Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant Dis ; 108(6): 1750-1754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213120

RESUMO

Iris yellow spot virus (IYSV) poses a significant threat to dry bulb onion, Allium cepa L., production and can lead to substantial yield reductions. IYSV is transmitted by onion thrips, Thrips tabaci (Lindeman), but not via seed. Transplanted onion fields have been major early season sources of IYSV epidemics. As onion thrips tend to disperse short distances, seeded onion fields bordering transplanted onion fields may be at greater risk of IYSV infection than seeded fields isolated from transplanted ones. Additionally, seeded onion fields planted early may be at greater risk of IYSV infection than those seeded later. In a 2-year study in New York, we compared IYSV incidence and onion thrips populations in seeded onion fields relative to their proximity to transplanted onion fields. In a second study, we compared IYSV incidence in onion fields with either small or large plants during midseason. Results showed similar IYSV incidence and onion thrips populations in seeded onion fields regardless of their proximity to transplanted onion fields, while IYSV incidence was over four times greater in large onion plants than in small ones during midseason. These findings suggest a greater risk of onion thrips-mediated IYSV infection in onion fields with large plants compared with small ones during midseason and that proximity of seeded fields to transplanted ones is a poor indicator of IYSV risk. Our findings on IYSV spread dynamics provided valuable insights for developing integrated pest and disease management strategies for New York onion growers.


Assuntos
Cebolas , Doenças das Plantas , Tisanópteros , Cebolas/virologia , Doenças das Plantas/virologia , New York , Animais , Tisanópteros/virologia , Tisanópteros/fisiologia , Insetos Vetores/virologia
2.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37622664

RESUMO

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Vírus de RNA de Sentido Negativo , Vírus de RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
3.
J Virol ; 96(5): e0214621, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019710

RESUMO

With more than 80 members worldwide, the Orthobunyavirus genus in the Peribunyaviridae family is a large genus of enveloped RNA viruses, many of which are emerging pathogens in humans and livestock. How orthobunyaviruses (OBVs) penetrate and infect mammalian host cells remains poorly characterized. Here, we investigated the entry mechanisms of the OBV Germiston (GERV). Viral particles were visualized by cryo-electron microscopy and appeared roughly spherical with an average diameter of 98 nm. Labeling of the virus with fluorescent dyes did not adversely affect its infectivity and allowed the monitoring of single particles in fixed and live cells. Using this approach, we found that endocytic internalization of bound viruses was asynchronous and occurred within 30 to 40 min. The virus entered Rab5a-positive (Rab5a+) early endosomes and, subsequently, late endosomal vacuoles containing Rab7a but not LAMP-1. Infectious entry did not require proteolytic cleavage, and endosomal acidification was sufficient and necessary for viral fusion. Acid-activated penetration began 15 to 25 min after initiation of virus internalization and relied on maturation of early endosomes to late endosomes. The optimal pH for viral membrane fusion was slightly below 6.0, and penetration was hampered when the potassium influx was abolished. Overall, our study provides real-time visualization of GERV entry into host cells and demonstrates the importance of late endosomal maturation in facilitating OBV penetration. IMPORTANCE Orthobunyaviruses (OBVs), which include La Crosse, Oropouche, and Schmallenberg viruses, represent a growing threat to humans and domestic animals worldwide. Ideally, preventing OBV spread requires approaches that target early stages of infection, i.e., virus entry. However, little is known about the molecular and cellular mechanisms by which OBVs enter and infect host cells. Here, we developed accurate, sensitive tools and assays to investigate the penetration process of GERV. Our data emphasize the central role of late endosomal maturation in GERV entry, providing a comprehensive overview of the early stages of an OBV infection. Our study also brings a complete toolbox of innovative methods to study each step of the OBV entry program in fixed and living cells, from virus binding and endocytosis to fusion and penetration. The information gained herein lays the foundation for the development of antiviral strategies aiming to block OBV entry.


Assuntos
Endossomos , Orthobunyavirus , Internalização do Vírus , Animais , Microscopia Crioeletrônica , Endossomos/virologia , Mamíferos , Orthobunyavirus/fisiologia
4.
J Gen Virol ; 101(1): 1-2, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846417

RESUMO

Peribunyaviruses are enveloped and possess three distinct, single-stranded, negative-sense RNA segments comprising 11.2-12.5 kb in total. The family includes globally distributed viruses in the genera Orthobunyavirus, Herbevirus, Pacuvirus and Shangavirus. Most viruses are maintained in geographically-restricted vertebrate-arthropod transmission cycles that can include transovarial transmission from arthropod dam to offspring. Others are arthropod-specific. Arthropods can be persistently infected. Human infection occurs through blood feeding by an infected vector arthropod. Infections can result in a diversity of human and veterinary clinical outcomes in a strain-specific manner. Segment reassortment is evident between some peribunyaviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Peribunyaviridae, which is available at ictv.global/report/peribunyaviridae.


Assuntos
Vírus de RNA/classificação , Vírus de RNA/genética , Animais , Vetores Artrópodes/genética , Artrópodes/virologia , Genoma Viral/genética , Humanos , Filogenia , Vírion/genética
5.
Emerg Infect Dis ; 25(6): 1110-1117, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31107212

RESUMO

During 2014-2017, we isolated a novel orthobunyavirus from broiler chickens with severe kidney lesions in the state of Kedah, Malaysia; we named the virus Kedah fatal kidney syndrome virus (KFKSV). Affected chickens became listless and diarrheic before dying suddenly. Necropsies detected pale and swollen kidneys with signs of gout, enlarged and fragile livers, and pale hearts. Experimental infection of broiler chickens with KFKSV reproduced the disease and pathologic conditions observed in the field, fulfilling the Koch's postulates. Gene sequencing indicated high nucleotide identities between KFKSV isolates (99%) and moderate nucleotide identities with the orthobunyavirus Umbre virus in the large (78%), medium (77%), and small (86%) genomic segments. KFKSV may be pathogenic for other host species, including humans.


Assuntos
Infecções por Bunyaviridae/veterinária , Galinhas/virologia , Orthobunyavirus , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Biópsia , Genes Virais , Geografia Médica , História do Século XXI , Malásia/epidemiologia , Orthobunyavirus/classificação , Orthobunyavirus/genética , Orthobunyavirus/isolamento & purificação , Filogenia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/história , Vigilância em Saúde Pública , RNA Viral
6.
J Gen Virol ; 100(2): 137-144, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30547856

RESUMO

Triniti virus (TNTV) has been isolated in Trinidad and Tobago and in Brazil. To date little is known about this virus, which is classified as an ungrouped virus within the family Togaviridae. Here, three isolates of TNTV were characterized both genetically and antigenically. The genome was shown to contain three RNA segments: small (S), medium (M) and large (L). Genome organization, protein sizes and protein motifs were similar to those of viruses in the genus Orthobunyavirus, family Peribunyaviridae. Antigenic reactivity revealed the three TNTV isolates to be closely related, but no serologic cross-reaction with other orthobunyaviruses. Morphological observation by transmission electron microscopy indicated that virus size and symmetry were compatible with those of viruses in the family Peribunyaviridae. Our serological, morphological and molecular results support the taxonomic reclassification of TNTV as a member of the genus Orthobunyavirus, family Peribunyaviridae.


Assuntos
Antígenos Virais/imunologia , Orthobunyavirus/classificação , Orthobunyavirus/isolamento & purificação , RNA Viral/genética , Ordem dos Genes , Genoma Viral , Microscopia Eletrônica de Transmissão , Orthobunyavirus/genética , Orthobunyavirus/imunologia , Sorotipagem , Proteínas Virais/análise , Vírion/ultraestrutura
7.
Virol J ; 15(1): 122, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081908

RESUMO

BACKGROUND: Lokern virus (LOKV) is a poorly characterized arthropod-borne virus belonging to the genus Orthobunyavirus (family Peribunyaviridae). All viruses in this genus have tripartite, single-stranded, negative-sense RNA genomes, and the three RNA segments are designated as small, (S), medium (M) and large (L). A 559 nt. region of the M RNA segment of LOKV has been sequenced and there are no sequence data available for its S or L RNA segments. The purpose of this study was to sequence the genome of LOKV. METHODS: The genome of LOKV was fully sequenced by unbiased high-throughput sequencing, 5' and 3' rapid amplification of cDNA ends, reverse transcription-polymerase chain reaction and Sanger sequencing. RESULTS: The S and L RNA segments of LOKV consist of 952 and 6864 nt. respectively and both have 99.0% nucleotide identity with the corresponding regions of Main Drain virus (MDV). In contrast, the 4450-nt. M RNA segment has only 59.0% nucleotide identity with the corresponding region of MDV and no more than 72.7% nucleotide identity with all other M RNA segment sequences in the Genbank database. Phylogenetic data support these findings. CONCLUSIONS: This study provides evidence that LOKV is a natural reassortant that acquired its S and L RNA segments from MDV and its M RNA segment from an undiscovered, and possibly extinct, virus. The availability of complete genome sequence data facilitates the accurate detection, identification and diagnosis of viruses and viral infections, and this is especially true for viruses with segmented genomes because it can be difficult or even impossible to differentiate between reassortants and their precursors when incomplete sequence data are available.


Assuntos
Genoma Viral/genética , Orthobunyavirus/genética , Filogenia , Vírus Reordenados/genética , Sequência de Bases , Tamanho do Genoma , RNA Viral/genética , Alinhamento de Sequência
9.
Vet Res Commun ; 48(1): 449-457, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831381

RESUMO

Akabane virus (AKAV) is known as a major teratogenic agent of ruminant fetuses. In this study, we investigated the relationship between porcine abnormal deliveries and AKAV by serology, pathology, and virology investigations using specimens from 16 stillborn fetuses delivered in southern Japan between 2013 and 2015. The major clinical manifestations in stillborn fetuses were hydranencephaly, arthrogryposis, spinal curvature, and both skeletal muscle and subcutaneous edema. Histologic examination of the specimens identified atrophy of skeletal muscle fibers accompanied by adipose replacement. Nonsuppurative encephalomyelitis and decreased neuronal density in the ventral horn of the spinal cord were shown in two separate fetuses, respectively. Neutralizing antibody titers to AKAV were detected in most of the tested fetuses (13/16). The AKAV sequences detected in the affected fetuses in 2013 and 2015 were highly identical and closely related to Japanese AKAV isolates which were isolated in 2013 and sorted into genogroup I of AKAV. Immunohistochemistry visualized AKAV antigens in the neuronal cells of the central nervous system of the fetuses. These findings indicate that AKAV was involved in the birth of abnormal piglets at the affected farm. The clinical manifestations and histopathological features in the stillborn fetuses were very similar to those in ruminant neonates affected by AKAV. To avoid misdiagnosis and to evaluate the precise impact of AKAV on pig reproduction, AKAV should be considered in differential diagnoses of reproductive failures in pigs.


Assuntos
Infecções por Bunyaviridae , Orthobunyavirus , Doenças dos Suínos , Animais , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/veterinária , Infecções por Bunyaviridae/patologia , Feto/patologia , Japão/epidemiologia , Ruminantes , Suínos , Doenças dos Suínos/diagnóstico
10.
Viruses ; 16(3)2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543848

RESUMO

The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.


Assuntos
Arenaviridae , Vírus de RNA , Vacinas , Humanos , Imunidade Adaptativa
11.
Trop Med Infect Dis ; 7(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36288038

RESUMO

The Shuni virus (SHUV) causes an endemic viral infection in Israel and South Africa. It belongs to the Simbu serogroup within the order Bunyavirales, family Peribunyaviridae, genus Orthobunyavirus. Recently, it has been identified in aborted cases of domestic ruminants, young cattle and horses manifesting neural signs and acute death, symptomatic cows, and in carcasses of wild animals. Moreover, SHUV was isolated and identified in humans. In this study, we describe clinical cases of SHUV infection in Israeli domestic ruminants in 2020-2021, which represented clinical manifestations of simbuviral infection including abortions, a neural lethal case in a fattening calf, and an acute symptomatic case in a beef cow. In all cases, SHUV was confirmed by complete or partial viral genome sequencing. There is a significant difference of M and L segments of the novel strains compared with those of all known SHUV strains, while the S segments have more than 99% nucleotide (nt) identity with Israeli and African "Israeli-like" strains previously circulated in 2014-2019. This indicates a reassortment origin of the strain. At the same time, M and S segment nt sequences showed about 98-99% nt identity with some South African strains collected in 2016-2018. Nevertheless, the viral origin and the geographical place of the reassortment stayed unknown.

12.
Transbound Emerg Dis ; 68(3): 1531-1540, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32910551

RESUMO

Shuni virus (SHUV), an insect-transmitted orthobunyavirus of the Simbu serogroup within the family Peribunyaviridae, may induce severe congenital malformations when naïve ruminants are infected during gestation. Only recently, another clinical presentation in cattle, namely neurological disease after postnatal infection, was reported. To characterize the course of the disease under experimental conditions and to confirm a causal relationship between the virus and the neurological disorders observed in the field, six calves each were experimentally inoculated (subcutaneously) with two different SHUV strains from both clinical presentations, that is encephalitis and congenital malformation, respectively. Subsequently, the animals were monitored clinically, virologically and serologically for three weeks. All animals inoculated with the 'encephalitis strain' SHUV 2162/16 developed viremia for three to four consecutive days, seroconverted, and five out of six animals showed elevated body temperature for up to three days. No further clinical signs such as neurological symptoms were observed in any of these animals. However, four out of six animals developed a non-suppurative meningoencephalitis, characterized by perivascular cuffing and glial nodule formation. Moreover, SHUV genome could be visualized in brain tissues of the infected animals by in situ hybridization. In contrast to the 'encephalitis SHUV strain', in animals subcutaneously inoculated with the strain isolated from a malformed newborn (SHUV 2504/3/14), which expressed a truncated non-structural protein NSs, a major virulence factor, no viremia or seroconversion, was observed, demonstrating an expected severe replication defect of this strain in vivo. The lack of viremia further indicates that virus variants evolving in malformed foetuses may represent attenuated artefacts as has been described for closely related viruses. As the neuropathogenicity of SHUV could be demonstrated under experimental conditions, this virus should be included in differential diagnosis for encephalitis in ruminants, and cattle represent a suitable animal model to study the pathogenesis of SHUV.


Assuntos
Infecções por Bunyaviridae/veterinária , Doenças dos Bovinos/diagnóstico , Meningoencefalite/veterinária , Orthobunyavirus/fisiologia , Animais , Infecções por Bunyaviridae/complicações , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/virologia , Bovinos , Doenças dos Bovinos/virologia , Diagnóstico Diferencial , Modelos Animais de Doenças , Feminino , Masculino , Meningoencefalite/diagnóstico , Meningoencefalite/virologia
13.
Viruses ; 13(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670641

RESUMO

In 2016, the Bunyavirales order was established by the International Committee on Taxonomy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcriptional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral pathogenesis, and developing strategies for interventions and treatments.


Assuntos
Genoma Viral , Vírus de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Humanos , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Proteínas não Estruturais Virais/genética
14.
Viruses ; 13(5)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066683

RESUMO

Bat flies (Hippoboscoidea: Nycteribiidae and Streblidae) are obligate hematophagous ectoparasites of bats. We collected streblid bat flies from the New World (México) and the Old World (Uganda), and used metagenomics to identify their viruses. In México, we found méjal virus (Rhabdoviridae; Vesiculovirus), Amate virus (Reoviridae: Orbivirus), and two unclassified viruses of invertebrates. Méjal virus is related to emerging zoonotic encephalitis viruses and to the agriculturally important vesicular stomatitis viruses (VSV). Amate virus and its sister taxon from a bat are most closely related to mosquito- and tick-borne orbiviruses, suggesting a previously unrecognized orbivirus transmission cycle involving bats and bat flies. In Uganda, we found mamucuso virus (Peribunyaviridae: Orthobunyavirus) and two unclassified viruses (a rhabdovirus and an invertebrate virus). Mamucuso virus is related to encephalitic viruses of mammals and to viruses from nycteribiid bat flies and louse flies, suggesting a previously unrecognized orthobunyavirus transmission cycle involving hippoboscoid insects. Bat fly virus transmission may be neither strictly vector-borne nor strictly vertical, with opportunistic feeding by bat flies occasionally leading to zoonotic transmission. Many "bat-associated" viruses, which are ecologically and epidemiologically associated with bats but rarely or never found in bats themselves, may actually be viruses of bat flies or other bat ectoparasites.


Assuntos
Dípteros/virologia , Tropismo Viral , Animais , Código de Barras de DNA Taxonômico , Dípteros/classificação , Dípteros/genética , Geografia , Especificidade de Hospedeiro , Metagenômica/métodos , México , Filogenia , Uganda
15.
Vet Sci ; 8(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477718

RESUMO

The Simbu serogroup of orthobunyaviruses includes several pathogens of veterinary importance, among them Schmallenberg virus (SBV), Akabane virus (AKAV) and Shuni virus (SHUV). They infect predominantly ruminants and induce severe congenital malformation. In adult animals, the intra vitam diagnostics by direct virus detection is limited to only a few days due to a short-lived viremia. For surveillance purposes the testing for specific antibodies is a superior approach. However, the serological differentiation is hampered by a considerable extent of cross-reactivity, as viruses were assigned into this serogroup based on antigenic relatedness. Here, we established a glycoprotein Gc-based triplex enzyme-linked immunosorbent assay (ELISA) for the detection and differentiation of antibodies against SBV, AKAV, and SHUV. A total of 477 negative samples of various ruminant species, 238 samples positive for SBV-antibodies, 36 positive for AKAV-antibodies and 53 SHUV antibody-positive samples were tested in comparison to neutralization tests. For the newly developed ELISA, overall diagnostic specificities of 84.56%, 94.68% and 89.39% and sensitivities of 89.08%, 69.44% and 84.91% were calculated for SBV, AKAV and SHUV, respectively, with only slight effects of serological cross-reactivity on the diagnostic specificity. Thus, this test system could be used for serological screening in suspected populations or as additional tool during outbreak investigations.

16.
Virus Evol ; 7(2): veab085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703624

RESUMO

Proactive approaches in preventing future epidemics include pathogen discovery prior to their emergence in human and/or animal populations. Playing an important role in pathogen discovery, high-throughput sequencing (HTS) enables the characterization of microbial and viral genetic diversity within a given sample. In particular, metagenomic HTS allows the unbiased taxonomic profiling of sequences; hence, it can identify novel and highly divergent pathogens such as viruses. Newly discovered viral sequences must be further investigated using genomic characterization, molecular and serological screening, and/or in vitro and in vivo characterization. Several outbreak and surveillance studies apply unbiased generic HTS to characterize the whole genome sequences of suspected pathogens. In contrast, this study aimed to screen for novel and unexpected pathogens in previously generated HTS datasets and use this information as a starting point for the establishment of an early warning system (EWS). As a proof of concept, the EWS was applied to HTS datasets and archived samples from the 2018-9 West Nile virus (WNV) epidemic in Germany. A metagenomics read classifier detected sequences related to genome sequences of various members of Riboviria. We focused the further EWS investigation on viruses belonging to the families Peribunyaviridae and Reoviridae, under suspicion of causing co-infections in WNV-infected birds. Phylogenetic analyses revealed that the reovirus genome sequences clustered with sequences assigned to the species Umatilla virus (UMAV), whereas a new peribunyavirid, tentatively named 'Hedwig virus' (HEDV), belonged to a putative novel genus of the family Peribunyaviridae. In follow-up studies, newly developed molecular diagnostic assays detected fourteen UMAV-positive wild birds from different German cities and eight HEDV-positive captive birds from two zoological gardens. UMAV was successfully cultivated in mosquito C6/36 cells inoculated with a blackbird liver. In conclusion, this study demonstrates the power of the applied EWS for the discovery and characterization of unexpected viruses in repurposed sequence datasets, followed by virus screening and cultivation using archived sample material. The EWS enhances the strategies for pathogen recognition before causing sporadic cases and massive outbreaks and proves to be a reliable tool for modern outbreak preparedness.

17.
Viruses ; 11(10)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658646

RESUMO

This report describes and characterizes three novel RNA viruses isolated from dead birds collected during West Nile virus surveillance in Harris County, TX, USA (the Houston metropolitan area). The novel viruses are identified as members of the families Nyamaviridae, Orthomyxoviridae, and Peribunyaviridae and have been designated as San Jacinto virus, Mason Creek virus, and Buffalo Bayou virus, respectively. Their potential public health and/or veterinary importance are still unknown.


Assuntos
Aves/virologia , Orthomyxoviridae , Vírus de RNA , Animais , Doenças das Aves/virologia , Camundongos , Orthomyxoviridae/classificação , Orthomyxoviridae/genética , Orthomyxoviridae/isolamento & purificação , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/ultraestrutura , RNA Viral , Texas
18.
Viruses ; 11(9)2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500304

RESUMO

The Peribunyaviridae family contains the genera Orthobunyavirus, Herbevirus, Pacuvirus, and Shangavirus. Orthobunyaviruses and pacuviruses are mainly transmitted by blood-feeding insects and infect a variety of vertebrates whereas herbeviruses and shangaviruses have a host range restricted to insects. Here, we tested mosquitoes from a tropical rainforest in Mexico for infections with peribunyaviruses. We identified and characterized two previously unknown viruses, designated Baakal virus (BKAV) and Lakamha virus (LAKV). Sequencing and de novo assembly of the entire BKAV and LAKV genomes revealed that BKAV is an orthobunyavirus and LAKV is likely to belong to a new genus. LAKV was almost equidistant to the established peribunyavirus genera and branched as a deep rooting solitary lineage basal to herbeviruses. Virus isolation attempts of LAKV failed. BKAV is most closely related to the bird-associated orthobunyaviruses Koongol virus and Gamboa virus. BKAV was successfully isolated in mosquito cells but did not replicate in common mammalian cells from various species and organs. Also cells derived from chicken were not susceptible. Interestingly, BKAV can infect cells derived from a duck species that is endemic in the region where the BKAV-positive mosquito was collected. These results suggest a narrow host specificity and maintenance in a mosquito-bird transmission cycle.


Assuntos
Infecções por Bunyaviridae/transmissão , Culicidae/virologia , Mosquitos Vetores/virologia , Orthobunyavirus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Infecções por Bunyaviridae/virologia , Culicidae/fisiologia , Feminino , Genoma Viral , Humanos , México , Mosquitos Vetores/fisiologia , Orthobunyavirus/classificação , Orthobunyavirus/isolamento & purificação , Filogenia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
19.
Infect Genet Evol ; 68: 16-22, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30504003

RESUMO

Oropouche orthobunyavirus (OROV) has significant impact in public health in Amazon region. This arbovirus is one of the most common causes of febrile illness in Brazil, and is responsible for several epidemics since 1960's. In this study, we sequenced and characterized the complete coding sequences (S-, M- and L-RNA) of 35 OROV isolates from Brazil. Here, we classified 20 strains in genotype I from Pará and Maranhão states, nine as genotype II from Pará and Rondônia states confirmed, four classified into genotype III from Acre, Maranhão, Minas Gerais and Rondônia states and two genotype IV from Amazonas State. Also, we did not observe reassortment events involving the OROV isolates. In addition, we developed novel RT-PCR tools to identify reassortment events among OROV strains. These data will be useful to better understand the molecular epidemiology and diagnostic of OROV infections.


Assuntos
Infecções por Bunyaviridae/virologia , Genoma Viral , Genômica , Orthobunyavirus/genética , Vírus Reordenados/genética , Animais , Brasil/epidemiologia , Chlorocebus aethiops , Biologia Computacional/métodos , Genômica/métodos , Genótipo , Geografia Médica , Humanos , Epidemiologia Molecular , Anotação de Sequência Molecular , Tipagem Molecular , Orthobunyavirus/classificação , Filogenia , Células Vero
20.
Virus Res ; 273: 197761, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31539558

RESUMO

We report the complete genome sequencing of the first fish peribunyavirus determined using a next-generation sequencing approach. The virus was isolated during a routine health assessment of wild largemouth bass (Micropterus salmoides) in Wisconsin in April of 2009. Further research is needed to determine the epidemiology and pathogenicity of the largemouth bass bunyavirus.


Assuntos
Bass/virologia , Genoma Viral , Orthobunyavirus/classificação , Animais , Doenças dos Peixes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Orthobunyavirus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa