Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794044

RESUMO

Water constitutes an indispensable resource crucial for the sustenance of humanity, as it plays an integral role in various sectors such as agriculture, industrial processes, and domestic consumption. Even though water covers 71% of the global land surface, governments have been grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing factor to this situation is the persistent contamination of available water sources rendering them unfit for human consumption. A common contaminant, pesticides are not frequently tested for despite their serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging task because the procedures involved in the extraction and detection are complex. This reduces their popularity in many monitoring campaigns despite their harmful effects. If the existing methods of pesticide analysis are adapted by leveraging new technologies, then information concerning their presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML), and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in the information of water ecosystems. This paper discusses methods of pesticide detection in water, emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in wireless sensing. It also explores the application of WSNs in water, the IoT, computing models, ML, and big data analytics, and their potential for integration as technologies useful for pesticide monitoring in water.

2.
Sensors (Basel) ; 24(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39338679

RESUMO

Triazine pesticide (atrazine and its derivatives) detection sensors have been developed to thoroughly check for the presence of these chemicals and ultimately prevent their exposure to humans. Sensitive coatings were designed by utilizing molecular imprinting technology, which aims to create artificial receptors for the detection of chlorotriazine pesticides with gravimetric transducers. Initially, imprinted polymers were developed, using acrylate and methacrylate monomers containing hydrophilic and hydrophobic side chains, specifically for atrazine, which shares a basic heterocyclic triazine structure with its structural analogs. By adjusting the ratio of the acid to the cross-linker and introducing acrylate ester as a copolymer, optimal non-covalent interactions were achieved with the hydrophobic core of triazine molecules and their amino groups. A maximum sensor response of 546 Hz (frequency shift/layer height equal to 87.36) was observed for a sensitive coating composed of 46% methacrylic acid and 54% ethylene glycol dimethacrylate, with a demonstrated layer height of 250 nm (6.25 kHz). The molecularly imprinted copolymer demonstrated fully reversible sensor responses, not only for atrazine but also for its metabolites, like des-ethyl atrazine, and structural analogs, such as propazine and terbuthylazine. The efficiency of modified molecularly imprinted polymers for targeted analytes was tested by combining them with a universally applicable quartz crystal microbalance transducer. The stable selectivity pattern of the developed sensor provides an excellent basis for a pattern recognition procedure.


Assuntos
Atrazina , Polímeros Molecularmente Impressos , Praguicidas , Triazinas , Praguicidas/análise , Praguicidas/química , Triazinas/química , Triazinas/análise , Atrazina/análise , Atrazina/química , Polímeros Molecularmente Impressos/química , Impressão Molecular/métodos , Metacrilatos/química , Polímeros/química , Acrilatos/química
3.
J Sci Food Agric ; 104(5): 2630-2640, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37985216

RESUMO

BACKGROUND: Understanding the role of adjuvants in pesticide persistence is crucial to develop effective pesticide formulations and manage pesticide residues in fresh produce. This study investigated the impact of a commercial non-ionic surfactant product containing alkylphenol ethoxylates (APEOs) on the persistence of thiabendazole on apple and spinach surfaces against the 30 kg m-3 baking soda (sodium bicarbonate, NaHCO3 ) soaking, which was used to remove the active ingredient (AI) in the cuticular wax layer of fresh produce through alkaline hydrolysis. Surface-enhanced Raman scattering (SERS) mapping method was used to quantify the residue levels on fresh produce surfaces at different experimental scenarios. Four standard curves were established to quantify surface thiabendazole in the absence and presence of APEOs, on apple and spinach leaf surfaces, respectively. RESULTS: Overall, the result showed that APEOs enhanced the persistence of thiabendazole over time. After 3 days of exposure, APEOs increased thiabendazole surface residue against NaHCO3 hydrolysis on apple and spinach surfaces by 5.39% and 10.47%, respectively. CONCLUSION: The study suggests that APEOs led to more pesticide residues on fresh produce and greater difficulty in washing them off from the surfaces using baking soda, posing food safety concerns. © 2023 Society of Chemical Industry.


Assuntos
Malus , Resíduos de Praguicidas , Praguicidas , Malus/química , Resíduos de Praguicidas/análise , Praguicidas/análise , Bicarbonato de Sódio , Análise Espectral Raman/métodos , Spinacia oleracea/química , Tensoativos , Tiabendazol/análise , Fenóis/química
4.
Nanotechnology ; 33(40)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35767929

RESUMO

We propose an anti-scratch flexible surface-enhanced Raman scattering substrate with arrayed nanocavity microstructures fabricated by colloidal lithography. The nanocavity microstructure of the substrate can well protect the inner gold nanoparticles during wipe sampling. The prepared flexible substrate was able to detect 4-aminothiophenol (4-ATP) with a concentration down to 1 fM. Furthermore, the substrate was used to detect 6-BA residues on the surface of apples and bean sprouts through wipe sampling, which shows great potential in the field of rapid on-site detection, especially in the detection of pesticide residues on the surface of fruits and vegetables.


Assuntos
Nanopartículas Metálicas , Resíduos de Praguicidas , Frutas/química , Ouro/química , Nanopartículas Metálicas/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Análise Espectral Raman , Verduras/química
5.
Anal Bioanal Chem ; 414(5): 1759-1772, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35059790

RESUMO

The existence of pesticide residues in the hydrosphere, biosphere, and anthroposphere can cause acute or chronic diseases and deteriorate the environment. Therefore, efficient detection of pesticide residues is of great significance to prevent food poisoning, control food pollution, and protect human lives by recognizing their distribution and concentration. Herein, a novel smartphone-coupled three-layered paper-based microfluidic chip is proposed as a facile platform to detect the pesticides. The stereoscopic capillary-driven fluid transport is enabled by the three-layered microfluidic chip configuration. The detection mechanism is based on the enzyme inhibition reaction and the chromatic reaction. The detection results are obtained by a smartphone and figured out by colorimetric quantitative analysis. Taking advantages of the above merits, we demonstrate the utilization of this smartphone-coupled three-layered paper-based microfluidic chip for the effective analysis of typical pesticides (profenofo and methomyl). The linear ranges of profenofo and methomyl are 0.27-2.1 µmol L-1 and 0.14-1.85 µmol L-1, respectively. The corresponding limits of detection in the chips are 55 nM and 34 nM, respectively. The paper-based chips are also highly cost-effective with a total cost of 0.082 ¥ per piece. It can be anticipated that this technique will open new avenues for the mass fabrication of paper-based microfluidic chips and provide state-of-the-art methods in the field of analytical chemistry.


Assuntos
Colorimetria/métodos , Dispositivos Lab-On-A-Chip , Papel , Praguicidas/análise , Smartphone
6.
Sensors (Basel) ; 22(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270963

RESUMO

The misuse of pesticides poses a tremendous threat to human health. Excessive pesticide residues have been shown to cause many diseases. Many sensor detection methods have been developed, but most of them suffer from problems such as slow detection speed or narrow detection range. So, the development of rapid, direct and sensitive means of detecting trace amounts of pesticide residues is always necessary. A novel online sensor technique was developed for direct analysis of pesticides in complex matrices with no sample pretreatment. The portable sensor ion source consists of an MPT (microwave plasma torch) with desolventizing capability and an APCI (atmosphere pressure chemical ionization), which provides abundant precursor ions and a strong electric field. The performance which improves the ionization efficiency and suppresses the background signal was verified by using pesticide standard solution and pesticide pear juice solution measurements with an Orbitrap mass spectrometer. The limit of detection (LOD) and the limit of quantization (LOQ) of the method were measured by pear juice solutions that were obtained in the ranges of 0.034-0.79 µg/L and 0.14-1 µg/L. Quantitative curves were obtained ranging from 0.5 to 100 µg/L that showed excellent semi-quantitative ability with correlation coefficients of 0.985-0.997. The recoveries (%) of atrazine, imidacloprid, dimethoate, profenofos, chlorpyrifos, and dichlorvos were 96.6%, 112.7%, 88.1%, 85.5%, 89.2%, and 101.9% with the RSDs ranging from 5.89-14.87%, respectively. The results show that the method has excellent sensitivity and quantification capability for rapid and direct detection of trace pesticide.


Assuntos
Resíduos de Praguicidas , Praguicidas , Humanos , Limite de Detecção , Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Praguicidas/análise
7.
Mikrochim Acta ; 188(3): 70, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547550

RESUMO

A photonic sensor based on inversed opal molecular imprinted polymer (MIP) film to detect the presence of chlorantraniliprole (CHL) residue in tomatoes was developed. Acrylic acid was polymerized in the presence of CHL inside the structure of a colloidal crystal, followed by etching of the colloids and CHL elution. Colloidal crystals and MIP films were characterized by scanning electron microscopy and FT-IR, confirming the inner structure and chemical structure of the material. MIP films supported on polymethylmethacrylate (PMMA) slides were incubated in aqueous solutions of the pesticide and in blended tomato samples. The MIP sensor displayed shifts of the peak wavelength of the reflection spectra in the visible range when incubated in CHL concentrations between 0.5 and 10 µg L-1, while almost no peak displacement was observed for non-imprinted (NIP) films. Whole tomatoes were blended into a liquid and spiked with CHL; the sensor was able to detect CHL residues down to 0.5 µg kg-1, significantly below the tolerance level established by the US Environmental Protection Agency of 1.4 mg kg-1. Stable values were reached after about 30-min incubation in test samples. Control samples (unspiked processed tomatoes) produced peak shifts both in MIP and NIP films; however, this matrix effect did not affect the detection of CHL in the spiked samples. These promising results support the application of photonic MIP sensors as an economical and field-deployable screening tool for the detection of CHL in crops.


Assuntos
Polímeros Molecularmente Impressos/química , Resíduos de Praguicidas/análise , ortoaminobenzoatos/análise , Resinas Acrílicas/química , Limite de Detecção , Solanum lycopersicum/química , Porosidade , Dióxido de Silício/química , Análise Espectral
8.
Mikrochim Acta ; 186(3): 167, 2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30739232

RESUMO

A rapid voltammetric method is described for the determination of the organophosphorus pesticide paraoxon-ethyl (PEL). A glassy carbon electrode (GCE) was modified with a composite consisting of a poly(N-isopropylacrylamide)-chitosan microgel with incorporated palladium nanoparticles. The microgel was characterized by FE-SEM, EDX, XPS, FTIR, XRD, and EIS. The modified GCE is shown to enable direct electro-reductive determination of PEL by using differential pulse voltammetry. The method works in pH 7 solution and in the 0.01 µM to 1.3 mM PEL concentration range. At a typical working potential of -0.66 V (vs. Ag/AgCl) (at 50 mV/s), the detection limit is as low as 0.7 nM, and the electrochemical sensitivity is 1.60 µA µM-1 cm-2. Intriguingly, the modified GCE displays good recovery when applied to bok choy and water samples. Graphical abstract Schematic of an electrochemical method for determination of paraoxon ethyl (PEL) in bok choy extract and water by using poly(N-isopropyl acrylamide)-chitosan microgel decorated with palladium nanoparticle-modified glassy carbon electrodes (PdNPs/PNIPAM-CT microgel/GCE).

9.
Chemphyschem ; 19(20): 2768-2775, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29989285

RESUMO

Calixarene-functionalized luminescent nanoparticles were successfully fabricated for the FRET-based selective and sensitive detection of the organophosphorus pesticide glyphosate (GP). p-Tert-butylcalix[4]arene was grafted on the surface of [Ru(bpy)3 ]2+ incorporated SiNps to produce self-assembled nanosensors (RSC). FRET was switched on in the presence of GP by means of energy transfer due to binding with p-tert-butylcalix[4]arene grafted on the surface of the RSC. The FRET efficiency of the GP-RSC system was increased gradually with the addition of GP. The FRET efficiency was evaluated as 87.69 % and a high binding affinity was established by the binding constant value, 1.16×107  M-1 , using a Langmuir binding isotherm plot. The estimated limit of detection (LOD) was 7.91×10-7  M, which was lower than the Environmental Protection Agency (EPA) recommendation. The probe also effectively responds to real sample analysis. The sensitivity and selectivity was realized due to the efficient FRET towards the fluorescence properties of the [Ru(bpy)3 ]2+ complex.

10.
J Fluoresc ; 27(6): 2195-2200, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28895010

RESUMO

The wide use of pesticide p-fluorophenoxyacetic acid has caused the serious environmental contaminant. A novel fluorescent probe for sensitive detection of p-fluorophenoxyacetic acid in aqueous solutions based on 3.0G quaternary ammonium polyamidoamine (PAMAM) dendrimer modified quantum dots (QDs) (PAMAM@QDs) was reported. Through the solvent-evaporation method, quaternary ammonium PAMAM was employed to modify the QDs. Poloxamer 188 was used to improve the solubility and stability. The resultant PAMAM@QDs dispersed well in water. Fluorescence (FL) spectroscopic study showed that the FL intensity of the PAMAM@QDs was enhanced in the presence of p-fluorophenoxyacetic acid. Under optimal conditions, the enhanced FL intensity as a function of concentration matched very well in the range of 1 ~ 200 µg/mL of p-fluorophenoxyacetic acid, while the lower limits of detection were found to be 0.16 µg/mL. These results show that PAMAM@QDs is a promising luminescent probe for the detection of pesticides.


Assuntos
Dendrímeros/química , Corantes Fluorescentes/química , Hidrocarbonetos Fluorados/análise , Praguicidas/análise , Fenilacetatos/análise , Pontos Quânticos/química , Poluentes Químicos da Água/análise , Fenilacetatos/química
11.
Anal Biochem ; 493: 11-3, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26452613

RESUMO

The Sinorhizobium meliloti chpA promoter is highly induced in the presence of the pesticide chlorpyrifos (CPF) through the action of the transcriptional activator, ChpR. A whole-cell biosensor for the detection of CPF was developed and is composed of an Escherichia coli strain carrying a chpR expression vector and a chpA promoter-atsBA transcriptional fusion plasmid encoding sulfatase (atsA) and formylglycine generating enzyme (atsB) from Klebsiella sp. The sulfatase is posttranslationally activated by formylglycine generating enzyme (FGE) and then converts 4-methylumbelliferyl sulfate (4-MUS) to the fluorescent product, 4-methyllumbelliferone (4-MU). This biosensor system exhibited a linear response range from 25 to 500 nM CPF.


Assuntos
Técnicas Biossensoriais/métodos , Clorpirifos/análise , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Praguicidas/análise , Sinorhizobium meliloti/genética , Proteínas de Bactérias/genética , Clorpirifos/metabolismo , Klebsiella/genética , Praguicidas/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas/efeitos dos fármacos
12.
Bioelectrochemistry ; 156: 108599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988979

RESUMO

The accurate determination of organophosphorus pesticide residues is of great importance for human disease monitoring and environmental safety. Numerous detection methods exist, among which sensitive monitoring of organophosphorus compounds using electrochemical sensors has gradually become a research hotspot. This paper used acetylcholinesterase (AChE) as an indicator anchored on a zinc oxide-reduced graphene oxide (ZnO-rGO) composite rich in active sites, in which green non-toxic zinc oxide (ZnO) nanomaterials were uniformly distributed on the reduced graphene for rapid detection of organophosphorus. The effects of different ratios of ZnO to reduced graphene on the performance of ZnO-rGO nanocomposites were investigated. The AChE/ZnO-rGO biosensor detects organophosphorus by electrochemical inhibition of acetylcholinesterase in the presence of organophosphorus. The developed electrochemical biosensor has high selectivity and good linearity, and the ZnO-rGO nanocomposite as a matrix for immobilization of acetylcholinesterase and detection of organophosphorus has the potential for highly sensitive pesticide detection.


Assuntos
Técnicas Biossensoriais , Grafite , Praguicidas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Grafite/química , Compostos Organofosforados , Acetilcolinesterase/química , Técnicas Biossensoriais/métodos
13.
Food Chem ; 460(Pt 1): 140405, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053272

RESUMO

Stimuli-responsive hydrogel possesses a strong loading capacity to embed luminescent indicators for constructing food safety sensors, which are suitable for field application. In this work, a fluorescent hydrogel sensor was fabricated by incorporating Ag+-modified carbon dots (CDs-Ag+) into a sodium alginate (SA) hydrogel for in-situ detection of thiram. The fluorescence of CDs was quenched due to the combined effects of electrostatic adsorption and electron transfer between Ag+ and CDs. The formation of an AgS bond between thiram and Ag+ facilitates the release of CDs, causing subsequently fluorescence recovery. Combined with smartphone and analysis software, the fluorescence color change of the hydrogel sensor was converted into data information for quantitative detection of thiram. Such a sample-to-result step is completed within 10 min. Notably, the in-situ detection experiment of thiram in fruit and vegetable samples confirmed the practical application of the hydrogel sensor. Therefore, the hydrogel sensor provides a new research direction for the in-situ detection of pesticide residues in the monitoring of food safety.


Assuntos
Carbono , Contaminação de Alimentos , Frutas , Hidrogéis , Pontos Quânticos , Tiram , Verduras , Verduras/química , Pontos Quânticos/química , Frutas/química , Contaminação de Alimentos/análise , Carbono/química , Tiram/análise , Tiram/química , Hidrogéis/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Prata/química
14.
ACS Appl Mater Interfaces ; 16(21): 27969-27978, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752539

RESUMO

Terahertz (THz) waves have garnered significant interest across various fields, particularly in high-sensitivity sensing applications. Metamaterials can be employed in THz sensors, specifically for refractive index sensing and pesticide detection due to their high-sensitivity characteristics. In this Article, a dual-band flexible THz metamaterial sensor based on polyimide is proposed for refractive index and pesticide sensing, which is fabricated using ultraviolet (UV) lithography technology and measured by a THz time-domain spectroscope (TDS) system. The resonant frequencies of the sensor are at 0.37 and 1.13 THz, with transmission rates of 2.9% and 0.3%, respectively. With an analyte layer attached to the sensor's surface, the sensitivity of refractive index sensing can be calculated as 0.09 and 0.28 THz/RIU (refractive index unit) at the two resonant frequencies. In order to validate the exceptional pesticide sensing performance of the sensor, chlorpyrifos-methyl acetone solutions with various concentrations are added on it. Furthermore, a monolayer of graphene is coated on the sensor's surface, which is proved capable of improving pesticide sensing sensitivity at low concentrations due to strong π-π stacking interactions with π-electrons in chlorpyrifos-methyl solutions. Therefore, the graphene-coated sensor can be utilized in detecting pesticide solutions with low concentrations, and the sensor without graphene is preferred for high concentration detection. This work provides a novel option for the THz metamaterial sensor with high sensitivity covering a wide pesticide concentration range.

15.
Food Chem ; 452: 139569, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744131

RESUMO

Given the potential dangers of thiram to food safety, constructing a facile sensor is significantly critical. Herein, we presented a colorimetric sensor based on glutathione­iron hybrid (GSH-Fe) nanozyme for specific and stable detection of thiram. The GSH-Fe nanozyme exhibits good peroxidase-mimicking activity with comparable Michaelis constant (Km = 0.551 mM) to the natural enzyme. Thiram pesticides can specifically limit the catalytic activity of GSH-Fe nanozyme via surface passivation, causing the change of colorimetric signal. It is worth mentioning that the platform was used to prepare a portable hydrogel kit for rapid qualitative monitoring of thiram. Coupling with an image-processing algorithm, the colorimetric image of the hydrogel reactor is converted into the data information for accurate quantification of thiram with a detection limit of 0.3 µg mL-1. The sensing system has good selectivity and high stability, with recovery rates in fruit juice samples ranging from 92.4% to 106.9%.


Assuntos
Colorimetria , Sucos de Frutas e Vegetais , Glutationa , Ferro , Tiram , Colorimetria/instrumentação , Sucos de Frutas e Vegetais/análise , Ferro/química , Ferro/análise , Glutationa/química , Glutationa/análise , Tiram/análise , Tiram/química , Contaminação de Alimentos/análise , Praguicidas/análise , Praguicidas/química , Limite de Detecção , Técnicas Biossensoriais/instrumentação
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124226, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38560950

RESUMO

Organophosphorus pesticides play an important role as broad-spectrum inactivating herbicides in agriculture. Developing a method for rapid and efficient organophosphorus pesticides detection is still urgent due to the increasing concern on food safety. An organo-probe (ZDA), synthesized by purine hydrazone derivative and 2,2'-dipyridylamine derivative, was applied in sensitive recognition of Cu2+ with detection limit of 300 nM. Mechanism study via density functional theory (DFT) and job's plot experiment revealed that ZDA and Cu2+ ions form a 1:2 complex quenching the fluorescence emission. Moreover, this fluorescent complex ZDA-Cu2+ was applicable for detecting glyphosate and glufosinate ammonium following fluorescence enhancement mechanism, with detection limits of 11.26 nM and 11.5 nM, respectively. Meanwhile, ZDA-Cu2+ was effective and sensitive when it is used for pesticide detection, reaching the maximum value and stabilizing in 1 min. Finally, the ZDA-Cu2+ probe could also be tolerated in cell assay environment, implying potential bio-application.


Assuntos
Aminobutiratos , Glifosato , Praguicidas , Compostos Organofosforados , Fluorescência , Corantes Fluorescentes , Purinas , Espectrometria de Fluorescência , Cobre
17.
Talanta ; 281: 126714, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39232253

RESUMO

The indiscriminate use of pesticides in agriculture demands the development of devices capable of monitoring contaminations in food supplies, in the environment and biological fluids. Simplicity, easy handling, high sensitivities, and low limits-of-detection (LOD) and quantification are some of the required properties for these devices. In this work, we evaluated the effect of incorporating gold nanoparticles into indigo carmine-doped polypyrrole during the electropolymerization of films for use as an acetylcholinesterase (AChE) enzyme-based biosensor. As proof of concept, the pesticide methyl parathion was tested towards the inhibition of AChE. The enzyme was immobilized simply by drop-casting a solution, eliminating the need for any prior surface modification. The biosensors were characterized with cyclic voltammetry, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The assays for the detection of methyl parathion with films containing polypyrrole, indigo carmine and AChE (PPy-IC-AChE) presented a sensitivity of 5.7 µA cm-2 g-1 mL and a LOD of 12 nmol L-1 (3.0 ng L-1) with a linear range from 1.3 x 10-7 mol L-1 to 1.0 x 10-5 mol L-1. The introduction of gold nanoparticles (AuNP) into the film (PPy-IC-AuNP-AChE) led to remarkable improvements on the overall performance, such as a lower redox potential for the enzymatic reaction, a 145 % increase in sensitivity (14 µA cm-2 g-1 mL), a wider detection dynamic range (from 1.3x10-7 to 1.0x10-3 mol L-1), and a very low LOD of 24 fmol L-1 (64 ag mL-1). These findings underscore the potential of using AuNPs to improve the enzymatic performance of biosensor devices.

18.
Sci Total Environ ; 935: 173360, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777059

RESUMO

In the evolving field of food and agriculture, pesticide utilization is inevitable for food production and poses an increasing threat to the ecosystem and human health. This review systematically investigates and provides a comprehensive overview of recent developments in smart electrochemical devices for detecting pesticides in agricultural food and runoff contaminants. The focus encompasses recent progress in lab-scale and portable electrochemical sensors, highlighting their significance in agricultural pesticide monitoring. This review compares these sensors comprehensively and provides a scientific guide for future sensor development for infield agricultural pesticide monitoring and food safety. Smart devices address challenges related to power consumption, low cost, wearability, and portability, contributing to the advancement of agricultural sustainability. By elucidating the intricate details of these smart devices, this review offers a comprehensive discussion and roadmap for future research aimed at cost-effective, flexible, and smart handy devices, including novel electrocatalysts, to foster the development of next-generation agricultural sensor technology, opportunity and future direction for food security.


Assuntos
Agricultura , Técnicas Eletroquímicas , Monitoramento Ambiental , Praguicidas , Praguicidas/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise
19.
J Hazard Mater ; 477: 135296, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059293

RESUMO

A lateral flow immunoassay strip (LFIAS) is one of the most frequently rapid test technologies for carbofuran (CAR). Nevertheless, the LFIAS has a poor quantitative capability and low sensitivity. And, it also requires often complex sample handling steps, making testing time longer. In this study, Fe3O4 nanoparticles were successively modified with MIL-100(Fe)-based metal-organic framework (MOF) and chloroplatinic acid hexahydrate to obtain a core-shell complex of Fe3O4-MOF-Pt. The complex had a peroxidase-mimicking activity catalytic function that enabled signal amplification and sensitivity enhancement. Upon coupling with carbofuran monoclonal antibody (CAR-mAb), the magnetic separation properties of the probe enabled target-specific enrichment. The LFIAS based on Fe3O4-MOF-Pt nanocomposites could detect CAR in the range of 0.25-50 ng mL-1 with a limit of detection (LOD) of 0.15 ng mL-1, enabling colorimetric and catalytic analysis. In addition, the method showed high specificity and stability for detecting CAR in various vegetables, and recovery rates of the spiked samples were 91.40%-102.40%. In conclusion, this study provided one-stop detection of "target enrichment-visual inspection". While lowering the LOD, it reduced the detection time and improved the detection efficiency. The multifunctional Fe3O4-MOF-Pt nanocomposite provides an idea for the construction of novel multifunctional probes to improve the detection performance of conventional LFIAS.


Assuntos
Carbofurano , Limite de Detecção , Verduras , Carbofurano/análise , Verduras/química , Imunoensaio/métodos , Contaminação de Alimentos/análise , Estruturas Metalorgânicas/química , Platina/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Inseticidas/análise , Nanocompostos/química , Nanopartículas de Magnetita/química
20.
Food Chem ; 429: 136822, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450994

RESUMO

Cyclodextrins, with their unparalleled attributes of eco-friendliness, natural abundance, versatile utility, and facile functionalization, make a paramount contribution to the field of molecular imprinting. Leveraging the unique properties of cyclodextrins in molecularly imprinted polymers synthesis has revolutionized the performance of molecularly imprinted polymers, resulting in enhanced adsorption selectivity, capacity, and rapid extraction of pesticides, while also circumventing conventional limitations. As the concern for food quality and safety continues to grow, the need for standard analytical methods to detect pesticides in food and environmental samples has become paramount. Cyclodextrins, being non-toxic and biodegradable, present an attractive option for greener reagents in imprinting polymers that can also ensure environmental safety post-application. This review provides a comprehensive summary of the significance of cyclodextrins in molecular imprinting for pesticide detection in food and environmental samples. The recent advancements in the synthesis and application of molecularly imprinted polymers using cyclodextrins have been critically analyzed. Furthermore, the current limitations have been meticulously examined, and potential opportunities for greenification with cyclodextrin applications in this field have been discussed. By harnessing the advantages of cyclodextrins in molecular imprinting, it is possible to develop highly selective and efficient methods for detecting pesticides in food and environmental samples while also addressing the challenges of sustainability and environmental impact.


Assuntos
Ciclodextrinas , Impressão Molecular , Praguicidas , Polímeros Molecularmente Impressos , Extração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa