Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23547, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867311

RESUMO

Lead at any levels can result in detrimental health effects affecting various organ systems. These systematic manifestations under Pb exposure and the underlying probable pathophysiological mechanisms have not been elucidated completely. With advancements in molecular research under Pb exposure, epigenetics is one of the emerging field that has opened many possibilities for appreciating the role of Pb exposure in modulating gene expression profiles. In terms of epigenetic alterations reported in Pb toxicity, DNA methylation, and microRNA alterations are extensively explored in both experimental and epidemiological studies, however, the understanding of histone modifications under Pb exposure is still in its infant stage limited to experimental models. In this review, we aim to present a synoptic view of histone modifications explored in relation to Pb exposure attempting to bring out this potential lacunae in research. The scarcity of studies associating histone modifications with Pb toxicity, and the paucity of their validation in human cohort further emphasizes the strong research potential of this field. We summarize the review by presenting our hypotheses regarding the involvement of these histone modification in various diseases modalities associated with Pb toxicity.


Assuntos
Código das Histonas , Chumbo , Humanos , Chumbo/toxicidade , Epigênese Genética , Metilação de DNA , Processamento de Proteína Pós-Traducional
2.
Drug Chem Toxicol ; 47(5): 573-586, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38726945

RESUMO

Zebrafish (Danio rerio) is ideal for studying the effects of toxins like lead or plumbum (Pb) which persist in the environment and harm body systems when absorbed. Increasing Pb concentration could result in a higher mortality rate and alteration of behavior and metabolism. The present study evaluates the acute toxicity effect of Pb on metabolome and behavior in adult zebrafish. The zebrafish were exposed to various Pb concentrations ranging from 0 to 30 mg/L for different periods (24, 48, and 72 h) before the fish samples were subjected to Nuclear Magnetic Resonance (NMR)-multivariate data analysis (MVDA) with additional support from behavioral assessment. The behavior of zebrafish was significantly altered after Pb inducement and the differential metabolites increased in low (5 mg/L) while decreased in high (10 mg/L) Pb concentrations. An ideal Pb induction could be achieved by 5 mg/L concentration in 24 h, which induced significant metabolite changes without irreversible damage. Continuing research on the effects of lead toxicity is crucial to develop effective prevention and treatment strategies.


Assuntos
Comportamento Animal , Relação Dose-Resposta a Droga , Chumbo , Metabolômica , Peixe-Zebra , Animais , Chumbo/toxicidade , Comportamento Animal/efeitos dos fármacos , Testes de Toxicidade Aguda , Espectroscopia de Prótons por Ressonância Magnética , Poluentes Químicos da Água/toxicidade , Metaboloma/efeitos dos fármacos , Fatores de Tempo , Masculino
3.
Environ Toxicol ; 39(9): 4267-4277, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38700421

RESUMO

Neurodegeneration in conditions like Alzheimer's and Parkinson's disease is influenced by genetic and environmental factors. This study explores the potential neurodegenerative effects of lead (Pb) toxicity and amyloid beta peptides (Aßp 1-40 and Aßp 25-35) by promoting M1 polarization in microglial cells. To this end, we investigated and observed that IC50 concentrations of Pb (22.8 µM) and Aßp 25-35(29.6 µM). Our results demonstrated significant Pb uptake (31.13% at 25 µM Pb) and increased intracellular ROS levels (77.1%) upon treatment with Pb in combination of both Aßp 1-40 and Aßp 25-35. Protein carbonylation significantly increased (73.12 nmol/mL) upon treatment with Pb in combination of both Aßp 1-40 and Aßp 25-35, indicating oxidative damage and compromised cellular defenses against oxidative stress along with elevated DNA oxidative damage (164.9 pg/mL of 8-OH-dG) upon treatment with Pb in combination with both Aßp 1-40 and Aßp 25-35. Microglial polarization showed elevated M1 markers (inducible nitric oxide synthase and cyclooxygenase 2) and reduced M2 markers (arginase-1 and cluster of differentiation 206), suggesting Pb's role in inducing neurodegenerative microglial polarization. These findings provide insights into the complex molecular events contributing to Pb-induced neurotoxicity and neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides , Chumbo , Microglia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Microglia/efeitos dos fármacos , Microglia/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Animais , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Camundongos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente
4.
Eur J Nutr ; 62(2): 783-795, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36264385

RESUMO

PURPOSE: The toxicity of lead (Pb) has been intensively studied, while the adverse effects in the population on a high-fat diet (HFD) remain unclear. This study compared the different biologic effects of Pb in CHOW and HFD-fed mice and investigated the important role that gut microbiota may play. METHODS: C57BL/6 mice were fed a CHOW diet and HFD with or without 1 g/L Pb exposure through drinking water for 8 weeks. Using oral glucose tolerance test, histopathological observation, real-time fluorescence quantitative PCR, enzyme-linked immunosorbent assay, and 16S high-throughput sequencing to compare the Pb toxicity, fecal microbiota transplantation was conducted to investigate the key role of gut microbiota. RESULTS: The metabolic disorders induced by HFD were aggravated by chronic Pb intake, and HFD exacerbated the Pb accumulation in the colon by 96%, 32% in blood, 27% in the liver, and 142% in tibiae. Concomitantly, Pb induced more serious colonic injury, further disturbing the composition of gut microbiota in the HFD-fed mice. Moreover, altered fecal microbiota by HFD and Pb directly mediated metabolic disorders and colonic damage in recipient mice, which emphasized the importance of gut microbiota. CONCLUSION: These findings indicated that the population with HFD has lower resistance and would face more security risks under Pb pollution, and pointed out the importance of assessing the health impacts of food contaminants in people with different dietary patterns.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Chumbo/farmacologia , Camundongos Endogâmicos C57BL , Inflamação
5.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958813

RESUMO

Far-infrared (FIR), characterized by its specific electromagnetic wavelengths, has emerged as an adjunctive therapeutic strategy for various diseases, particularly in ameliorating manifestations associated with renal disorders. Although FIR was confirmed to possess antioxidative and anti-inflammatory attributes, the intricate cellular mechanisms through which FIR mitigates lead (Pb)-induced nephrotoxicity remain enigmatic. In this study, we investigated the effects of FIR on Pb-induced renal damage using in vitro and in vivo approaches. NRK52E rat renal cells exposed to Pb were subsequently treated with ceramic-generated FIR within the 9~14 µm range. Inductively coupled plasma mass spectrometry (ICP-MS) enabled quantitative Pb concentration assessment, while proteomic profiling unraveled intricate cellular responses. In vivo investigations used Wistar rats chronically exposed to lead acetate (PbAc) at 6 g/L in their drinking water for 15 weeks, with or without a concurrent FIR intervention. Our findings showed that FIR upregulated the voltage-gated calcium channel, voltage-dependent L type, alpha 1D subunit (CaV1.3), and myristoylated alanine-rich C kinase substrate (MARCKS) (p < 0.05), resulting in increased calcium influx (p < 0.01), the promotion of mitochondrial activity, and heightened ATP production. Furthermore, the FIR intervention effectively suppressed ROS production, concurrently mitigating Pb-induced cellular death. Notably, rats subjected to FIR exhibited significantly reduced blood Pb levels (30 vs. 71 µg/mL; p < 0.01), attenuated Pb-induced glomerulosclerosis, and enhanced Pb excretion compared to the controls. Our findings suggest that FIR has the capacity to counteract Pb-induced nephrotoxicity by modulating calcium influx and optimizing mitochondrial function. Overall, our data support FIR as a novel therapeutic avenue for Pb toxicity in the kidneys.


Assuntos
Cálcio , Chumbo , Ratos , Animais , Ratos Wistar , Cálcio/metabolismo , Chumbo/toxicidade , Proteômica , Canais de Cálcio Tipo L
6.
Ecotoxicol Environ Saf ; 190: 110083, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864123

RESUMO

The combined effects of salinity and organic amendments on lead (Pb) toxicity to earthworms as important components of soil invertebrates are still largely unknown. A mesocosm experiment was conducted to examine how the combined use of NaCl salinity and cow manure would affect the sublethal Pb toxicity to chronically exposed Eisenia fetida in natural soil. The response of life-cycle parameters of this earthworm species and biological properties to NaCl-induced salinity (0, 4 and 8 dS m-1) was determined in a Pb-contaminated clay loam soil amended or unamended with fresh cow manure. The NaCl salt and cow manure (4%, w/w) were added to the soil and the mixtures were incubated for 90 days under greenhouse conditions. The results showed that NaCl salinity increased soil Pb availability and toxicity, increased earthworm Pb concentration and uptake, and decreased earthworm survivorship, population (adults and juveniles), reproduction, wet weight, cocoon production, and cast activity. The detrimental effects of NaCl salinity on earthworms and biological properties were greater at high than low salinity levels. Addition of cow manure lowered the NaCl-induced Pb toxicity to earthworms at all salinity levels, suggesting the harmful effect of salinity-induced Pb toxicity was reduced due to the decreased Pb availability following manure application. This study demonstrated that soil salinity and animal manures can have a great impact on the life-cycle endpoints and activity of E. fetida, which requires attention when using saline waters for irrigation and organic amendments for soil amelioration in Pb-contaminated environments. It is concluded that (i) the multiple stresses induced by salinity and Pb mixtures may negatively affect earthworms and (ii) organic amendment application has a high potential for lowering the stronger negative effect of salinity in Pb-polluted environments and for improving earthworm population, reproduction and activity.


Assuntos
Chumbo/toxicidade , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Animais , Bovinos , Argila , Poluição Ambiental , Feminino , Esterco , Oligoquetos/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Salinidade , Cloreto de Sódio/análise , Solo , Poluentes do Solo/análise
7.
Ecotoxicol Environ Saf ; 148: 805-812, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29195224

RESUMO

Lead (Pb) contamination is ubiquitous and usually causes toxicity to plants. Nevertheless, application of compost and plant growth promoting rhizobacteria synergistically may ameliorate the Pb toxicity in radish. The present study assessed the effects of compost and Bacillus sp. CIK-512 on growth, physiology, antioxidants and uptake of Pb in contaminated soil and explored the possible mechanism for Pb phytotoxicity amelioration. Treatments comprised of un-inoculated control, compost, CIK-512, and compost + CIK-512; plants were grown in soil contaminated with Pb (500mgkg-1) and without Pb in pot culture. Lead caused reduction in shoot dry biomass, photosynthetic rate, stomatal conductance, relative water contents, whereas enhanced root dry biomass, ascorbate peroxidase, catalase, malondialdehyde and electrolyte leakage in comparison with non-contaminated control. Plants inoculated with strain CIK-512 and compost produced significantly higher dry biomass, photosynthetic rate and stomatal conductance in normal and contaminated soils. Bacterial strain CIK-512 and compost synergy improved growth and physiology of radish in contaminated soil possibly through homeostasis of antioxidant activities, reduced membrane leakage and Pb accumulation in shoot. Possibly, Pb-induced production of reactive oxygen species resulted in increased electrolyte leakage and malondialdehyde contents (r = 0.88-0.92), which led to reduction in growth (r = -0.97) and physiology (r = -0.38 to -0.80), however, such negative effects were ameliorated by the regulation of antioxidants (r = 0.78-0.87). The decreased activity of antioxidants coupled with Pb accumulation in aerial part of the radish indicates the Pb-phytotoxicity amelioration through synergistic application of compost and Bacillus sp. CIK-512.


Assuntos
Antioxidantes/metabolismo , Bacillus/crescimento & desenvolvimento , Compostagem , Chumbo/toxicidade , Raphanus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biomassa , Homeostase , Chumbo/análise , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
8.
Microb Ecol ; 74(4): 841-852, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28550339

RESUMO

Yellow serradella (Ornithopus compressus), a valuable pasture species in Mediterranean areas, presents a high diversity of endophytic mycoflora. In the present work, the hypothesis of a significant effect of fungal endophytic species on the parameters of forage production, nutritive value and mineral status of herbage was tested. O. compressus plants were inoculated with each of seven endophytes (four in 2012/2013 and three in 2013/2014). After inoculation, two experiments (under greenhouse and field conditions) were established. Results evidenced a certain influence of several endophytes on herbage yield, nutritive value and mineral status of O. compressus forage. Byssochlamys spectabilis increased herbage biomass yield by around 42% in the field experiment. Stemphylium sp. improved the nutritive value of forage either by increasing crude protein, digestibility and the concentration of essential minerals (such as B, Mo, P or S) or by reducing the concentration of toxic elements such as Al or Pb. In conclusion, the results presented here provide evidence that plant inoculation with endophytes could be a suitable strategy to increase forage yield and its nutritive value or to deal with potential nutrient deficiencies or potential mineral toxicity in forage.


Assuntos
Biomassa , Endófitos/fisiologia , Fungos/fisiologia , Lotus/metabolismo , Lotus/microbiologia , Valor Nutritivo , Ração Animal/análise , Minerais/metabolismo
9.
J Sci Food Agric ; 97(14): 4780-4789, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28369913

RESUMO

BACKGROUND: Accumulation of lead (Pb) in agricultural soils has become a major factor for reduced crop yields and poses serious threats to humans consuming agricultural products. The present study investigated the effects of KNO3 seed priming (0 and 0.5% KNO3 ) on growth of maize (Zea mays L.) seedlings exposed to Pb toxicity (0, 1300 and 2550 mg kg-1 Pb). RESULTS: Pb exposure markedly reduced the growth of maize seedlings and resulted in higher Pb accumulation in roots than shoots. Pretreatment of seeds with KNO3 significantly improved the germination percentage and increased physiological indices. A stimulating effect of KNO3 seed priming was also observed on pigments (chlorophyll a, b, total chlorophyll and carotenoid contents) of Pb-stressed plants. Low translocation of Pb from roots to shoots caused an increased accumulation of total free amino acids and higher activities of catalase, peroxidase, superoxide dismutase and ascorbate peroxidase in roots as compared to shoot, which were further enhanced by exogenous KNO3 supply to prevent Pb toxicity. CONCLUSION: Maize accumulates more Pb in roots than shoot at early growth stages. Priming of seeds with KNO3 prevents Pb toxicity, which may be exploited to improve seedling establishment in crop species grown under Pb contaminated soils. © 2017 Society of Chemical Industry.


Assuntos
Chumbo/toxicidade , Nitratos/farmacologia , Compostos de Potássio/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Antioxidantes/análise , Antioxidantes/metabolismo , Carotenoides/análise , Clorofila/análise , Contaminação de Alimentos/prevenção & controle , Germinação/efeitos dos fármacos , Chumbo/análise , Raízes de Plantas/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Poluentes do Solo/análise , Zea mays/crescimento & desenvolvimento
10.
J Environ Sci (China) ; 44: 131-140, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27266309

RESUMO

The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to >2515mg/kg soil for leached soil and 130 to >2490mg/kg soil for unleached soil. These results represented >13- and >19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds.


Assuntos
Monitoramento Ambiental/métodos , Chumbo/análise , Poluentes do Solo/análise , Solo/química , Bioensaio , China , Monitoramento Ambiental/normas , Chumbo/normas , Nitrificação , Poluentes do Solo/normas
11.
J Hazard Mater ; 478: 135612, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39182290

RESUMO

Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39147442

RESUMO

The prolonged exposure of agricultural soils to heavy metals from wastewater, particularly in areas near industrial facilities, poses a significant threat to the well-being of living organisms. The World Health Organization (WHO) has established standard permissible limits for heavy metals in agricultural soils to mitigate potential health hazards. Nevertheless, some agricultural fields continue to be irrigated with wastewater containing industrial effluents. This study aimed to assess the concentration of lead in soil samples collected from agricultural fields near industrial areas. Subsequently, we determined the lethal concentration (LC50) of lead (Pb) and other heavy metals for two Collembola species, namely Folsomia candida, a standard organism for soil ecotoxicity tests, and comparing it with Proisotoma minuta. The research further examined the toxic effects of lead exposure on these two species, revealing depletion in the energy reservoirs and alterations in the tissue histology of both organisms. The study revealed that lead can induce genotoxic damage as it evidently has moderate binding affinity with the ct-DNA and hence can cause DNA fragmentation and the formation of micronuclei. Elevated lipid peroxidation (LPO) levels and protein carbonylation levels were observed, alongside a reduction in antioxidant enzymes (CAT, SOD & GPx). These findings suggest that lead disrupts the balance between oxidants and the antioxidant enzyme system, impairing defense mechanisms and consequential derogatory damage within microarthropods. The investigation elucidates a complex network of various signaling pathways compromised as a result of lead toxicity. Hence, it presents a novel perspective that underscores the pressing necessity for implementing an integrated risk assessment framework at the investigated site.


Assuntos
Artrópodes , Chumbo , Peroxidação de Lipídeos , Estresse Oxidativo , Poluentes do Solo , Zea mays , Estresse Oxidativo/efeitos dos fármacos , Artrópodes/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/genética , Chumbo/toxicidade , Animais , Poluentes do Solo/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Metais Pesados/toxicidade , Solo/química
13.
Physiol Mol Biol Plants ; 19(1): 81-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24381440

RESUMO

The present study investigated the effect of exogenous lead (Pb) on seedling growth, carbohydrate composition and vital enzymes of sucrose metabolism, starch degradation, pentose phosphate pathway and glycolysis in pea seedlings. With 0.5 mM Pb, reduction of about 50 % in shoot and 80 % in root lengths was observed. At 5 and 7 days of seedling growth, cotyledons of Pb-stressed seedlings had about 25-50 % lower α- and ß-amylase activities resulting in their higher starch content. Low starch content in the cotyledons of control seedlings at days 1, 3, 5 and 7 may be due to higher investment of carbon for seedling growth. Seedlings exposed to Pb showed significant inhibition of about 30-50 % in acid invertase activity in the growing tissues i.e. roots and shoots. Sucrose content increased by 10-20 % in shoots with much larger increase in cotyledons at 5-7 days of growth in Pb-stressed seedlings. In stressed seedlings, sucrose synthase (SS) and sucrose-6-phosphate synthase (SPS) enzymes were down regulated in the roots but SS activity was up regulated in the cotyledons leading to increased sucrose content. Exogenous Pb increased the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in the cotyledons. Down regulation of G6PDH and up regulation of hexokinase (HXK) in the roots and shoots of stressed seedlings indicated that hexoses could be utilised preferably for glycolysis rather than pentose phosphate pathway in these tissues. Due to limited supply of sugars to growing tissues in the stressed seedlings, increased HXK may play a role in sugar sensing. Phosphoglucomutase (PGM) activity was maximum in the cotyledons and minimum in roots showing its importance in the conversion of glucose-1-phosphate into glucose-6-phosphate. Reduced seedling growth observed in the presence of exogenous Pb was mainly due to the decrease in the activities of amylases and invertases in the cotyledons and growing tissues respectively. Further biosynthetic capacity of the roots and shoots was down regulated in the pea seedlings due to reduced efficiency of pentose phosphate pathway under Pb toxicity.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37792177

RESUMO

Heavy metals (HMs) at a concentration above the threshold level act as environmental pollutants and very often threaten the agricultural productivity globally. Finding affordable and environmentally sustainable deliverables to address this issue is therefore a top focus. Phytohormones alleviate the HMs-induced toxicity and positively influence the plant growth. Considering the importance of phytohormones, the present study aimed to assess the effect of 24-epibrassinolide (24-EBL; 10 µM) as seed soaking treatment on growth performance of Zea mays (L.) contaminated separately with increasing concentrations (50-400 mg.kg-1) of lead (Pb) and cadmium (Cd). With increasing metal concentrations, growth and plant biometric criteria were reduced. For instance, Cd at 400 mg.kg-1 soil reduced the germination efficiency (56%), root (77%) and shoot (69%) dry weight, total chlorophyll (64%), and carotenoid content (45%). Contrarily, both HMs caused increase in stress biomarkers and antioxidant enzymes in seedling. However, exogenous administration of 24-EBL significantly enhanced the growth attributes, photosynthetic pigments, proline, MDA, and antioxidant enzyme activity while reducing the harmful effects of HMs stress on Z. mays. For instance, 24-EBL (10 µM) improved the germination percentage, root biomass, chl a, chl b, total chlorophyll, and carotenoid content by 16, 21, 17, 34, 18, and 15%, respectively, in 50 mg.Pb.kg-1 soil-treated Z. mays plants. Furthermore, the amounts of proline, MDA, and antioxidant enzymes in foliage of Z. mays were interestingly and dramatically lowered by 24-EBL application. Uptake of metals in plant organs was significantly reduced when 24-EBL was applied to Pb- and Cd-treated Z. mays. The recent findings help us better understand how 24-EBL regulates growth and development of Z. mays as well as how it boosts HMs' resilience, which could increase the possibility of employing 24-EBL to increase Z. mays productivity. Thus, the present findings confirmed the potentiality of pre-soaking the seed in 24-EBL solution that neutralizes the toxic effects of heavy metals in Z. mays plants. Therefore, it is suggested that applying phytohormones including 24-EBL in removal of heavy metal stress in plants is the best possible solution in sustainable agriculture.

15.
Toxics ; 10(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36548626

RESUMO

Lead (Pb) is one of the toxins responsible for the deterioration of ecological health in aquatic environments. The present study investigated the effects of Pb(NO3)2 toxicity on growth, blood cell morphology, and the histopathology of gills, liver, and intestine of juvenile Nile tilapia, Oreochromis niloticus. A 30-day long aquarium trial was conducted by assigning three treatment groups T1 5.20 mg L-1, T2 10.40 mg L-1, and T3 20.80 mg L-1, and a control 0 mg L-1 following the 96 h LC50 of 51.96 mg L-1 from acute toxicity test. Overall growth performance significantly declined in all the Pb(NO3)2 treated groups and the highest mortality was recorded in T3. Behavioural abnormalities were intense in all the treatment groups compared to the control. Hepatosomatic index (HSI) values were reported as higher in treatment groups. Reduced nucleus diameter and nuclei size in erythrocytes were reported for T2 and T3 groups. Dose-dependent histological alterations were visible in the gills, liver, and intestine of all the Pb(NO3)2 treated groups. The width of the intestinal villi was highly extended in T3 showing signs of severe histological alterations. In conclusion, Pb toxicity causes a negative effect on growth performance, erythrocyte morphology, and affected the vital organs histomorphology of juvenile O. niloticus.

16.
Animals (Basel) ; 12(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36290130

RESUMO

Mineral bone composition (dry matter, bones ash, P, Ca, Zn, Mn, Mg, and Cu) and Pb levels of tibiotarsi of seven White-Tailed Sea Eagles were assessed. Lead intoxication in different bird species including waterfowl and raptors is being studied worldwide. The bones were analyzed for Pb by mass spectrometry with excitation in inductively coupled plasma (ICP-MS Elan DRC II) and for bone composition by Atomic Emission Spectrometer (Agilent 4100 Microwave Plasma). Pb levels ranging from 3.54 µg/g to 74.6 µg/g DM suggest that some of the investigated birds might have been intoxicated by Pb. Results of this analysis were divided into two groups of bones, with bone Pb levels higher and lower than Pb toxicity levels, and mineral bone compositions of both groups were compared. The present study shows the differentiation of bone mineral composition among seven examined White-Tailed Sea Eagles, considered a specific species in raptors. Pb intoxication may not have a major influence on mineral bone composition in raptors. It also suggests that assessing bone composition of raptor bones may help finding the possible cause of their deaths.

17.
Environ Sci Pollut Res Int ; 29(40): 60414-60425, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35420345

RESUMO

The aim of this study was to investigate the lead (Pb)-induced lipid metabolism impairment and its amelioration using plant-based therapeutic interventions. Pb-induced hepatotoxicity can disturb the normal levels of natural antioxidant enzymes including glutathione (GSH) and superoxide dismutase (SOD) exerting a crucial impact on membrane unsaturated fatty acids (FA), hence leading to lipid peroxidation. Furthermore, Pb toxicity can also alter the regulation of various hormones involved in the synthesis of 3-hydroxy-methyl glutaryl CoA (HMG-CoA reductase), leading to an impairment in normal levels of serum cholesterol and other associated conjugated lipid molecules such HDL-cholesterol, LDL-cholesterol and VLDL-cholesterol. In this study, the lipoprotein fractions, cholesterol, triglyceride (TGs) and biomarkers of liver functions were estimated by employing respective assay kits. The levels of antioxidant enzymes, FFAs and HMG-CoA reductase were determined by employing sandwich ELISA method. The administration of PbAc in experimental rats induced a significant disturbance in lipid profile (P < 0.05) accompanying a significant reduction in natural antioxidant defence system (P < 0.05). The significant alteration in the levels of serum antioxidant enzymes can lead to membrane lipid peroxidation that is reflected by a significantly (P < 0.05) high level of serum MDA in PbAc-induced experimental rats. However, the administration of resveratrol proved therapeutically effective in the treatment of Pb toxicity. Overall, the results of this study accompanying histopathological examination had proved the ameliorating effect of resveratrol in Pb-induced lipid metabolism impairment by adopting vitamin C as a standard therapeutic intervention.


Assuntos
Antioxidantes , Metabolismo dos Lipídeos , Animais , Antioxidantes/metabolismo , Colesterol/metabolismo , Glutationa/metabolismo , Chumbo/metabolismo , Peroxidação de Lipídeos , Lipídeos , Fígado , Ratos , Resveratrol/farmacologia , Superóxido Dismutase/metabolismo
18.
Environ Pollut ; 276: 116631, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631692

RESUMO

Micro-crustaceans are important grazers that control the algal blooms in eutrophic lakes. However, we know little about how these key species may be affected by long-term exposure to contaminants and when the transgenerational effects are reversible and irreversible. To address this, we investigated the effects of lead (Pb, 100 µg L-1) exposure on morphology and reproduction of Moina dubia for nine consecutive generations (F1-F9) in three treatments: control, Pb, and pPb (M. dubia from Pb-exposed parents returned to the control condition). In F1-F2, Pb did not affect morphology, and reproduction of M. dubia. In all later generations, Pb-exposed M. dubia had a smaller body and shorter antennae than those in control. In F3-F6, pPb-exposed animals showed no differences in body size and antennae compared to the control, suggesting recoverable effects. In F7-F9, the body size and antennae of pPb-exposed animals did not differ compared to Pb-exposed ones, and both were smaller than the control animals, suggesting irreversible effects. Pb exposure reduced the brood size, number of broods and total neonates per female in F3-F9, yet the reproduction could recover in pPb treatment until F7. No recovery of the brood size and number of broods per female was observed in pPb-exposed animals in the F8-F9. Our study suggests that long-term exposure to metals, here Pb, may cause irreversible impairments in morphology and reproduction of tropical urban micro-crustaceans that may lower the top-down control on algal blooms and functioning of eutrophic urban lakes.


Assuntos
Cladocera , Animais , Eutrofização , Feminino , Humanos , Recém-Nascido , Lagos , Metais , Reprodução
19.
Front Bioeng Biotechnol ; 9: 698349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796165

RESUMO

Lead (Pb) is a pestilent and relatively nonbiodegradable heavy metal, which causes severe health effects by inducing inflammation and oxidative stress in animal and human tissues. This is because of its significant tolerance and capability to bind Pb (430 mg/L) and thermodynamic fitness to sequester Pb in the Freundlich model (R 2 = 0.98421) in vitro. Lactobacillus acidophilus KLDS1.1003 was selected for further in vivo study both in free and maize resistant starch (MRS)-based microencapsulated forms to assess its bioremediation aptitude against chronic Pb lethality using adult female BALB/c mice as a model animal. Orally administered free and microencapsulated KLDS 1.1003 provided significant protection by reducing Pb levels in the blood (127.92 ± 5.220 and 101.47 ± 4.142 µg/L), kidneys (19.86 ± 0.810 and 18.02 ± 0.735 µg/g), and liver (7.27 ± 0.296 and 6.42 ± 0.262 µg/g). MRS-microencapsulated KLDS 1.0344 improved the antioxidant index and inhibited changes in blood and serum enzyme concentrations and relieved the Pb-induced renal and hepatic pathological damages. SEM and EDS microscopy showed that the Pb covered the surfaces of cells and was chiefly bound due to the involvement of the carbon and oxygen elements. Similarly, FTIR showed that the amino, amide, phosphoryl, carboxyl, and hydroxyl functional groups of bacteria and MRS were mainly involved in Pb biosorption. Based on these findings, free and microencapsulated L. acidophilus KLDS 1.0344 could be considered a potential dietetic stratagem in alleviating chronic Pb toxicity.

20.
Front Microbiol ; 11: 1443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676066

RESUMO

Trace elements stress is one of the most damaging abiotic stresses in environment. Nevertheless, the defense mechanism in microalgae remains poorly understood. In this study, physiological and molecular methods were performed to analyze the defense responses in green alga Chlamydomonas reinhardtii. It was speculated that the defense responses might mainly be due to the regulation of hormone signaling, indicating its potential role in alleviating the Pb toxicity besides other physiological and molecular defense responses like decrease in growth rate, chlorophyll content and photosynthesis efficiency, intensification of antioxidative mechanisms, regulation of transcription factors, trace elements chelation, and sequestration into vacuole via trace elements transporters. The sole differentially expressed ATP-binding cassette (ABC) transporters indicated that ABC transporters might play a very important role in the transport and relocation of Pb in C. reinhardtii. Additionally, our data provide the required knowledge for future investigations regarding Pb toxicity and defense mechanisms in algae, and detection of trace elements pollution in environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa