Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 525(4): 989-996, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32173526

RESUMO

Genes and environmental conditions are thought to interact in the development of postnatal brain in schizophrenia (SZ). Genome wide association studies have identified that PPARGC1A being one of the top candidate genes for SZ. We previously reported GABAergic neuron-specific PGC-1α knockout mice (Dlx5/6-Cre:PGC-1αfl/fl) presented some characteristic features of SZ. However, there is a fundamental gap of the molecular mechanism by which PGC-1α gene involved in the developmental trajectory to SZ. To explore whether PGC-1α regulates environmental factors interacting with genetic susceptibility to trigger symptom onset and disease progression, PGC-1α deficient mice were utilized to model genetic effect and an additional oxidative stress was induced by GBR injection. We confirm that PGC-1α gene deletion prolongs critical period (CP) timing, as revealed by delaying maturation of PV interneurons (PVIs), including their perineuronal nets (PNNs). Further, we confirm that gene × environment (G × E) influences CP plasticity synergistically and the interaction varies as a function of age, with the most sensitive period being at preweaning stage, and the least sensitive one at early adult age in PGC-1α deficient mice. Along this line, we find that the synergic action of G × E is available in ChABC-infusion PGC-1α KO mice, even though during the adulthood, and the neuroplasticity seems to remain open to fluctuate. Altogether, these results refine the observations made in the PGC-1α deficient mice, a potential mouse model of SZ, and illustrate how PGC-1α regulates CP plasticity via G × E interaction in the developmental trajectory to SZ.


Assuntos
Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Esquizofrenia/metabolismo , Animais , Condroitina ABC Liase/farmacologia , Interação Gene-Ambiente , Giro do Cíngulo/citologia , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Puberdade/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Desmame
2.
Front Mol Neurosci ; 16: 1149906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822967

RESUMO

Peroxisome proliferator-activated receptor PPARγ coactivator-α (PGC-1α) is concentrated in inhibitory interneurons and plays a vital role in neuropsychiatric diseases. We previously reported some characteristic features of schizophrenia (SZ) in GABAergic neuron-specific Pgc-1alpha knockout (KO) mice (Dlx5/6-Cre: Pgc-1alphaf/f). However, there is a fundamental gap in the molecular mechanism by which the Pgc-1alpha gene is involved in the neurobehavioral abnormalities of SZ. The loss of critical period (CP) triggers-maturations of parvalbumin interneurons (PVIs) and brakes-and the formation of perineuronal nets (PNNs) implicates mistimed trajectories during adult brain development. In this study, using the Pgc-1alpha KO mouse line, we investigated the association of Pgc-1alpha gene deletion with SZ-like behavioral deficits, PVI maturation, PNN integrity and synaptic ultrastructure. These findings suggest that Pgc-1alpha gene deletion resulted in a failure of CP onset and closure, thereby prolonging cortical plasticity timing. To determine whether the manipulation of the PNN structure is a potential method of altering neuronal plasticity, GM6001, a broad-spectrum matrix metalloproteinase (MMP)-inhibitor was applied. Here we confirmed that the treatment could effectively correct the CP plasticity window and ameliorate the synaptic ultrastructure in the Pgc-1alpha KO brain. Moreover, the intervention effect on neuronal plasticity was followed by the rescue of short-term habituation deficits and the mitigation of aberrant salience, which are some characteristic features of SZ. Taken collectively, these findings suggest that the role of PGC-1α in regulating cortical plasticity is mediated, at least partially, through the regulation of CP onset/closure. Strategically introduced reinforcement of molecular brakes may be a novel preventive therapy for psychiatric disorders associated with PGC-1α dysregulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa