Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.466
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2218334120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036995

RESUMO

Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B (cdtB) and apoptosis-inducing protein of 56 kDa (aip56), were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular (cdtB) or fused copies (cdtB::aip56) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo's serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals.


Assuntos
Toxinas Bacterianas , Vespas , Animais , Domesticação , Toxinas Bacterianas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Transferência Genética Horizontal , Vespas/metabolismo , Imunidade Inata/genética
2.
Proc Natl Acad Sci U S A ; 120(46): e2308273120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931098

RESUMO

Elevational gradients are characterized by strong environmental changes within small geographical distances, providing important insights on the response of biological communities to climate change. Mountain biodiversity is particularly sensitive to climate change, given the limited capacity to colonize new areas and the competition from upshifting lowland species. Knowledge on the impact of climate change on mountain insect communities is patchy, but elevation is known to influence parasitic interactions which control insect communities and functions within ecosystems. We analyzed a European dataset of bristle flies, a parasitoid group which regulates insect herbivory in both managed and natural ecosystems. Our dataset spans six decades and multiple elevational bands, and we found marked elevational homogenization in the host specialization of bristle fly species through time. The proportion of specialized parasitoids has increased by ca. 70% at low elevations, from 17 to 29%, and has decreased by ca. 20% at high elevations, from 48 to 37%. As a result, the strong elevational gradient in bristle fly specialization observed in the 1960s has become much flatter over time. As climate warming is predicted to accelerate, the disappearance of specialized parasitoids from high elevations might become even faster. This parasitoid homogenization can reshape the ecological function of mountain insect communities, increasing the risk of herbivory outbreak at high elevations. Our results add to the mounting evidence that symbiotic species might be especially at risk from climate change: Monitoring the effects of these changes is urgently needed to define effective conservation strategies for mountain biodiversity.


Assuntos
Altitude , Ecossistema , Animais , Biodiversidade , Insetos , Geografia
3.
Mol Biol Evol ; 41(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39271164

RESUMO

Extremely aggressive behavior, as the special pattern, is rare in most species and characteristic as contestants severely injured or killed ending the combat. Current studies of extreme aggression are mainly from the perspectives of behavioral ecology and evolution, while lacked the aspects of molecular evolutionary biology. Here, a high-quality chromosome-level genome of the parasitoid Anastatus disparis was provided, in which the males exhibit extreme mate-competition aggression. The integrated multiomics analysis highlighted that neurotransmitter dopamine overexpression, energy metabolism (especially from lipid), and antibacterial activity are likely major aspects of evolutionary formation and adaptation for extreme aggression in A. disparis. Conclusively, our study provided new perspectives for molecular evolutionary studies of extreme aggression as well as a valuable genomic resource in Hymenoptera.


Assuntos
Agressão , Animais , Masculino , Genoma de Inseto , Evolução Molecular , Vespas/genética , Adaptação Fisiológica/genética , Evolução Biológica , Adaptação Biológica/genética , Cromossomos de Insetos/genética
4.
Proc Natl Acad Sci U S A ; 119(16): e2120048119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412888

RESUMO

Heritable symbionts display a wide variety of transmission strategies to travel from one insect generation to the next. Parasitoid wasps, one of the most diverse insect groups, maintain several heritable associations with viruses that are beneficial for wasp survival during their development as parasites of other insects. Most of these beneficial viral entities are strictly transmitted through the wasp germline as endogenous viral elements within wasp genomes. However, a beneficial poxvirus inherited by Diachasmimorpha longicaudata wasps, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), is not integrated into the wasp genome and therefore may employ different tactics to infect future wasp generations. Here, we demonstrated that transmission of DlEPV is primarily dependent on parasitoid wasps, since viral transmission within fruit fly hosts of the wasps was limited to injection of the virus directly into the larval fly body cavity. Additionally, we uncovered a previously undocumented form of posthatch transmission for a mutualistic virus that entails external acquisition and localization of the virus within the adult wasp venom gland. We showed that this route is extremely effective for vertical and horizontal transmission of the virus within D. longicaudata wasps. Furthermore, the beneficial phenotype provided by DlEPV during parasitism was also transmitted with perfect efficiency, indicating an effective mode of symbiont spread to the advantage of infected wasps. These results provide insight into the transmission of beneficial viruses among insects and indicate that viruses can share features with cellular microbes during their evolutionary transitions into symbionts.


Assuntos
Entomopoxvirinae , Interações entre Hospedeiro e Microrganismos , Simbiose , Tephritidae , Vespas , Animais , Evolução Biológica , Entomopoxvirinae/fisiologia , Tephritidae/virologia , Vespas/genética , Vespas/virologia
5.
BMC Biol ; 22(1): 89, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644510

RESUMO

BACKGROUND: Innate immune responses can be activated by pathogen-associated molecular patterns (PAMPs), danger signals released by damaged tissues, or the absence of self-molecules that inhibit immunity. As PAMPs are typically conserved across broad groups of pathogens but absent from the host, it is unclear whether they allow hosts to recognize parasites that are phylogenetically similar to themselves, such as parasitoid wasps infecting insects. RESULTS: Parasitoids must penetrate the cuticle of Drosophila larvae to inject their eggs. In line with previous results, we found that the danger signal of wounding triggers the differentiation of specialized immune cells called lamellocytes. However, using oil droplets to mimic infection by a parasitoid wasp egg, we found that this does not activate the melanization response. This aspect of the immune response also requires exposure to parasite molecules. The unidentified factor enhances the transcriptional response in hemocytes and induces a specific response in the fat body. CONCLUSIONS: We conclude that a combination of danger signals and the recognition of nonself molecules is required to activate Drosophila's immune response against parasitic insects.


Assuntos
Hemócitos , Interações Hospedeiro-Parasita , Imunidade Inata , Vespas , Animais , Vespas/fisiologia , Interações Hospedeiro-Parasita/imunologia , Hemócitos/imunologia , Drosophila melanogaster/parasitologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/fisiologia , Larva/imunologia , Larva/parasitologia , Drosophila/parasitologia , Drosophila/imunologia
6.
BMC Biol ; 22(1): 174, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148049

RESUMO

BACKGROUND: Venoms have repeatedly evolved over 100 occasions throughout the animal tree of life, making them excellent systems for exploring convergent evolutionary novelty. Growing evidence supports that venom evolution is predominantly driven by prey or host-related selection pressures, and the expression patterns of venom glands reflect adaptive evolution. However, it remains elusive whether the evolution of expression patterns in venom glands is likewise a convergent evolution driven by their prey/host species. RESULTS: We utilized parasitoid wasps that had independently adapted to Drosophila hosts as models to investigate the convergent evolution of venom gland transcriptomes in 19 hymenopteran species spanning ~ 200 million years of evolution. Comparative transcriptome analysis reveals that the global expression patterns among the venom glands of Drosophila parasitoid wasps do not achieve higher similarity compared to non-Drosophila parasitoid wasps. Further evolutionary analyses of expression patterns at the single gene, orthogroup, and Gene Ontology (GO) term levels indicate that some orthogroups/GO terms show correlation with the Drosophila parasitoid wasps. However, these groups rarely include genes highly expressed in venom glands or putative venom genes in the Drosophila parasitoid wasps. CONCLUSIONS: Our study suggests that convergent evolution may not play a predominant force shaping gene expression levels in the venom gland of the Drosophila parasitoid wasps, offering novel insights into the co-evolution between venom and prey/host.


Assuntos
Evolução Molecular , Transcriptoma , Venenos de Vespas , Vespas , Animais , Vespas/genética , Vespas/fisiologia , Venenos de Vespas/genética , Drosophila/genética , Drosophila/parasitologia , Interações Hospedeiro-Parasita/genética , Evolução Biológica
7.
BMC Biol ; 22(1): 61, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475722

RESUMO

BACKGROUND: Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS: Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS: Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.


Assuntos
Aldeídos , Mariposas , Receptores Odorantes , Vespas , Animais , Ecossistema , Larva
8.
BMC Genomics ; 25(1): 940, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375606

RESUMO

BACKGROUND: Two strains of the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae) present a differential parasitism success on the host, Sesamia nonagrioides (Lepidoptera: Noctuidae). One is virulent on both permissive and resistant host populations, and the other only on the permissive host. This interaction provides a very interesting frame for studying virulence factors. Here, we used a combination of comparative transcriptomic and proteomic analyses to unravel the molecular basis underlying virulence differences between the strains. RESULTS: First, we report that virulence genes are mostly expressed during the pupal stage 24 h before adult emergence of the parasitoid. Especially, 55 proviral genes are up-regulated at this stage, while their expression is only expected in the host. Parasitoid gene expression in the host increases from 24 to 96 h post-parasitism, revealing the expression of 54 proviral genes at early parasitism stage and the active participation of teratocytes to the parasitism success at the late stage. Secondly, comparison between strains reveals differences in venom composition, with 12 proteins showing differential abundance. Proviral expression in the host displays a strong temporal variability, along with differential patterns between strains. Notably, a subset of proviral genes including protein-tyrosine phosphatases is specifically over-expressed in the resistant host parasitized by the less virulent strain, 24 h after parasitism. This result particularly hints at host modulation of proviral expression. Combining proteomic and transcriptomic data at various stages, we identified 8 candidate genes to support the difference in reproductive success of the two strains, one proviral and 7 venom genes, one of them being also produced within the host by the teratocytes. CONCLUSIONS: This study sheds light on the temporal expression of virulence factors of Cotesia typhae, both in the host and in the parasitoid. It also identifies potential molecular candidates driving differences in parasitism success between two strains. Together, those findings provide a path for further exploration of virulence mechanisms in parasitoid wasps, and offer insights into host-parasitoid coevolution.


Assuntos
Proteômica , Transcriptoma , Vespas , Animais , Vespas/patogenicidade , Vespas/genética , Virulência/genética , Interações Hospedeiro-Parasita/genética , Perfilação da Expressão Gênica , Proteoma , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Venenos de Vespas/genética , Venenos de Vespas/metabolismo
9.
BMC Genomics ; 25(1): 147, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321385

RESUMO

BACKGROUND: Diachasmimorpha longicaudata is a hymenopteran fruit fly endoparasitoid. Females of this species find their hosts for oviposition by using complex sensorial mechanisms in response to physical and chemical stimuli associated with the host and host habitat. Ecological and behavioral aspects related to host-seeking behavior for oviposition have been extensively studied in D. longicaudata, including the identification of volatile organic compounds acting as attractants to females. In this sense, molecular mechanisms of chemoreception have been explored in this species, including a preliminary characterization of odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and odorant receptors (ORs), among other proteins. Functional assays on OBP and CSP have been conducted as a first approach to identify molecular mechanisms associated with the female host-seeking behavior for oviposition. The aims of the present study were to identify the D. longicaudata sensory gene repertoire expressed in the antenna of sexually mature and mated individuals of both sexes, and subsequently, characterize transcripts differentially expressed in the antennae of females to identify candidate genes associated with the female host-seeking behavior for oviposition. RESULTS: A total of 33,745 predicted protein-coding sequences were obtained from a de novo antennal transcriptome assembly. Ten sensory-related gene families were annotated as follows: 222 ORs, 44 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 9 CSPs, 13 OBPs, 2 ammonium transporters (AMTs), 8 pickpocket (PPKs) receptors, 16 transient receptor potential (TRP) channels, 12 CD36/SNMPs and 3 Niemann-Pick type C2 like proteins (NPC2-like). The differential expression analysis revealed 237 and 151 transcripts up- and downregulated, respectively, between the female and male antennae. Ninety-seven differentially expressed transcripts corresponded to sensory-related genes including 88 transcripts being upregulated (87 ORs and one TRP) and nine downregulated (six ORs, two CSPs and one OBP) in females compared to males. CONCLUSIONS: The sensory gene repertoire of D. longicaudata was similar to that of other taxonomically related parasitoid wasps. We identified a high number of ORs upregulated in the female antenna. These results may indicate that this gene family has a central role in the chemoreception of sexually mature females during the search for hosts and host habitats for reproductive purposes.


Assuntos
Comportamento de Busca por Hospedeiro , Receptores Odorantes , Vespas , Humanos , Animais , Masculino , Feminino , Vespas/genética , Perfilação da Expressão Gênica , Transcriptoma , Receptores de Superfície Celular/genética , Receptores Odorantes/genética , Proteínas de Insetos/genética , Antenas de Artrópodes/metabolismo , Filogenia
10.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061001

RESUMO

Parasitoids introduce various virulence factors when parasitism occurs, and some taxa generate teratocytes to manipulate the host immune system and metabolic homeostasis for the survival and development of their progeny. Host-parasitoid interactions are extremely diverse and complex, yet the evolutionary dynamics are still poorly understood. A category of serpin genes, named CvT-serpins, was discovered to be specifically expressed and secreted by the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella. Genomic and phylogenetic analysis indicated that the C. vestalis serpin genes are duplicated and most of them are clustered into 1 monophyletic clade. Intense positive selection was detected at the residues around the P1-P1' cleavage sites of the Cv-serpin reactive center loop domain. Functional analyses revealed that, in addition to the conserved function of melanization inhibition (CvT-serpins 1, 16, 18, and 21), CvT-serpins exhibited novel functions, i.e. bacteriostasis (CvT-serpins 3 and 5) and nutrient metabolism regulation (CvT-serpins 8 and 10). When the host-parasitoid system is challenged with foreign bacteria, CvT-serpins act as an immune regulator to reprogram the host immune system through sustained inhibition of host melanization while simultaneously functioning as immune effectors to compensate for this suppression. In addition, we provided evidence that CvT-serpin8 and 10 participate in the regulation of host trehalose and lipid levels by affecting genes involved in these metabolic pathways. These findings illustrate an exquisite tactic by which parasitoids win out in the parasite-host evolutionary arms race by manipulating host immune and nutrition homeostasis via adaptive gene evolution and neofunctionalization.


Assuntos
Mariposas , Parasitos , Serpinas , Vespas , Animais , Serpinas/genética , Filogenia , Mariposas/genética , Homeostase , Larva/metabolismo , Vespas/genética
11.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36881879

RESUMO

Increasing numbers of horizontal transfer (HT) of genes and transposable elements are reported in insects. Yet the mechanisms underlying these transfers remain unknown. Here we first quantify and characterize the patterns of chromosomal integration of the polydnavirus (PDV) encoded by the Campopleginae Hyposoter didymator parasitoid wasp (HdIV) in somatic cells of parasitized fall armyworm (Spodoptera frugiperda). PDVs are domesticated viruses injected by wasps together with their eggs into their hosts in order to facilitate the development of wasp larvae. We found that six HdIV DNA circles integrate into the genome of host somatic cells. Each host haploid genome suffers between 23 and 40 integration events (IEs) on average 72 h post-parasitism. Almost all IEs are mediated by DNA double-strand breaks occurring in the host integration motif (HIM) of HdIV circles. We show that despite their independent evolutionary origins, PDV from both Campopleginae and Braconidae wasps use remarkably similar mechanisms for chromosomal integration. Next, our similarity search performed on 775 genomes reveals that PDVs of both Campopleginae and Braconidae wasps have recurrently colonized the germline of dozens of lepidopteran species through the same mechanisms they use to integrate into somatic host chromosomes during parasitism. We found evidence of HIM-mediated HT of PDV DNA circles in no less than 124 species belonging to 15 lepidopteran families. Thus, this mechanism underlies a major route of HT of genetic material from wasps to lepidopterans with likely important consequences on lepidopterans.


Assuntos
Polydnaviridae , Vespas , Animais , Polydnaviridae/genética , Vespas/genética , Larva/genética , Cromossomos
12.
Proc Biol Sci ; 291(2018): 20232518, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444335

RESUMO

Mate recognition is paramount for sexually reproducing animals, and many insects rely on cuticular hydrocarbons (CHCs) for close-range sexual communication. To ensure reliable mate recognition, intraspecific sex pheromone variability should be low. However, CHCs can be influenced by several factors, with the resulting variability potentially impacting sexual communication. While intraspecific CHC variability is a common phenomenon, the consequences thereof for mate recognition remain largely unknown. We investigated the effect of CHC variability on male responses in a parasitoid wasp showing a clear-cut within-population CHC polymorphism (three distinct female chemotypes, one thereof similar to male profiles). Males clearly discriminated between female and male CHCs, but not between female chemotypes in no-choice assays. When given a choice, a preference hierarchy emerged. Interestingly, the most attractive chemotype was the one most similar to male profiles. Mixtures of female CHCs were as attractive as chemotype-pure ones, while a female-male mixture negatively impacted male responses, indicating assessment of the entire, complex CHC profile composition. Our study reveals that the evaluation of CHC profiles can be strict towards 'undesirable' features, but simultaneously tolerant enough to cover a range of variants. This reconciles reliable mate recognition with naturally occurring variability.


Assuntos
Reprodução , Atrativos Sexuais , Feminino , Masculino , Animais , Comunicação , Polimorfismo Genético , Reconhecimento Psicológico
13.
J Virol ; 97(11): e0081723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877717

RESUMO

IMPORTANCE: Understanding how bracoviruses (BVs) function in wasps is of broad interest in the study of virus evolution. This study characterizes most of the Microplitis demolitor bracovirus (MdBV) genes whose products are nucleocapsid components. Results indicate several genes unknown outside of nudiviruses and BVs are essential for normal capsid assembly. Results also indicate most MdBV tyrosine recombinase family members and the DNA binding protein p6.9-1 are required for DNA processing and packaging into nucleocapsids.


Assuntos
Proteínas do Capsídeo , Polydnaviridae , Vírion , Animais , Capsídeo/química , Capsídeo/metabolismo , Polydnaviridae/genética , Polydnaviridae/metabolismo , Vírion/química , Vírion/genética , Vírion/metabolismo , Vespas/virologia , Proteínas do Capsídeo/genética , Proteínas de Ligação a DNA/metabolismo , Empacotamento do Genoma Viral , DNA Viral/metabolismo , Recombinases/metabolismo
14.
Insect Mol Biol ; 33(3): 206-217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38180144

RESUMO

Parasitoids are important components of the natural enemy guild in the biological control of insect pests. They depend on host resources to complete the development of a specific stage or whole life cycle and thus have evolved towards optimal host exploitation strategies. In the present study, we report a specific survival strategy of a fly parasitoid Exorista sorbillans (Diptera: Tachinidae), which is a potential biological control agent for agricultural pests and a pest in sericulture. We found that the expression levels of nitric oxide synthase (NOS) and nitric oxide (NO) production in host Bombyx mori (Lepidoptera: Bombycidae) were increased after E. sorbillans infection. Reducing NOS expression and NO production with an NOS inhibitor (NG-nitro-L-arginine methyl ester hydrochloride) in infected B. mori significantly impeded the growth of E. sorbillans larvae. Moreover, the biosynthesis of 20-hydroxyecdysone (20E) in infected hosts was elevated with increasing NO production, and inhibiting NOS expression lowered 20E biosynthesis. More importantly, induced NO synthesis was required to eliminate intracellular bacterial pathogens that presumably competed for shared host resources. Inhibiting NOS expression down-regulated the transcription of antimicrobial peptide genes and increased the number of bacteria in parasitized hosts. Collectively, this study revealed a new perspective on the role of NO in host-parasitoid interactions and a novel mechanism for parasitoid regulation of host physiology to support its development.


Assuntos
Bombyx , Dípteros , Ecdisterona , Interações Hospedeiro-Parasita , Óxido Nítrico , Animais , Bombyx/genética , Bombyx/microbiologia , Bombyx/parasitologia , Dípteros/fisiologia , Ecdisterona/metabolismo , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/genética
15.
J Theor Biol ; 590: 111855, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-38789077

RESUMO

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid interactions in a spatial context would thus enhance our ability to understand, predict and prevent these outbreaks. We use a discrete time deterministic model of the host parasitoid system with populations migrating between 2 patches to elucidate features of spatial host outbreaks. We show that whenever populations persist indefinitely, host outbreaks in both patches can occur alternatively (out of phase) at low migration between patches whereas host outbreaks always occur simultaneously (in phase) in both patches at high migration between patches. We show that our results are robust across a large range of parameters across different modelling approaches used typically to model intraspecific competition among hosts and parasitism, in the host-parasitoid literature. We give an analytical expression for the period of oscillations when the migration is low i.e., when host outbreaks in both patches are out of phase, show it is in agreement with numerical results. We end our paper by showing that we get the same results whether we include the biologically rooted formulations from May et al. (1981) or a general cellular automata model with qualitative rules.


Assuntos
Migração Animal , Interações Hospedeiro-Parasita , Modelos Biológicos , Interações Hospedeiro-Parasita/fisiologia , Animais , Migração Animal/fisiologia , Insetos/parasitologia , Dinâmica Populacional , Ecossistema
16.
Oecologia ; 204(4): 915-930, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613574

RESUMO

Insect herbivores and their parasitoids play a crucial role in terrestrial trophic interactions in tropical forests. These interactions occur across the entire vertical gradient of the forest. This study compares how caterpillar communities, and their parasitism rates, vary across vertical strata and between caterpillar defensive strategies in a semi deciduous tropical forest in Nditam, Cameroon. Within a 0.1 ha plot, all trees with a diameter at breast height (DBH) ≥ 5 cm were felled and systematically searched for caterpillars. We divided the entire vertical gradient of the forest into eight, five-metre strata. All caterpillars were assigned to a stratum based on their collection height, reared, identified, and classified into one of three defensive traits: aposematic, cryptic and shelter-building. Caterpillar species richness and diversity showed a midstory peak, whereas density followed the opposite pattern, decreasing in the midstory and then increasing towards the highest strata. This trend was driven by some highly dense shelter-building caterpillars in the upper canopy. Specialisation indices indicated decreasing levels of caterpillar generality with increasing height, a midstory peak in vulnerability, and increasing connectance towards the upper canopy, although the latter was likely driven by decreasing network size. Both aposematic and shelter-building caterpillars had significantly higher parasitism rates than cryptic caterpillars. Our results highlight nuanced changes in caterpillar communities across forest strata and provide evidence that defences strategies are important indicators of parasitism rates in caterpillars and that both aposematic and shelter-building caterpillars could be considered a "safe haven" for parasitoids.


Assuntos
Florestas , Larva , Animais , Camarões , Herbivoria , Clima Tropical , Interações Hospedeiro-Parasita
17.
J Chem Ecol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167253

RESUMO

Egg parasitoids, particularly Trichogrammatidae, play a crucial role in global biocontrol efforts. Their behavior is influenced by chemicals emitted by their hosts, such as kairomones. Among them, Trichogramma pretiosum (Riley) (Hym.; Trichogrammatidae) shows promise as a biocontrol agent on destructive Fall Armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lep.; Noctuidae). Given the invasiveness and widespread impact of FAW, early-stage prevention in the field is imperative. This study aimed to assess the potential of host insects viz.,Corcyra cephalonica (Stainton) (Lep.; Pyralidae) and S. frugiperda kairomones in optimizing the performance of T. pretiosum while parasitizing S. frugiperda. The top two hexane extracts from each host insect were also sent to JNU, AIRF in New Delhi for detailed GC-MS analysis. A four-armed olfactometer was developed to track the movements of T. pretiosum and validated with olfactory cues. Laboratory bioassays revealed that extracts from C. cephalonica and S. frugiperda eggs and moths effectively enhanced the performance of T. pretiosum. Optimal concentrations were determined through Petri dish bioassays, with C1 (10%) concentration of C. cephalonica eggs extract showing the highest Parasitoid Activity Index (PAI), percent parasitization, and adult emergence. Meanwhile, C2 (1%) concentration of S. frugiperda female extract exhibited the highest parasitization percentage and adult emergence. Further assessments in a polyhouse setting demonstrated that treated egg cards positioned 1 m from the release point achieved the highest mean percentage parasitization. Chemical composition analysis via GC-MS revealed that distinctive hydrocarbon and alcohol profiles in the extracts, suggesting their potential for manipulating parasitoid activity in biocontrol efforts. In the S. frugiperda female extract, 12 hydrocarbons and 3 alcohol groups were identified, with tetracontane as the predominant hydrocarbon compound followed by octane, heneicosane, and others. Meanwhile, the C. cephalonica egg extract displayed 9 hydrocarbons and 1 alcohol group, with dodecane leading in area percentage among the hydrocarbons followed by decane, nonane and others. The outputs of current study highlighted that T. pretiosum's utilization of kairomones from C. cephalonica and S. frugiperda, enhancing its search behavior for host eggs. The identification and synthesis of these kairomonal compounds have the potential to revolutionize pest management, emphasizing the role of kairomones in empowering natural predators and parasitoids for sustainable agriculture.

18.
J Chem Ecol ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308747

RESUMO

The sex pheromone of the azalea mealybug, Crisicoccus azaleae (Tinsley, 1898) (Hemiptera: Pseudococcidae), includes esters of a methyl-branched medium-chain fatty acid, ethyl and isopropyl (E)-7-methyl-4-nonenoate. These compounds are exceptional among mealybug pheromones, which are commonly monoterpenes. Determination of the absolute configuration is challenging, because both chromatographic and spectrometric separations of stereoisomers of fatty acids with a methyl group distant from the carboxyl group are difficult. To solve this problem, we synthesized the enantiomers via the Johnson-Claisen rearrangement to build (E)-4-alkenoic acid by using (R)- and (S)-3-methylpentanal as chiral blocks, which were readily available from the amino acids L-(+)-alloisoleucine and L-(+)-isoleucine, respectively. Each pure enantiomer, as well as the natural pheromone, was subsequently derivatized with a highly potent chiral labeling reagent used in the Ohrui-Akasaka method. Through NMR spectral comparisons of these derivatives, the absolute configuration of the natural pheromone was determined to be S. Field-trap bioassays showed that male mealybugs were attracted more to (S)-enantiomers and preferred the natural stereochemistry. Moreover, the synthetic pheromones attracted Anagyrus wasps, indicating that the azalea mealybug pheromone has kairomonal activity.

19.
Bull Math Biol ; 86(12): 138, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412556

RESUMO

Continuous-time predator-prey models admit limit cycle solutions that are vulnerable to the phenomenon of phase-sensitive tipping (P-tipping): The predator-prey system can tip to extinction following a rapid change in a key model parameter, even if the limit cycle remains a stable attractor. In this paper, we investigate the existence of P-tipping in an analogous discrete-time system: a host-parasitoid system, using the economically damaging forest tent caterpillar as our motivating example. We take the intrinsic growth rate of the consumer as our key parameter, allowing it to vary with environmental conditions in ways consistent with the predictions of global warming. We find that the discrete-time system does admit P-tipping, and that the discrete-time P-tipping phenomenon shares characteristics with the continuous-time one: Both require an Allee effect on the resource population, occur in small subsets of the phase plane, and exhibit stochastic resonance as a function of the autocorrelation in the environmental variability. In contrast, the discrete-time P-tipping phenomenon occurs when the environmental conditions switch from low to high productivity, can occur even if the magnitude of the switch is relatively small, and can occur from multiple disjoint regions in the phase plane.


Assuntos
Extinção Biológica , Interações Hospedeiro-Parasita , Larva , Conceitos Matemáticos , Modelos Biológicos , Comportamento Predatório , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Dinâmica Populacional/estatística & dados numéricos , Processos Estocásticos , Mariposas/parasitologia , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento , Cadeia Alimentar , Florestas , Aquecimento Global
20.
Zoolog Sci ; 41(5): 479-488, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39436009

RESUMO

We identified two gall-inducing wasp species infesting eucalypts leaves, including an undescribed species, Ophelimus cracens sp. nov., and Epichrysocharis burwelli, which is a new record for Taiwan. The major hosts of O. cracens were Eucalyptus grandis, Eu. urophylla, and Eu. camaldulensis (Myrtaceae). We observed failed galls of O. cracens at an early stage on Eu. amplifolia and Corymbia maculata. All O. cracens adults discovered on infected leaves were females, and four parasitoid species were identified in samples collected from two cities, three counties, and four municipalities across Taiwan. Epichrysocharis burwelli was exclusively found on C. citriodora in Hsinchu, Nantou, and Tainan Cities. This marks the first record of Ep. burwelli in Asia, accompanied by the identification of one parasitoid species. The adult longevity of adults which emerged from their major hosts, when provided with honey-water solution, was 5.5 days for O. cracens and 5.7 days for Ep. burwelli. Recognizing the potential damage by these wasps on Eucalyptus production areas in the absence of parasitoids, further investigations of their biology and control are warranted.


Assuntos
Eucalyptus , Vespas , Animais , Vespas/fisiologia , Taiwan , Eucalyptus/parasitologia , Feminino , Folhas de Planta/parasitologia , Tumores de Planta/parasitologia , Espécies Introduzidas , Especificidade da Espécie , Interações Hospedeiro-Parasita , Distribuição Animal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa