both PI-RADS and PRIMARY scores. It should be considered when PSMA-PET is undertaken for diagnosis.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos Prospectivos , Sistemas de Dados , Próstata/diagnóstico por imagem , Próstata/patologia
14.
NMR Biomed ; 37(4): e5075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38043545

RESUMO

Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.


Assuntos
Aprendizado Profundo , Compostos Organofosforados , Triazóis , Animais , Ratos , Rim/diagnóstico por imagem , Algoritmos , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador
15.
NMR Biomed ; 37(3): e5063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37871617

RESUMO

Recently, intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) has also been demonstrated as an imaging tool for applications in neurological and neurovascular diseases. However, the use of single-shot diffusion-weighted echo-planar imaging for IVIM DWI acquisition leads to suboptimal data quality: for instance, geometric distortion and deteriorated image quality at high spatial resolution. Although the recently commercialized multi-shot acquisition methods, such as multiplexed sensitivity encoding (MUSE), can attain high-resolution and high-quality DWI with signal-to-noise ratio (SNR) performance superior to that of the conventional parallel imaging method, the prolonged scan time associated with multi-shot acquisition is impractical for routine IVIM DWI. This study proposes an acquisition and reconstruction framework based on parametric-POCSMUSE to accelerate the four-shot IVIM DWI with 70% reduction of total scan time (13 min 8 s versus 4 min 8 s). First, the four-shot IVIM DWI scan with 17 b values was accelerated by acquiring only one segment per b value except for b values of 0 and 600 s/mm2 . Second, an IVIM-estimation scheme was integrated into the parametric-POCSMUSE to enable joint reconstruction of multi-b images from under-sampled four-shot IVIM DWI data. In vivo experiments on both healthy subjects and patients show that the proposed framework successfully produced multi-b DW images with significantly higher SNRs and lower reconstruction errors than did the conventional acceleration method based on parallel imaging. In addition, the IVIM quantitative maps estimated from the data produced by the proposed framework showed quality comparable to that of fully sampled MUSE-reconstructed images, suggesting that the proposed framework can enable highly accelerated multi-shot IVIM DWI without sacrificing data quality. In summary, the proposed framework can make multi-shot IVIM DWI feasible in a routine MRI examination, with reasonable scan time and improved geometric fidelity.


Assuntos
Alprostadil , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Cabeça , Imageamento por Ressonância Magnética , Imagem Ecoplanar/métodos , Movimento (Física)
16.
Respir Res ; 25(1): 106, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419014

RESUMO

BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Estudos Transversais , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Volume Expiratório Forçado/fisiologia
17.
Eur J Nucl Med Mol Imaging ; 51(2): 568-580, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792025

RESUMO

PURPOSE: Standardized uptake value (SUV) has been prevalently used to measure [68 Ga]Ga-PSMA-11 activity in prostate cancer, but it is susceptible to multiple factors. Parametric imaging allows for absolute quantification of tracer uptake and provides a better diagnostic accuracy that is crucial for lesion detection. However, the clinical significance of total-body parametric imaging of [68 Ga]Ga-PSMA-11 remains to be fully assessed. Therefore, the aim of our study is to delve into the diagnostic implications of total-body parametric imaging of [68 Ga]Ga-PSMA-11 PET/CT for patients with prostate cancer. METHODS: Twenty prostate cancer patients were included and underwent a dynamic total-body [68 Ga]Ga-PSMA-11 PET/CT scan. An irreversible two-tissue compartment model (2T3k) was fitted for each tissue time-to-activity curve, and the net influx rate (Ki) was obtained. The image quality and semi-quantitative analysis of lesion-to-background ratio (LBR), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were compared between parametric images and SUV images. RESULTS: Kinetic modeling using 2T3k demonstrated favorable model fitting in both normal organs and lesions. All of the lesions detected on SUV images (55-60 min) could be detected on Ki images. The correlation between Ki, SUVmean, and SUVmax in both normal organs and pathological lesions was found to be positive and statistically significant. Conversely, a moderate positive correlations were found between Ki and K1 (R = 0.69, P < 0.001; R = 0.61, P < 0.001) and Ki and k3 (R = 0.69, P < 0.001; R = 0.62, P < 0.001), in normal organs and pathological lesions, respectively. Visual assessment in Ki images showed less image noise and higher lesions conspicuity compared to SUV images. Ki image-derived LBR, SNR, and CBR of pathological lesions including primary tumors (PTs), lymph node metastases (LNMs) and bone metastases (BMs), exhibited remarkably higher folds (1.4-3.6 folds) compared to those derived from SUV of corresponding lesions. CONCLUSIONS: Total-body parametric imaging of [68 Ga]Ga-PSMA-11 enhanced lesion contrast and improved lesion detectability compared to SUV images. This may potentially serve as an imaging biomarker and theranostic tool for precise diagnosis and treatment evaluation in prostate cancer patients.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Ácido Edético
18.
Eur J Nucl Med Mol Imaging ; 51(8): 2271-2282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38393375

RESUMO

PURPOSE: Dynamic total-body imaging enables new perspectives to investigate the potential relationship between the central and peripheral regions. Employing uEXPLORER dynamic [11C]CFT PET/CT imaging with voxel-wise simplified reference tissue model (SRTM) kinetic modeling and semi-quantitative measures, we explored how the correlation pattern between nigrostriatal and digestive regions differed between the healthy participants as controls (HC) and patients with Parkinson's disease (PD). METHODS: Eleven participants (six HCs and five PDs) underwent 75-min dynamic [11C]CFT scans on a total-body PET/CT scanner (uEXPLORER, United Imaging Healthcare) were retrospectively enrolled. Time activity curves for four nigrostriatal nuclei (caudate, putamen, pallidum, and substantia nigra) and three digestive organs (pancreas, stomach, and duodenum) were obtained. Total-body parametric images of relative transporter rate constant (R1) and distribution volume ratio (DVR) were generated using the SRTM with occipital lobe as the reference tissue and a linear regression with spatial-constraint algorithm. Standardized uptake value ratio (SUVR) at early (1-3 min, SUVREP) and late (60-75 min, SUVRLP) phases were calculated as the semi-quantitative substitutes for R1 and DVR, respectively. RESULTS: Significant differences in estimates between the HC and PD groups were identified in DVR and SUVRLP of putamen (DVR: 4.82 ± 1.58 vs. 2.58 ± 0.53; SUVRLP: 4.65 ± 1.36 vs. 2.84 ± 0.67; for HC and PD, respectively, both p < 0.05) and SUVREP of stomach (1.12 ± 0.27 vs. 2.27 ± 0.65 for HC and PD, respectively; p < 0.01). In the HC group, negative correlations were observed between stomach and substantia nigra in both the R1 and SUVREP values (r=-0.83, p < 0.05 for R1; r=-0.94, p < 0.01 for SUVREP). Positive correlations were identified between pancreas and putamen in both DVR and SUVRLP values (r = 0.94, p < 0.01 for DVR; r = 1.00, p < 0.001 for SUVRLP). By contrast, in the PD group, no correlations were found between the aforementioned target nigrostriatal and digestive areas. CONCLUSIONS: The parametric images of R1 and DVR generated from the SRTM model, along with SUVREP and SUVRLP, were proposed to quantify dynamic total-body [11C]CFT PET/CT in HC and PD groups. The distinction in correlation patterns of nigrostriatal and digestive regions between HC and PD groups identified by R1 and DVR, or SUVRs, may provide new insights into the disease mechanism.


Assuntos
Doença de Parkinson , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/farmacocinética , Imagem Corporal Total/métodos , Estudos de Casos e Controles , Radioisótopos de Carbono
19.
Artigo em Inglês | MEDLINE | ID: mdl-38763962

RESUMO

BACKGROUND: The long axial field of view, combined with the high sensitivity of the Biograph Vision Quadra PET/CT scanner enables the precise deviation of an image derived input function (IDIF) required for parametric imaging. Traditionally, this requires an hour-long dynamic PET scan for [18F]-FDG, which can be significantly reduced by using a population-based input function (PBIF). In this study, we expand these examinations and include the scanner's ultra-high sensitivity (UHS) mode in comparison to the high sensitivity (HS) mode and evaluate the potential for further shortening of the scan time. METHODS: Patlak Ki and DV estimates were determined by the indirect and direct Patlak methods using dynamic [18F]-FDG data of 6 oncological patients with 26 lesions (0-65 min p.i.). Both sensitivity modes for different number/duration of PET data frames were compared, together with the potential of using abbreviated scan durations of 20, 15 and 10 min by using a PBIF. The differences in parametric images and tumour-to-background ratio (TBR) due to the shorter scans using the PBIF method and between the sensitivity modes were assessed. RESULTS: A difference of 3.4 ± 7.0% (Ki) and 1.2 ± 2.6% (DV) was found between both sensitivity modes using indirect Patlak and the full IDIF (0-65 min). For the abbreviated protocols and indirect Patlak, the UHS mode resulted in a lower bias and higher precision, e.g., 45-65 min p.i. 3.8 ± 4.4% (UHS) and 6.4 ± 8.9% (HS), allowing shorter scan protocols, e.g. 50-65 min p.i. 4.4 ± 11.2% (UHS) instead of 7.3 ± 20.0% (HS). The variation of Ki and DV estimates for both Patlak methods was comparable, e.g., UHS mode 3.8 ± 4.4% and 2.7 ± 3.4% (Ki) and 14.4 ± 2.7% and 18.1 ± 7.5% (DV) for indirect and direct Patlak, respectively. Only a minor impact of the number of Patlak frames was observed for both sensitivity modes and Patlak methods. The TBR obtained with direct Patlak and PBIF was not affected by the sensitivity mode, was higher than that derived from the SUV image (6.2 ± 3.1) and degraded from 20.2 ± 12.0 (20 min) to 10.6 ± 5.4 (15 min). Ki and DV estimate images showed good agreement (UHS mode, RC: 6.9 ± 2.3% (Ki), 0.1 ± 3.1% (DV), peak signal-to-noise ratio (PSNR): 64.5 ± 3.3 dB (Ki), 61.2 ± 10.6 dB (DV)) even for abbreviated scan protocols of 50-65 min p.i. CONCLUSIONS: Both sensitivity modes provide comparable results for the full 65 min dynamic scans and abbreviated scans using the direct Patlak reconstruction method, with good Ki and DV estimates for 15 min short scans. For the indirect Patlak approach the UHS mode improved the Ki estimates for the abbreviated scans.

20.
Psychol Med ; 54(2): 350-358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37310178

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) is a chronic mental illness characterized by abnormal functional connectivity among distributed brain regions. Previous studies have primarily focused on undirected functional connectivity and rarely reported from network perspective. METHODS: To better understand between or within-network connectivities of OCD, effective connectivity (EC) of a large-scale network is assessed by spectral dynamic causal modeling with eight key regions of interests from default mode (DMN), salience (SN), frontoparietal (FPN) and cerebellum networks, based on large sample size including 100 OCD patients and 120 healthy controls (HCs). Parametric empirical Bayes (PEB) framework was used to identify the difference between the two groups. We further analyzed the relationship between connections and Yale-Brown Obsessive Compulsive Scale (Y-BOCS). RESULTS: OCD and HCs shared some similarities of inter- and intra-network patterns in the resting state. Relative to HCs, patients showed increased ECs from left anterior insula (LAI) to medial prefrontal cortex, right anterior insula (RAI) to left dorsolateral prefrontal cortex (L-DLPFC), right dorsolateral prefrontal cortex (R-DLPFC) to cerebellum anterior lobe (CA), CA to posterior cingulate cortex (PCC) and to anterior cingulate cortex (ACC). Moreover, weaker from LAI to L-DLPFC, RAI to ACC, and the self-connection of R-DLPFC. Connections from ACC to CA and from L-DLPFC to PCC were positively correlated with compulsion and obsession scores (r = 0.209, p = 0.037; r = 0.199, p = 0.047, uncorrected). CONCLUSIONS: Our study revealed dysregulation among DMN, SN, FPN, and cerebellum in OCD, emphasizing the role of these four networks in achieving top-down control for goal-directed behavior. There existed a top-down disruption among these networks, constituting the pathophysiological and clinical basis.


Assuntos
Mapeamento Encefálico , Transtorno Obsessivo-Compulsivo , Humanos , Teorema de Bayes , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa