RESUMO
The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50-60 nmolâ kg-1 In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios.
Assuntos
Ecossistema , Ferro/química , Fósforo/química , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Ciclo do Carbono , Ferro/metabolismo , Deficiências de Ferro , Microbiota , Oceano Pacífico , Periodicidade , Fósforo/deficiência , Fósforo/metabolismo , Clima TropicalRESUMO
Seamounts are one of the major biomes of the global ocean. The last 25 years of research has seen considerable advances in the understanding of these ecosystems. The interactions between seamounts and steady and variable flows have now been characterised providing a better mechanistic understanding of processes influencing biology. Processes leading to upwelling, including Taylor column formation and tidal rectification, have now been defined as well as those leading to draw down of organic matter from the ocean surface to seamount summit and flanks. There is also an improved understanding of the interactions between seamounts, zooplankton and micronekton communities especially with respect to increased predation pressure in the vicinity of seamounts. Evidence has accumulated of the role of seamounts as hot spots for ocean predators including large pelagic fish, sharks, pinnipeds, cetaceans and seabirds. The complexity of benthic communities associated with seamounts is high and drivers of biodiversity are now being resolved. Claims of high endemism resulting from isolation of seamounts as islands of habitat and speciation have not been supported. However, for species characterised by low dispersal capability, such as some groups of benthic sessile or low-mobility invertebrates, low connectivity between seamount populations has been found with evidence of endemism at a local level. Threats to seamounts have increased in the last 25 years and include overfishing, destructive fishing, marine litter, direct and indirect impacts of climate change and potentially marine mining in the near future. Issues around these threats and their management are discussed.
Assuntos
Ecossistema , Fenômenos Geológicos , Oceanos e Mares , Animais , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodosRESUMO
While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep-sea sediment cores from the North and South Pacific gyres over the past 85 million years (Myr). We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma) was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Palaeogene Ocean (66-20 Ma), initiated by the Cretaceous/Palaeogene mass extinction, had nearly four times the abundance of fish teeth compared with elasmobranch denticles. This Palaeogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in the overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages approximately 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.
Assuntos
Biodiversidade , Ecossistema , Peixes , Animais , Evolução Biológica , Mudança Climática , Peixes/classificação , Fósseis/anatomia & histologia , Oceano PacíficoRESUMO
Microbial food webs (MFW) play an indispensable role in marine pelagic ecosystem, yet their composition and response to abiotic variables were poorly documented in the oligotrophic tropical Western Pacific. During winter of 2015, we conducted a survey to examine key components of MFW, including Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic prokaryotes (HP), heterotrophic/pigmented nanoflagellates and ciliates, across water column from surface to 2000 m. Each MFW component exhibited unique vertical distribution pattern, with abundance ratio varying over six and three orders of magnitude across Pico/Microplankton (1.6 ± 1.0 × 106) and Nano/Microplankton (3.2 ± 2.8 × 103), respectively. Furthermore, HP was main component for MFW in the bathypelagic (>1000 m) zone. Multivariate biota-environment analysis demonstrated that environmental variables, particularly temperature, significantly impacted MFW composition, suggesting that bottom-up control (resource availability) dominated the water column. Our study provides benchmark information for future environmental dynamics forcing on MFW in the oligotrophic tropical seas.
Assuntos
Ecossistema , Cadeia Alimentar , Plâncton , Oceanos e Mares , ÁguaRESUMO
Nitrogen and carbon stable isotope data sets are commonly used to assess complex population to ecosystem responses to natural or anthropogenic changes at regional to global spatial scales, and monthly to decadal timescales. Measured in the tissues of consumers, nitrogen isotopes (δ15 N) are primarily used to estimate trophic position while carbon isotopes (δ13 C) describe habitat associations and feeding pathways. Models of both δ15 N and δ13 C values and their associated variance can be used to estimate likely dietary contributions and niche width and provide inferences about consumer movement and migration. Stable isotope data have added utility when used in combination with other empirical data sets (e.g., stomach content, movement tracking, bioregionalization, contaminant, or fisheries data) and are increasingly relied upon in food web and ecosystem models. While numerous regional studies publish tables of mean δ15 N and δ13 C values, limited individual records have been made available for wider use. Such a deficiency has impeded full utility of the data, which otherwise would facilitate identification of macroscale patterns. The data provided here consist of 4,498 records of individuals of three tuna species, Thunnus alalunga, T. obesus, and T. albacares sampled from all major ocean basins from 2000 to 2015. For each individual tuna, we provide a record of the following: species name, sampling date, sampling location, tuna length, muscle bulk and baseline corrected δ15 N values, and muscle bulk and, where available, lipid corrected δ13 C values. We provide these individual records to support comparative studies and more robust modeling projects seeking to improve understanding of complex marine ecosystem dynamics and their responses to a changing environment. There are no copyright restrictions for research and/or teaching purposes. Users are requested to acknowledge their use of the data in publications, research proposals, websites, and other outlets following the citation instructions in Class III, Section B.
RESUMO
This study describes the changes in hydrology, zooplankton communities and abundance in the Senegal River Estuary (SRE) before and after the breaching of the sandbar in October 2003. Samples were taken in 2003 at 3 stations located upstream (DI), in mid estuary (HY) and downstream (RM), and in 2005 at the same stations (RM becoming Old River Mouth: ORM), plus the new river mouth (NRM) resulting from the morphological evolution of the SRE. The study showed marked seasonal variations that affected the structure and distribution of zooplankton as well as major changes caused by the sandbar opening: increased marine influence throughout the whole SRE, changes in the horizontal gradients, arrival of euryhaline species and increase in meroplankton, in particular decapod larvae, transformation of the ORM area into a slackwater area with limited exchanges and the highest zooplankton numbers during high waters.