Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 393: 130144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042432

RESUMO

This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.


Assuntos
Glicerol , Fenol , Saccharomycetales , Fermentação , Glicerol/metabolismo , Fenol/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Metanol/metabolismo
2.
Curr Res Food Sci ; 8: 100776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846016

RESUMO

In recent years, climate change has led to higher grape must sugar content and, consequently, increased alcohol by volume. Evaporative or pertraction is a common method for post-fermentation ethanol removal from wines, but it selectively removes some less polar volatile compounds along with ethanol. To mitigate volatile substance loss, this study investigates blending of the red wine (Marzemino-Cabernet blend) with obtained dealcoholized samples from it by industrial evaporative pertraction system, while maintaining the final product within a two-percentage-point reduction in ethanol. Thus MIX 1 and MIX 2 blends were prepared, reducing the ABV of the initial wine (12.5% alcohol by volume) to 10.5% and 9.5%. Chemical analyses highlighted that most alcohols, acetates, and ethyl esters of fatty acids decreased with alcohol by volume reduction. However, compounds with polar groups (acetoin and acetovanillone), C13-norisoprenoids, and certain lactones showed increasing trends. Sensory analysis indicated high scores for sweetness and smoothness in the blended wines, with a decrease in acidic taste. Floral scents notably increased, particularly in MIX 2, closely resembling the initial wine's sensory profile. The blending of initial wine with appropriately dealcoholized wine samples has proven to be an effective strategy for preserving bouquet and color of dealcoholized wines. This approach broadens the consumer base by catering to people who prefer low-alcohol options, have dietary restrictions, or are health-conscious, but who still wish to savor wines with aromatic quality rather than a flat taste. This strategy is crucial in the wine industry as it successfully addresses technical challenges and ensures economic viability.

3.
Membranes (Basel) ; 13(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367758

RESUMO

This article is devoted to a brief review of the modelling of liquid membrane separation methods, such as emulsion, supported liquid membranes, film pertraction, and three-phase and multi-phase extraction. Mathematical models and comparative analyses of liquid membrane separations with different flow modes of contacting liquid phases are presented. A comparison of the processes of conventional and liquid membrane separations is carried out under the following assumptions: mass transfer is described by the traditional mass transfer equation; the equilibrium distribution coefficients of a component passing from one of the phases to another are constant. It is shown that, from the point of view of mass transfer driving forces, emulsion and film pertraction liquid membrane methods have advantages over the conventional conjugated extraction stripping method, when the mass-transfer efficiency of the extraction stage is significantly higher than the efficiency of the stripping stage. The comparison of the supported liquid membrane with conjugated extraction stripping showed that when mass-transfer rates on the extraction and stripping sides are different, the liquid membrane method is more efficient, while when they are equal to each other, both processes demonstrate the same results. The advantages and disadvantages of liquid membrane methods are discussed. The main disadvantages of liquid membrane methods-low throughput and complexity-can be overcome by using modified solvent extraction equipment to carry out liquid membrane separations.

4.
Membranes (Basel) ; 12(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36005686

RESUMO

Ionic liquids (ILs) are considered a green viable organic solvent substitute for use in the extraction and purification of biosynthetic products (derived from biomass-solid/liquid extraction, or obtained through fermentation-liquid/liquid extraction). In this review, we analyzed the ionic liquids (greener alternative for volatile organic media in chemical separation processes) as solvents for extraction (physical and reactive) and pertraction (extraction and transport through liquid membranes) in the downstream part of organic acids production, focusing on current advances and future trends of ILs in the fields of promoting environmentally friendly products separation.

5.
Membranes (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34564537

RESUMO

The hydrophilic and hydrophobic single-walled carbon nanotube membranes were prepared and progressively applied in sorption, filtration, and pertraction experiments with the aim of eliminating three antibiotics-tetracycline, sulfamethoxazole, and trimethoprim-as a single pollutant or as a mixture. The addition of SiO2 to the single-walled carbon nanotubes allowed a transparent study of the influence of porosity on the separation processes. The mild oxidation, increasing hydrophilicity, and reactivity of the single-walled carbon nanotube membranes with the pollutants were suitable for the filtration and sorption process, while non-oxidized materials with a hydrophobic layer were more appropriate for pertraction. The total pore volume increased with an increasing amount of SiO2 (from 743 to 1218 mm3/g) in the hydrophilic membranes. The hydrophobic layer completely covered the carbon nanotubes and SiO2 nanoparticles and provided significantly different membrane surface interactions with the antibiotics. Single-walled carbon nanotubes adsorbed the initial amount of antibiotics in less than 5 h. A time of 2.3 s was sufficient for the filtration of 98.8% of sulfamethoxazole, 95.5% of trimethoprim, and 87.0% of tetracycline. The thicker membranes demonstrate a higher adsorption capacity. However, the pertraction was slower than filtration, leading to total elimination of antibiotics (e.g., 3 days for tetracycline). The diffusion coefficient of the antibiotics varies between 0.7-2.7 × 10-10, depending on the addition of SiO2 in perfect agreement with the findings of the textural analysis and scanning electron microscopy observations. Similar to filtration, tetracycline is retained by the membranes more than sulfamethoxazole and trimethoprim.

6.
Membranes (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34677519

RESUMO

Pharmaceutical wastewater pollution has reached an alarming stage, as many studies have reported. Membrane separation has shown great performance in wastewater treatment, but there are some drawbacks and undesired byproducts of this process. Selective membranes could be used for pollutant investigation sensors or even for pollutant recovery. The polydimethylsiloxane (PDMS) membrane was first tested on separated and mixed antibiotic (ATB) water solutions containing sulfamethoxazole (SM), trimethoprim (TMP), and tetracycline (TET). Then, the bare and ultra-violet grafted (UV-grafted) PDMS membranes (MMA-DMAEMA 10, GMA-DMAEMA 5, and GMA-DMAEMA 10) were tested in tramadol (TRA) separation, where the diffusion coefficient was evaluated. Finally, the membranes were tested in pertraction with a mixture of SM, TMP, TET, and TRA. The membranes were characterized using the following methods: contact angle measurement, FTIR, SEM/EDX, and surface and pore analysis. The main findings were that TET was co-eluted during mixed ATB pertraction, and GMA-DMAEMA 5 was found to selectively permeate TRA over the present ATBs.

7.
Methods Mol Biol ; 2190: 115-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32804363

RESUMO

Combining artificial neural networks with evolutive/bioinspired approaches is a technique that can solve a variety of issues regarding the topology determination and training for neural networks or for process optimization. In this chapter, the main mechanisms used in neuroevolution are discussed and some biochemical separation examples are given to underline the efficiency of these tools. For the current case studies (reactive extraction of folic acid and pertraction of vitamin C), the bioinspired metaheuristic included in the neuroevolutive procedures is represented by Differential Evolution, an algorithm that has shown a great potential to solve a variety of problems from multiple domains.


Assuntos
Fenômenos Bioquímicos/fisiologia , Redes Neurais de Computação , Algoritmos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa