Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.389
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 511-539, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340578

RESUMO

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Vírus/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Humanos , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
2.
Annu Rev Immunol ; 35: 53-84, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27912316

RESUMO

Helper T (Th) cell subsets direct immune responses by producing signature cytokines. Th2 cells produce IL-4, IL-5, and IL-13, which are important in humoral immunity and protection from helminth infection and are central to the pathogenesis of many allergic inflammatory diseases. Molecular analysis of Th2 cell differentiation and maintenance of function has led to recent discoveries that have refined our understanding of Th2 cell biology. Epigenetic regulation of Gata3 expression by chromatin remodeling complexes such as Polycomb and Trithorax is crucial for maintaining Th2 cell identity. In the context of allergic diseases, memory-type pathogenic Th2 cells have been identified in both mice and humans. To better understand these disease-driving cell populations, we have developed a model called the pathogenic Th population disease induction model. The concept of defined subsets of pathogenic Th cells may spur new, effective strategies for treating intractable chronic inflammatory disorders.


Assuntos
Helmintíase/imunologia , Hipersensibilidade/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Epigênese Genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Imunidade Humoral , Memória Imunológica , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
3.
Cell ; 187(15): 3904-3918.e8, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38851187

RESUMO

We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.


Assuntos
DNA Mitocondrial , Linhagem , Humanos , DNA Mitocondrial/genética , Feminino , Islândia , Masculino , Mutação , Taxa de Mutação
4.
Cell ; 185(16): 2961-2974.e19, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35839760

RESUMO

Wheat crops are frequently devastated by pandemic stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). Here, we identify and characterize a wheat receptor-like cytoplasmic kinase gene, TaPsIPK1, that confers susceptibility to this pathogen. PsSpg1, a secreted fungal effector vital for Pst virulence, can bind TaPsIPK1, enhance its kinase activity, and promote its nuclear localization, where it phosphorylates the transcription factor TaCBF1d for gene regulation. The phosphorylation of TaCBF1d switches its transcriptional activity on the downstream genes. CRISPR-Cas9 inactivation of TaPsIPK1 in wheat confers broad-spectrum resistance against Pst without impacting important agronomic traits in two years of field tests. The disruption of TaPsIPK1 leads to immune priming without constitutive activation of defense responses. Taken together, TaPsIPK1 is a susceptibility gene known to be targeted by rust effectors, and it has great potential for developing durable resistance against rust by genetic modifications.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Basidiomycota/metabolismo , Doenças das Plantas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia , Virulência/genética
5.
Cell ; 185(25): 4703-4716.e16, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36455558

RESUMO

We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.


Assuntos
Judeus , População Branca , Humanos , Judeus/genética , Genética Populacional , Genoma Humano
6.
Cell ; 185(11): 1986-2005.e26, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35525246

RESUMO

Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10-4 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.


Assuntos
Inversão Cromossômica , Duplicações Segmentares Genômicas , Inversão Cromossômica/genética , Variações do Número de Cópias de DNA/genética , Genoma Humano , Genômica , Humanos
7.
Cell ; 184(18): 4697-4712.e18, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34363756

RESUMO

Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


Assuntos
Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal/genética , Padrões de Herança/genética , Memória/fisiologia , Animais , Aprendizagem da Esquiva , Comportamento Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Genoma , Células Germinativas/metabolismo , RNA/metabolismo , Interferência de RNA , Vírion/metabolismo
8.
Cell ; 182(1): 12-23, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649873

RESUMO

Age-related accumulation of postzygotic DNA mutations results in tissue genetic heterogeneity known as somatic mosaicism. Although implicated in aging as early as the 1950s, somatic mutations in normal tissue have been difficult to study because of their low allele fractions. With the recent emergence of cost-effective high-throughput sequencing down to the single-cell level, enormous progress has been made in our capability to quantitatively analyze somatic mutations in human tissue in relation to aging and disease. Here we first review how recent technological progress has opened up this field, providing the first broad sets of quantitative information on somatic mutations in vivo necessary to gain insight into their possible causal role in human aging and disease. We then propose three major mechanisms that can lead from accumulated de novo mutations across tissues to cell functional loss and human disease.


Assuntos
Envelhecimento/genética , Genoma , Mosaicismo , Mutação/genética , Células Clonais , Doença/genética , Redes Reguladoras de Genes , Humanos
9.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513665

RESUMO

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Assuntos
Interleucina-23 , Periodontite , Humanos , Células Epiteliais , Inflamação , Receptor 5 Toll-Like/metabolismo
10.
Cell ; 173(4): 906-919.e13, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29706547

RESUMO

The innate RNA sensor RIG-I is critical in the initiation of antiviral type I interferons (IFNs) production upon recognition of "non-self" viral RNAs. Here, we identify a host-derived, IFN-inducible long noncoding RNA, lnc-Lsm3b, that can compete with viral RNAs in the binding of RIG-I monomers and feedback inactivate the RIG-I innate function at late stage of innate response. Mechanistically, binding of lnc-Lsm3b restricts RIG-I protein's conformational shift and prevents downstream signaling, thereby terminating type I IFNs production. Multivalent structural motifs and long-stem structure are critical features of lnc-Lsm3b for RIG-I binding and inhibition. These data reveal a non-canonical self-recognition mode in the regulation of immune response and demonstrate an important role of an inducible "self" lncRNA acting as a potent molecular decoy actively saturating RIG-I binding sites to restrict the duration of "non-self" RNA-induced innate immune response and maintaining immune homeostasis, with potential utility in inflammatory disease management.


Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata , RNA Longo não Codificante/metabolismo , Animais , Células HEK293 , Humanos , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Células RAW 264.7 , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Vesiculovirus/patogenicidade
11.
Immunity ; 55(12): 2352-2368.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36272417

RESUMO

Allergic conjunctivitis is a chronic inflammatory disease that is characterized by severe itch in the conjunctiva, but how neuro-immune interactions shape the pathogenesis of severe itch remains unclear. We identified a subset of memory-type pathogenic Th2 cells that preferentially expressed Il1rl1-encoding ST2 and Calca-encoding calcitonin-gene-related peptide (CGRP) in the inflammatory conjunctiva using a single-cell analysis. The IL-33-ST2 axis in memory Th2 cells controlled the axonal elongation of the peripheral sensory C-fiber and the induction of severe itch. Pharmacological blockade and genetic deletion of CGRP signaling in vivo attenuated scratching behavior. The analysis of giant papillae from patients with severe allergic conjunctivitis revealed ectopic lymphoid structure formation with the accumulation of IL-33-producing epithelial cells and CGRP-producing pathogenic CD4+ T cells accompanied by peripheral nerve elongation. Thus, the IL-33-ST2-CGRP axis directs severe itch with neuro-reconstruction in the inflammatory conjunctiva and is a potential therapeutic target for severe itch in allergic conjunctivitis.


Assuntos
Conjuntivite Alérgica , Neuropeptídeos , Humanos , Interleucina-33/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Peptídeo Relacionado com Gene de Calcitonina , Conjuntivite Alérgica/patologia , Células Th2 , Calcitonina , Prurido/patologia , Túnica Conjuntiva/patologia , Neurônios
12.
Immunity ; 54(2): 308-323.e6, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33421362

RESUMO

Th17 cells are known to exert pathogenic and non-pathogenic functions. Although the cytokine transforming growth factor ß1 (TGF-ß1) is instrumental for Th17 cell differentiation, it is dispensable for generation of pathogenic Th17 cells. Here, we examined the T cell-intrinsic role of Activin-A, a TGF-ß superfamily member closely related to TGF-ß1, in pathogenic Th17 cell differentiation. Activin-A expression was increased in individuals with relapsing-remitting multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. Stimulation with interleukin-6 and Activin-A induced a molecular program that mirrored that of pathogenic Th17 cells and was inhibited by blocking Activin-A signaling. Genetic disruption of Activin-A and its receptor ALK4 in T cells impaired pathogenic Th17 cell differentiation in vitro and in vivo. Mechanistically, extracellular-signal-regulated kinase (ERK) phosphorylation, which was essential for pathogenic Th17 cell differentiation, was suppressed by TGF-ß1-ALK5 but not Activin-A-ALK4 signaling. Thus, Activin-A drives pathogenic Th17 cell differentiation, implicating the Activin-A-ALK4-ERK axis as a therapeutic target for Th17 cell-related diseases.


Assuntos
Ativinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Inflamação Neurogênica/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Ativinas/genética , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Transdução de Sinais
13.
Immunity ; 50(5): 1289-1304.e6, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31079916

RESUMO

Pathogenic lymphocytes initiate the development of chronic inflammatory diseases. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) (encoded by Csf2) is a key communicator between pathogenic lymphocytes and tissue-invading inflammatory phagocytes. However, the molecular properties of GM-CSF-producing cells and the mode of Csf2 regulation in vivo remain unclear. To systematically study and manipulate GM-CSF+ cells and their progeny in vivo, we generated a fate-map and reporter of GM-CSF expression mouse strain (FROG). We mapped the phenotypic and functional profile of auto-aggressive T helper (Th) cells during neuroinflammation and identified the signature and pathogenic memory of a discrete encephalitogenic Th subset. These cells required interleukin-23 receptor (IL-23R) and IL-1R but not IL-6R signaling for their maintenance and pathogenicity. Specific ablation of this subset interrupted the inflammatory cascade, despite the unperturbed tissue accumulation of other Th subsets (e.g., Th1 and Th17), highlighting that GM-CSF expression not only marks pathogenic Th cells, but that this subset mediates immunopathology and tissue destruction.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-1beta/imunologia , Subunidade p19 da Interleucina-23/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Inflamação/genética , Inflamação/patologia , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR6/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/imunologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Am J Hum Genet ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39226898

RESUMO

Variants that alter gene splicing are estimated to comprise up to a third of all disease-causing variants, yet they are hard to predict from DNA sequencing data alone. To overcome this, many groups are incorporating RNA-based analyses, which are resource intensive, particularly for diagnostic laboratories. There are thousands of functionally validated variants that induce mis-splicing; however, this information is not consolidated, and they are under-represented in ClinVar, which presents a barrier to variant interpretation and can result in duplication of validation efforts. To address this issue, we developed SpliceVarDB, an online database consolidating over 50,000 variants assayed for their effects on splicing in over 8,000 human genes. We evaluated over 500 published data sources and established a spliceogenicity scale to standardize, harmonize, and consolidate variant validation data generated by a range of experimental protocols. According to the strength of their supporting evidence, variants were classified as "splice-altering" (∼25%), "not splice-altering" (∼25%), and "low-frequency splice-altering" (∼50%), which correspond to weak or indeterminate evidence of spliceogenicity. Importantly, 55% of the splice-altering variants in SpliceVarDB are outside the canonical splice sites (5.6% are deep intronic). These variants can support the variant curation diagnostic pathway and can be used to provide the high-quality data necessary to develop more accurate in silico splicing predictors. The variants are accessible through an online platform, SpliceVarDB, with additional features for visualization, variant information, in silico predictions, and validation metrics. SpliceVarDB is a very large collection of splice-altering variants and is available at https://splicevardb.org.

15.
Annu Rev Microbiol ; 76: 1-19, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395169

RESUMO

My path in science began with a fascination for microbiology and phages and later involved a switch of subjects to the fungus Ustilago maydis and how it causes disease in maize. I will not provide a review of my work but rather focus on decisive findings, serendipitous, lucky moments when major advances made the U. maydis-maize system what it is now-a well-established model for biotrophic fungi. I also want to share with you the joy of finding the needle in a haystack at the very end of my scientific career, a fungal structure likely used for effector delivery, and how we were able to translate this into a potential application in agriculture.


Assuntos
Bacteriófagos , Neoplasias , Ustilago , Proteínas Fúngicas , Humanos , Doenças das Plantas/microbiologia , Virulência , Zea mays/microbiologia
16.
Immunity ; 49(5): 886-898.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30446383

RESUMO

Pathogenic Th17 (pTh17) cells drive inflammation and immune-pathology, but whether pTh17 cells are a Th17 cell subset whose generation is under specific molecular control remains unaddressed. We found that Ras p21 protein activator 3 (RASA3) was highly expressed by pTh17 cells relative to non-pTh17 cells and was required specifically for pTh17 generation in vitro and in vivo. Mice conditionally deficient for Rasa3 in T cells showed less pathology during experimental autoimmune encephalomyelitis. Rasa3-deficient T cells acquired a Th2 cell-biased program that dominantly trans-suppressed pTh17 cell generation via interleukin 4 production. The Th2 cell bias of Rasa3-deficient T cells was due to aberrantly elevated transcription factor IRF4 expression. RASA3 promoted proteasome-mediated IRF4 protein degradation by facilitating interaction of IRF4 with E3-ubiquitin ligase Cbl-b. Therefore, a RASA3-IRF4-Cbl-b pathway specifically directs pTh17 cell generation by balancing reciprocal Th17-Th2 cell programs. These findings indicate that a distinct molecular program directs pTh17 cell generation and reveals targets for treating pTh17 cell-related pathology and diseases.


Assuntos
Diferenciação Celular/genética , Proteínas Ativadoras de GTPase/genética , Células Th17/citologia , Células Th17/metabolismo , Células Th2/citologia , Células Th2/metabolismo , Animais , Autoimunidade , Biomarcadores , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Imunofenotipagem , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Proteólise , RNA Mensageiro , Células Th17/imunologia , Células Th2/imunologia
17.
Immunity ; 49(1): 134-150.e6, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958800

RESUMO

Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.


Assuntos
Anfirregulina/imunologia , Eosinófilos/imunologia , Osteopontina/metabolismo , Fibrose Pulmonar/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Anfirregulina/biossíntese , Anfirregulina/metabolismo , Anfirregulina/farmacologia , Animais , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Memória Imunológica/imunologia , Imunomodulação , Interleucina-33/metabolismo , Camundongos , Rinite/imunologia , Rinite/patologia , Sinusite/imunologia , Sinusite/patologia , Transcrição Gênica/efeitos dos fármacos
18.
Hum Mol Genet ; 33(6): 491-500, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37971355

RESUMO

Pathogenic variants in the highly conserved OVOL2 promoter region cause posterior polymorphous corneal dystrophy (PPCD) 1 by inducing an ectopic expression of the endothelial OVOL2 mRNA. Here we produced an allelic series of Ovol2 promoter mutations in the mouse model including the heterozygous c.-307T>C variant (RefSeq NM_021220.4) causing PPCD1 in humans. Despite the high evolutionary conservation of the Ovol2 promoter, only some alterations of its sequence had phenotypic consequences in mice. Four independent sequence variants in the distal part of the Ovol2 promoter had no significant effect on endothelial Ovol2 mRNA level or caused any ocular phenotype. In contrast, the mutation c.-307T>C resulted in increased Ovol2 expression in the corneal endothelium. However, only a small fraction of adult mice c.-307T>C heterozygotes developed ocular phenotypes such as irido-corneal adhesions, and corneal opacity. Interestingly, phenotypic penetrance was increased at embryonic stages. Notably, c.-307T>C mutation is located next to the Ovol1/Ovol2 transcription factor binding site. Mice carrying an allele with a deletion encompassing the Ovol2 binding site c.-307_-320del showed significant Ovol2 gene upregulation in the cornea endothelium and exhibited phenotypes similar to the c.-307T>C mutation. In conclusion, although the mutations c.-307T>C and -307_-320del lead to a comparably strong increase in endothelial Ovol2 expression as seen in PPCD1 patients, endothelial dystrophy was not observed in the mouse model, implicating species-specific differences in endothelial cell biology. Nonetheless, the emergence of dominant ocular phenotypes associated with Ovol2 promoter variants in mice implies a potential role of this gene in eye development and disease.


Assuntos
Distrofias Hereditárias da Córnea , Adulto , Humanos , Animais , Camundongos , Fenótipo , Distrofias Hereditárias da Córnea/genética , Endotélio Corneano , Modelos Animais de Doenças , RNA Mensageiro , Fatores de Transcrição/genética
19.
Annu Rev Genomics Hum Genet ; 24: 109-132, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075062

RESUMO

DNA sequencing has revolutionized medicine over recent decades. However, analysis of large structural variation and repetitive DNA, a hallmark of human genomes, has been limited by short-read technology, with read lengths of 100-300 bp. Long-read sequencing (LRS) permits routine sequencing of human DNA fragments tens to hundreds of kilobase pairs in size, using both real-time sequencing by synthesis and nanopore-based direct electronic sequencing. LRS permits analysis of large structural variation and haplotypic phasing in human genomes and has enabled the discovery and characterization of rare pathogenic structural variants and repeat expansions. It has also recently enabled the assembly of a complete, gapless human genome that includes previously intractable regions, such as highly repetitive centromeres and homologous acrocentric short arms. With the addition of protocols for targeted enrichment, direct epigenetic DNA modification detection, and long-range chromatin profiling, LRS promises to launch a new era of understanding of genetic diversity and pathogenic mutations in human populations.


Assuntos
DNA , Sequências Repetitivas de Ácido Nucleico , Humanos , Análise de Sequência de DNA/métodos , Sequência de Bases , Mutação , DNA/genética
20.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724785

RESUMO

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Assuntos
Microcefalia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células HEK293 , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa