Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Fluoresc ; 32(1): 369-379, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34851473

RESUMO

In the present work, reusable magnetic molecularly imprinted polymers have been used for the first time as an adsorbent for the determination of chlorferon. Magnetic molecularly imprinted polymers have been used for the selective separation of chlorferon from the solution and sensitive fluorimetric determination has been performed using the native fluorescence of chlorferon. The developed method is rapid and determination of chlorferon was completed in an hour. Limit of detection (LOD) of the method was found to be 0.0027 µM and the linearity of the calibration graph was observed within the range of 0.01-0.36 µM (2.5 - 75 µg L-1). Adsorption isotherms point out the multilayer adsorption and the heterogeneous distribution of binding sites for imprinted polymer and homogeneous binding site for non-imprinted polymer. The adsorption capacities of imprinted polymer and non-imprinted polymer were calculated as 2.03 µmol g-1 and 0.96 µmol g-1, respectively and the imprinting factor was found to be 2.11. The interference effects of some organic compounds and characterization studies were also evaluated. The method has been applied to honey and tap water samples and the recoveries were found to be in the range of 91.3 and 101.1 %.

2.
Front Toxicol ; 5: 1304885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188093

RESUMO

A large majority of chemicals is converted into metabolites through xenobiotic-metabolising enzymes. Metabolites may present a spectrum of characteristics varying from similar to vastly different compared with the parent compound in terms of both toxicokinetics and toxicodynamics. In the pesticide arena, the role of metabolism and metabolites is increasingly recognised as a significant factor particularly for the design and interpretation of mammalian toxicological studies and in the toxicity assessment of pesticide/metabolite-associated issues for hazard characterization and risk assessment purposes, including the role of metabolites as parts in various residues in ecotoxicological adversities. This is of particular relevance to pesticide metabolites that are unique to humans in comparison with metabolites found in in vitro or in vivo animal studies, but also to disproportionate metabolites (quantitative differences) between humans and mammalian species. Presence of unique or disproportionate metabolites may underlie potential toxicological concerns. This review aims to present the current state-of-the-art of comparative metabolism and metabolites in pesticide research for hazard and risk assessment, including One Health perspectives, and future research needs based on the experiences gained at the European Food Safety Authority.

3.
Biosens Bioelectron ; 208: 114190, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35366429

RESUMO

Increased use of pesticides in agriculture requires new advanced techniques to monitor both environmental levels and human exposure of pesticides to avoid potential adverse health outcomes in sensitive populations. Atrazine is widely used to control broadleaf weeds, and here we developed a new sensor capable of detecting diaminochlorotriazine (DACT), the major metabolite and biomarker of atrazine exposure. We established an Au@PtPd nanoparticles labeled lateral flow immunoassay (LFIA) for immunochromatographic based rapid detection of urinary DACT. The detection was based on competitive immunoassay between the analyte and the BSA-conjugated antigen. As evaluated, the coupled mesoporous core-shell Au@PtPd nanoparticles, with superior peroxidase-like activity, as the signal indicator offers a rapid direct chromatographic readout inversely correlated with the concentration of analytes, providing a detection limit of 0.7 ng/mL for DACT. Moreover, the detection limits were boosted to as low as 11 pg/mL with the detectable range from 10 pg/ml to 10 ng/mL, through a one-step catalytic chromogenic reaction. A rapid readout device was developed by 3D printing to provide a stable real-time quantification of the color intensity capable of assessing both chromatographic and absorbance results. This Au@PtPd nanoparticle-based immunosensing platform, as well as the 3D printed readout device, provide a promising tool for on-site and ultrasensitive detection of pesticide biomarkers.


Assuntos
Atrazina , Técnicas Biossensoriais , Nanopartículas Metálicas , Praguicidas , Atrazina/análogos & derivados , Atrazina/análise , Biomarcadores , Ouro/química , Humanos , Imunoensaio/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Praguicidas/análise , Impressão Tridimensional , Smartphone
4.
Sci Total Environ ; 844: 157015, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35777568

RESUMO

Plenty of population epidemiology and cohort studies have found dialkyl phosphates (DAPs) in the urine were related to endocrine hormone disorders. However, we did not know whether these effects were caused by parent organophosphorus pesticides (OPs) or metabolite DAPs, especially the non-specific metabolite diethyl phosphate (DEP), which was the metabolic end product of most widely used diethyl OPs. In this study, animal experiments (in vivo), cell experiments (in vitro), small molecule-protein binding interaction experiments and computer molecular simulations (in silico) were used to explore the disturbing effects and molecular mechanisms of DEP on the hypothalamic-pituitary-adrenal (HPA) axis endocrine hormones. The animal experiments showed that chronic DEP exposure significantly disturbed the serum contents of HPA axis hormones in adult male rats. The target genes of glucocorticoid receptor (GR) in rat liver, including 11ß-hsd1 and Pepck1 and PEPCK protein expressions, were down-regulated. Moreover, the gluconeogenic abilities of rats were impaired. However, it did not affect the expression of GR in the rat hypothalamus. These results indicated that the physiological functions of glucocorticoids and GR were damaged. Furthermore, spectroscopy experiments, cell experiments, molecular docking and molecular dynamics simulations also suggested that DEP can bind to nuclear receptors GR and Nur77, affecting their transcription factor functions, and the transcriptional expression levels of their downstream target genes were reduced. The biosynthesis and secretion of adrenocorticotropic hormone and glucocorticoids were blocked. Therefore, DEP can inhibit the production and physiological functions of HPA axis endocrine hormones by disrupting these related proteins and antagonizing nuclear receptors. These results were considered to provide a theoretical basis for strictly controlling the residue limits of OPs and their metabolites in foods, agricultural products and the environment. They also revealed new targets for evaluating the toxicities and risks of pesticide metabolites.


Assuntos
Organofosfatos , Praguicidas , Sistema Hipófise-Suprarrenal , Animais , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisário , Hipotálamo/metabolismo , Masculino , Simulação de Acoplamento Molecular , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Organofosfatos/toxicidade , Praguicidas/toxicidade , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Receptores de Glucocorticoides/genética , Fatores de Transcrição/metabolismo
5.
Environ Pollut ; 310: 119794, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863712

RESUMO

Pesticide concentration measurements from field studies under real-world conditions can improve the derivation of more representative modelling input parameters for the exposure assessment of agrochemicals in the authorization process of plant protection products. The pertinent guidance documents foresee the application of inverse modelling approaches in combination with environmental fate and transport models to estimate e.g., soil dissipation rates that are solely based on microbial degradation and are not lumped with contributions from other dissipation processes such as leaching, plant uptake, volatilization and photodegradation. Field leaching studies can be used to estimate both degradation and sorption of chemicals in the soil matrix. In this study, inverse modelling of environmental fate parameters is presented based on solute concentrations from a field leaching study sampling pore water from five different depths down to 1.5 m. The leaching model PEARL and the universal optimization tool PEST were coupled, and sorption and degradation of the fungicide fluopicolide and its soil metabolite BAM (2,6-dichlorobenzamide) were quantified. Soil degradation half-lives were not different from results obtained in regular field degradation studies sampling residues in the total soil matrix (236 d vs. 158 d for fluopicolide and 53 d vs. 45 d for BAM); whereas a sorption increase with time (time-dependent sorption) was observed for the parent compound. This work aims at pointing out the feasibility to include field leaching studies with measurements at different soil depths in regulatory exposure assessment, since a statistically significant derivation of degradation and sorption parameters is presented, along with low uncertainties in the estimated parameter values of ±10%.


Assuntos
Praguicidas , Poluentes do Solo , Monitoramento Ambiental , Solo , Volatilização
6.
Artigo em Inglês | MEDLINE | ID: mdl-33540146

RESUMO

This study presents a novel sample preparation method for the determination of both specific and non-specific pesticide metabolites in human urine samples. The method combines a deconjugation step with QuEChERS-based method and solid-phase extraction. In total, 15 pesticide metabolites (diethyl phosphate; diethyl thiophosphate; dimethyl phosphate; diethyl thiophosphate; 2,4-dichlorophenoxyacetic acid; 3-phenoxybenzoic acid; 4-fluoro-3-phenoxybenzoic acid; coumaphos; diethyl dithiophosphate; malathion dicarboxylic acid; p-nitrophenol; cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid; 3,5,6-trichloro-2-pyridinol; N,N-diethyl-3-methylbenzamid and 2-isopropyl-4-methyl-6-hydroxypyrimidine) were separated using liquid chromatography coupled to a mass spectrometer and isotope dilution method for quantitation. The method was validated using recovery tests with recoveries generally ranging from 80 to 120%. Additionally, 20 urine samples collected from South African children were analysed using the presented method. The median levels of pesticide metabolites found in the urine samples ranged from not detected (N,N-diethyl-3-methylbenzamid) to 22.36 µg/g creatinine (dimethyl phosphate). The novel method developed in this study is sensitive, selective, robust and reproducible while also conserving the amount of sample, chemicals, material and time required. Due to the low limits of detection obtained for individual pesticide metabolites, the method is capable of quantifying trace levels of pesticide metabolites in urine, which thus makes it an ideal tool for biomonitoring studies.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Praguicidas/urina , Adolescente , Criança , Exposição Ambiental/análise , Feminino , Humanos , Limite de Detecção , Masculino , Reprodutibilidade dos Testes , África do Sul
7.
Foods ; 10(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477680

RESUMO

Pyrethroid pesticides are widely used on tea plants, and their residues of high frequency and concentration have received great attention. Until recently, the residues of typical metabolites of pyrethroid pesticides in tea were unknown. Herein, a modified "quick, easy, cheap, effective, rugged and safe" (QuEChERS) method for the determination of three typical metabolites of pyrethroid pesticides in tea, using ultra performance liquid chromatography tandem mass spectrometry, was developed. The mixture of florisil, octadecylsilane, and graphite carbon black was employed as modified QuEChERS adsorbents. A Kinetex C18 column achieved good separation and chromatographic peaks of all analytes. The calibration curves of 3-phenoxybenzoic acid (3-PBA) and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA) were linear in the range of 0.1-50 ng mL-1 (determination coefficient R2 higher than 0.999), and that of cis-3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropanecarboxylic acid (TFA) was in the range of 1-100 ng mL-1 (R2 higher than 0.998). The method was validated and recoveries ranged from 83.0% to 117.3%. Intra- and inter-day precisions were lower than or equal to 13.2%. The limits of quantification of 3-PBA, 4-F-3-PBA, and TFA were 5, 2, and 10 µg kg-1, respectively. A total of 22 tea samples were monitored using this method, and 3-PBA and TFA were found in two green tea samples.

8.
J Agric Food Chem ; 67(26): 7232-7242, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31184888

RESUMO

In the present study, the effect of imidacloprid uptake from contaminated soils on the growth of leaf vegetable Shanghaiqing was investigated. The result showed that during 35-day exposure, the concentration of imidacloprid (IMI) was in the order of vegetable shoots > vegetable roots > soil, indicating that IMI was more readily concentrated in vegetable shoots than in roots. Moreover, the biomass of IMI-treated vegetable shoots was comparable to that of the controls with early exposure, but was higher than that of the controls after 7-day exposure, showing that the test concentration of IMI could stimulate vegetable growth. The plant metabolic analysis of vegetable shoots using LC-QTOF/MS revealed that IMI may cause oxidative stress to the plant shoots with early exposure; however, the stressful situation of IMI seems to be relieved with the increase of some substances (such as spermidine and phenylalanine) with late exposure. Moreover, the upregulation of N-rich amino acids (glutamine, aspartate, and arginine) suggested that the process of fixing inorganic nitrogen in the plant should be enhanced, possibly contributing to enhanced growth rates. Additionally, four IMI's metabolites were identified by using MS-FINDER software, and the distribution of three metabolites in vegetable tissues was compared.


Assuntos
Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Poluentes do Solo/farmacologia , Verduras/efeitos dos fármacos , Aminoácidos/metabolismo , Transporte Biológico/efeitos dos fármacos , Inseticidas/análise , Espectrometria de Massas , Neonicotinoides/análise , Nitrocompostos/análise , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Solo/química , Poluentes do Solo/análise , Verduras/química , Verduras/crescimento & desenvolvimento , Verduras/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-28265414

RESUMO

BACKGROUND: The objective of this study was to measure malondialdehyde (MDA) and isoprostane which has been used as an index of lipid injury, 8-hydroxy-2'-deoxyguanosine (8-OHdG), which has been used as an index of DNA damage, and dialkyl-phosphate (DAP), which has been used to quantify pesticide exposure, and to investigate the relationship between pesticide exposure and oxidative stress. METHODS: This study was a cross-sectional study that evaluated 84 male farmers exposure to pesticide. In this study, 8-OHdG, isoprostane, and MDA were measured as oxidative stress indices, and dialkyl-phosphate (dimethylphosphate(DMP), diethylphosphate(DEP), dimethylthiophosphate(DMTP), and diethylthiophosphate (DETP)) excreted in the urine was also measured to evaluate pesticide exposure. A linear regression analysis was performed to investigate the relationship between pesticide metabolites, and oxidative stress biomarkers. RESULTS: A Correlation analysis was performed for pesticide exposure month (PEI), cumulative exposure index (CEI), and DAP as well as the concentration of the oxidative stress biomarkers. The PEM significantly and positively correlated to the levels of 8-OHdG, isoprostane, CEI, and DMP. CEI showed a correlation to 8-OHdG and PEM. DMP, DEP, and DETP showed a positive correlation to 8-OHdG, isoprostane, and MDA. A correlation analysis was adjusted some demographic characteristics, such as age, smoking, drinking, and exercise to determine the relationship between pesticide exposure and oxidative stress. The 8-OHdG, isoprostane, and MDA levels were significantly related to the DMP (ß = 0.320), DEP (ß = 0.390), and DETP (ß = 0.082); DMP (ß = 0.396), DEP (ß = 0.508), and DETP (ß = 0.504); and DMP (ß = 0.432), DEP (ß = 0.508), and DETP (ß = 0.329) levels, respectively. CONCLUSIONS: The concentration between oxidative stress biomarkers and the pesticide metabolite were a positive correlation. Indicators of oxidative stress was associated with a pesticide metabolite DMP, DEP, and DETP. Therefore, Pesticide exposure and oxidative stress were relevant.

10.
Artigo em Inglês | WPRIM | ID: wpr-52117

RESUMO

BACKGROUND: The objective of this study was to measure malondialdehyde (MDA) and isoprostane which has been used as an index of lipid injury, 8-hydroxy-2′-deoxyguanosine (8-OHdG), which has been used as an index of DNA damage, and dialkyl-phosphate (DAP), which has been used to quantify pesticide exposure, and to investigate the relationship between pesticide exposure and oxidative stress. METHODS: This study was a cross-sectional study that evaluated 84 male farmers exposure to pesticide. In this study, 8-OHdG, isoprostane, and MDA were measured as oxidative stress indices, and dialkyl-phosphate (dimethylphosphate(DMP), diethylphosphate(DEP), dimethylthiophosphate(DMTP), and diethylthiophosphate (DETP)) excreted in the urine was also measured to evaluate pesticide exposure. A linear regression analysis was performed to investigate the relationship between pesticide metabolites, and oxidative stress biomarkers. RESULTS: A Correlation analysis was performed for pesticide exposure month (PEI), cumulative exposure index (CEI), and DAP as well as the concentration of the oxidative stress biomarkers. The PEM significantly and positively correlated to the levels of 8-OHdG, isoprostane, CEI, and DMP. CEI showed a correlation to 8-OHdG and PEM. DMP, DEP, and DETP showed a positive correlation to 8-OHdG, isoprostane, and MDA. A correlation analysis was adjusted some demographic characteristics, such as age, smoking, drinking, and exercise to determine the relationship between pesticide exposure and oxidative stress. The 8-OHdG, isoprostane, and MDA levels were significantly related to the DMP (ß = 0.320), DEP (ß = 0.390), and DETP (ß = 0.082); DMP (ß = 0.396), DEP (ß = 0.508), and DETP (ß = 0.504); and DMP (ß = 0.432), DEP (ß = 0.508), and DETP (ß = 0.329) levels, respectively. CONCLUSIONS: The concentration between oxidative stress biomarkers and the pesticide metabolite were a positive correlation. Indicators of oxidative stress was associated with a pesticide metabolite DMP, DEP, and DETP. Therefore, Pesticide exposure and oxidative stress were relevant.


Assuntos
Humanos , Masculino , Biomarcadores , Estudos Transversais , Dano ao DNA , Ingestão de Líquidos , Fazendeiros , Isoprostanos , Modelos Lineares , Malondialdeído , Estresse Oxidativo , Fumaça , Fumar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa