Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Virol ; 97(9): e0057223, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695056

RESUMO

The non-structural (NS) proteins of the Flaviviridae members play a dual role in genome replication and virion morphogenesis. For pestiviruses, like bovine viral diarrhea virus, the NS2-3 region and its processing by the NS2 autoprotease is of particular importance. While uncleaved NS2-3 in complex with NS4A is essential for virion assembly, it cannot replace free NS3/4A in the viral replicase. Furthermore, surface interactions between NS3 and the C-terminal cytosolic domain of NS4A were shown to serve as a molecular switch between RNA replication and virion morphogenesis. To further characterize the functionality of NS4A, we performed an alanine-scanning mutagenesis of two NS4A regions, a short highly conserved cytoplasmic linker downstream of the transmembrane domain and the C-terminal domain. NS4A residues critical for polyprotein processing, RNA replication, and/or virion morphogenesis were identified. Three double-alanine mutants, two in the linker region and one close to the C-terminus of NS4A, showed a selective effect on virion assembly. All three packaging defective mutants could be rescued by a selected set of two second-site mutations, located in NS2 and NS3, respectively. This phenotype was additionally confirmed by complementation studies providing the NS2-3/4A packaging molecules containing the rescue mutations in trans. This indicates that the linker region and the cytosolic C-terminal part of NS4A are critical for the formation of protein complexes required for virion morphogenesis. The ability of the identified sets of second-site mutations in NS2-3 to compensate for diverse NS4A defects highlights a surprising functional flexibility for pestiviral NS proteins. IMPORTANCE Positive-strand RNA viruses have a limited coding capacity due to their rather small genome size. To overcome this constraint, viral proteins often exhibit multiple functions that come into play at different stages during the viral replication cycle. The molecular basis for this multifunctionality is often unknown. For the bovine viral diarrhea virus, the non-structural protein (NS) 4A functions as an NS3 protease cofactor, a replicase building block, and a component in virion morphogenesis. Here, we identified the critical amino acids of its C-terminal cytosolic region involved in those processes and show that second-site mutations in NS2 and NS3 can compensate for diverse NS4A defects in virion morphogenesis. The ability to evolve alternative functional solutions by gain-of-function mutations highlights the astounding plasticity of the pestiviral system.


Assuntos
Vírus da Diarreia Viral Bovina , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Vírus da Diarreia Viral Bovina/genética , Hepacivirus/metabolismo , Mutação , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus , Linhagem Celular , Animais
2.
Virol J ; 21(1): 53, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438894

RESUMO

BACKGROUND: Atypical porcine pestivirus (APPV) is a newly discovered swine pestivirus, which can cause congenital tremor and high mortality in newborn piglets and subclinical infection in adult pigs, leading to significant impacts on the pig industry. Currently, there is no approved serological method to assess APPV infection status in pig farms. METHODS: In this study, the envelope glycoprotein E2 of APPV was highly expressed in suspension HEK293 cells, and further an indirect enzyme-linked immunosorbent assay based on the recombinant E2 protein (E2-iELISA) was developed and evaluated. RESULTS: The reaction parameters of the E2-iELISA were optimized, and the cutoff value was determined to be 0.2 by analyzing S/P values of 165 negative sera against APPV that were confirmed by virus neutralization test (VNT). Specificity test showed that the method had no cross-reaction with other common swine viruses. The E2-iELISA was evaluated using a panel of swine sera, and showed high sensitivity (113/120, 94.2%) and specificity (65/70, 92.9%), and the agreement rate with VNT was 93.7% (178/190). Subsequently, the E2-iELISA was utilized to investigate the seroprevalence of APPV in pig herds of China. When detecting 1368 pig serum samples collected from nine provinces in China, the overall seroprevalence of APPV was 73.9% (1011/1368). CONCLUSION: Our findings suggest that the E2-iELISA is specific and sensitive, and could be a valuable tool for serological surveillance of APPV infection in pigs.


Assuntos
Infecções Assintomáticas , Pestivirus , Humanos , Adulto , Animais , Suínos , Células HEK293 , Estudos Soroepidemiológicos , Ensaio de Imunoadsorção Enzimática
3.
Virol J ; 21(1): 205, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215313

RESUMO

Lateral-shaking inducing neuro-degenerative agent virus (LindaV) is a novel member of the highly diverse genus Pestivirus within the family Flaviviridae. LindaV was first detected in Austria in 2015 and was associated with congenital tremor in piglets. Since then, the virus or specific antibodies have been found in a few further pig farms in Austria. However, the actual spatial distribution and the existence of reservoir hosts is largely unknown. Since other pestiviruses of pigs such as classical swine fever virus or atypical porcine pestivirus can also infect wild boar, the question arises whether LindaV is likewise present in the wild boar population. Therefore, we investigated the presence of neutralizing antibodies against LindaV in 200 wild boar samples collected in Southern Germany, which borders Austria. To establish a serological test system, we made use of the interchangeability of the surface glycoproteins and created a chimeric pestivirus using Bungowannah virus (species Pestivirus australiaense) as synthetic backbone. The E1 and E2 glycoproteins were replaced by the heterologous E1 and E2 of LindaV resulting in the chimera BV_E1E2_LV. Viable virus could be rescued and was subsequently applied in a neutralization test. A specific positive control serum generated against the E2 protein of LindaV gave a strong positive result, thereby confirming the functionality of the test system. All wild boar samples, however, tested negative. Hence, there is no evidence that LindaV has become highly prevalent in the wild boar population in Southern Germany.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Pestivirus , Pestivirus , Sus scrofa , Doenças dos Suínos , Animais , Alemanha/epidemiologia , Infecções por Pestivirus/veterinária , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/virologia , Sus scrofa/virologia , Anticorpos Antivirais/sangue , Suínos , Pestivirus/genética , Pestivirus/isolamento & purificação , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Anticorpos Neutralizantes/sangue , Testes de Neutralização
4.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36063436

RESUMO

As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for calibrating viral evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a large data set of available mammalian genomes for EVEs deriving from members of the viral family Flaviviridae, an important group of viruses including well-known human pathogens, such as Zika, dengue, or hepatitis C viruses. We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected in vivo by molecular detection and sequencing in 27 shrew species, including 26 species representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae subfamily on different continents. Based on this wide distribution, we estimate that the integration event occurred before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first description of Flaviviridae-derived EVEs in mammals even though the family encompasses numerous mammal-infecting members. This also suggests that shrews were past and perhaps also current natural reservoirs of pestiviruses. Taken together, our results expand the current known Pestivirus host range and provide novel insight into the ancient evolutionary history of pestiviruses and the Flaviviridae family in general.


Assuntos
Pestivirus , Vírus , Infecção por Zika virus , Zika virus , Animais , Evolução Molecular , Genoma Viral , Humanos , Pestivirus/genética , Filogenia , Musaranhos/genética , Vírus/genética , Zika virus/genética
5.
Plant Biotechnol J ; 21(12): 2546-2559, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572354

RESUMO

Pestiviruses, including classical swine fever virus, remain a concern for global animal health and are responsible for major economic losses of livestock worldwide. Despite high levels of vaccination, currently available commercial vaccines are limited by safety concerns, moderate efficacy, and required high doses. The development of new vaccines is therefore essential. Vaccine efforts should focus on optimizing antigen presentation to enhance immune responses. Here, we describe a simple herringbone-dimer strategy for efficient vaccine design, using the classical swine fever virus E2 expressed in a rice endosperm as an example. The expression of rE2 protein was identified, with the rE2 antigen accumulating to 480 mg/kg. Immunological assays in mice, rabbits, and pigs showed high antigenicity of rE2. Two immunizations with 284 ng of the rE2 vaccine or one shot with 5.12 µg provided effective protection in pigs without interference from pre-existing antibodies. Crystal structure and small-angle X-ray scattering results confirmed the stable herringbone dimeric conformation, which had two fully exposed duplex receptor binding domains. Our results demonstrated that rice endosperm is a promising platform for precise vaccine design, and this strategy can be universally applied to other Flaviviridae virus vaccines.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Oryza , Vacinas Virais , Animais , Suínos , Coelhos , Camundongos , Peste Suína Clássica/prevenção & controle , Anticorpos Antivirais , Proteínas do Envelope Viral , Imunidade
6.
J Virol ; 96(15): e0198021, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852352

RESUMO

Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called "shaking piglets," suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.


Assuntos
Chaperonas Moleculares , Infecções por Pestivirus , Pestivirus , Suínos , Replicação Viral , Animais , Linhagem Celular , Coenzimas , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Chaperonas Moleculares/genética , Pestivirus/classificação , Pestivirus/enzimologia , Pestivirus/crescimento & desenvolvimento , Infecções por Pestivirus/veterinária , RNA Viral/genética , Suínos/virologia , Doenças dos Suínos/virologia , Proteases Virais/metabolismo , Replicação Viral/genética
7.
Virol J ; 20(1): 282, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031135

RESUMO

BACKGROUND: Atypical porcine pestivirus (APPV) is a novel, highly variable porcine pestivirus. Previous reports have suggested that the virus is associated with congenital tremor (CT) type A-II in piglets, and little information is available about the correlation between the virus and sow abortion, or on coinfection with other viruses. In China, reported APPV strains were mainly isolated from South China and Central China, and data about the APPV genome from northern China are relatively scarce. METHODS: Eleven umbilical cords, one placenta, and one aborted piglet, were collected from aborted sows of the same farm in Shandong Province of northern China. Nucleic acids were extracted from the above samples, and subsequently pooled for viral metagenomics sequencing and bioinformatics analysis. The viral coexistence status and complete genome characteristics of APPV in Shandong Province were determined. RESULTS: In abortion cases, APPV was present with Getah virus, porcine picobirnavirus, porcine kobuvirus, porcine sapovirus, Po-Circo-like virus, porcine serum-associated circular virus, porcine bocavirus 1, porcine parvovirus 1, porcine parvovirus 3 and porcine circovirus 3, etc. The first complete genome sequence(11,556 nt) of APPV in Shandong Province of northern China, was obtained using viral metagenomics and designated APPV-SDHY-2022. Comparison with Chinese reference strains revealed that the polyprotein of APPV-SDHY-2022 shared 82.6-84.2%, 93.2-93.6%, and 80.7-85% nucleotide identity and 91.4-92.4%, 96.4-97.7%, and 90.6-92.2% amino acid identity with those of the Clade I, Clade II and Clade III strains, respectively. Phylogenetic analysis based on the complete polyprotein CDS and NS5A sequences concluded that APPV-SDHY-2022 belongs to Clade II. Analysis of the NS5A nucleotide sequences revealed homology of greater than 94.6% for the same isoform, 84.7-94.5% for different isoforms of the same clade and 76.8-81.1% for different clades. Therefore, Clade II was further divided into three subclades, and APPV-SDHY-2022 belonged to subclade 2.3. Members of Clade II have 20 unique amino acids in individual proteins, distinguishing them from Clade I and Clade III members. The E2 protein showed the greatest diversity of putative N-glycosylation sites with 9 patterns, and APPV-SDHY-2022 along with other Chinese APPV strains shared the conserved B-cell conformational epitope residues 39E, 70R, 173R, 190K and 191N of the E2 protein. CONCLUSIONS: We reported viral coexistence and the first complete genome sequence of APPV from abortion cases and from Shandong Province. The new APPV isolate belongs to an independent branch of Clade II. Our results increase the molecular and epidemiological understanding of APPV in China.


Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Animais , Suínos , Feminino , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Filogenia , Genoma Viral , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/genética , Pestivirus/genética , China/epidemiologia , Poliproteínas/genética
8.
Virus Genes ; 59(6): 836-844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37589803

RESUMO

Whole-genome phylogenetic analysis, the most suitable strategy for subtyping bovine viral diarrhea virus 1 (BVDV-1) and BVDV-2, is not feasible for many laboratories. Consequently, BVDV isolates/strains have been frequently subtyped based on analysis of single genomic regions, mainly the 5' untranslated region (UTR). This approach, however, may lead to inaccurate and/or poorly statistically supported viral classification. Herein, we describe novel primer sets whose amplicons may be easily sequenced and used for BVDV subtyping. Initially, genomic regions previously described as the most suitable targets for BVDV subtyping were analyzed for design of high-coverage primers. The putative amplicons were analyzed in silico for their suitability to reproduce the phylogenetic classification of 118 BVDV-1 and 88 BVDV-2 complete/near-complete genomes (CNCGs) (GenBank). This analysis was also performed considering the region amplifiable by primers HCV90-368, 324-326 and BP189-389 (5'UTR), which have been used for BVDV diagnosis and/or classification. After confirming the agreement between the analyses of our primers' amplicon versus the CNCGs, we optimized the RT-PCRs and evaluated their performance for amplification of BVDV isolates/strains (n = 35 for BVDV-1; n = 33 for BVDV-2). Among the potential targets for BVDV subtyping, we designed high-coverage primers for NS3-NS4A (BVDV-1) (526 bp amplicon) and NS5B (BVDV-2) (728 bp). The classification based on these regions fully reproduced the subtyping of all CNCGs. On the other hand, subtyping based on the putative amplicons from primers HCV90-368, 324-326 and BP189-389 showed disagreements in relation the CNCG analysis. The NS3-NS4A and NS5B primers also allowed the amplification of all BVDV isolates/strains tested. Finally, we suggest the use of these primers in future phylogenetic and epidemiological studies of BVDVs.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina Tipo 2 , Vírus da Diarreia Viral Bovina , Animais , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina Tipo 2/genética , Filogenia , Genômica , Regiões 5' não Traduzidas/genética , Vírus da Diarreia Viral Bovina/genética
9.
BMC Vet Res ; 19(1): 219, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864222

RESUMO

BACKGROUND: This study aimed to characterise the RNA microbiome, including the virome of extended semen from Swedish breeding boars, with particular focus on Atypical porcine pestivirus (APPV). This neurotropic virus, associated with congenital tremor type A-II in piglets, was recently demonstrated to induce the disease through insemination with semen from infected boars. RESULTS: From 124 Artificial Insemination (AI) doses from Swedish breeding boars, APPV was detected in one dose in addition to a sparse seminal RNA virome, characterised by retroviruses, phages, and some fecal-associated contaminants. The detected seminal microbiome was large and characterized by Gram-negative bacteria from the phylum Proteobacteria, mainly consisting of apathogenic or opportunistic bacteria. The proportion of bacteria with a pathogenic potential was low, and no antimicrobial resistance genes (ARGs) were detected in the datasets. CONCLUSION: Overall, the results indicate a good health status among Swedish breeding boars. The detection of APPV in semen raises the question of whether routine screening for APPV in breeding boars should be instigated.


Assuntos
Microbiota , Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Suínos , Animais , Masculino , Sêmen , Infecções por Pestivirus/veterinária , Viroma , Suécia/epidemiologia , Filogenia , Pestivirus/genética , RNA Viral/genética , Inseminação Artificial/veterinária
10.
BMC Vet Res ; 19(1): 74, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264393

RESUMO

BACKGROUND: The European bison (Bison bonasus) is a near threatened species and requires health monitoring. The aim of the present study was to determine the prevalence of antibodies to pathogens known to cause respiratory and digestive illness in ruminants. RESULTS: In the studied 328 European bison, the highest seroprevalence was observed for Bovine herpesvirus-1 (BoHV-1) (50.27%), Bovine Coronavirus (BCoV) (26.36%), and Bluetongue Virus (BTV) (12.83%). For Mycoplasma bovis strains and Bovine Viral Diarrhea Virus (BVDV), positive results were rare. Interestingly, a higher prevalence of BTV antibodies was noted in the northeastern populations and older animals. CONCLUSIONS: Our findings indicate that the Polish European bison population appears to have considerable contact with BoHV-1; however, this does not appear to be of great significance, as clinical symptoms and post-mortem lesions are rarely noted in Polish European bison population. The high seroprevalence of BTV in the north-east of Poland is an ongoing trend, also noted in previous studies. It is possible that European bison may perpetuate the virus in this region. This is the first report of antibodies for BCoV in European bison.


Assuntos
Bison , Herpesvirus Bovino 1 , Animais , Polônia/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais , Sistema Digestório
11.
Rev Argent Microbiol ; 55(2): 167-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36658065

RESUMO

Bovine pestiviruses are the causative agents of bovine viral diarrhea, a disease that causes severe economic losses in cattle. The aim of this study was to improve their diagnosis by developing a RT-qPCR to detect bovine pestiviruses A, B and H; and to set up a protocol for collecting, shipping and preserving bovine pestiviral RNA on filter papers. The developed RT-qPCR showed high sensitivity in detecting these viruses in different matrices: viral stocks, semen and serum samples. With regard to the possibility of using the technique to test serum pools, it was possible to identify a positive serum sample within a pool containing 30 sera. In addition to evaluating the qPCR from fresh samples, the use of filter papers to sow bovine samples was analyzed. The sampling method on two different filter papers using bovine blood drops was a useful alternative for diagnostic purposes and allowed to preserve pestiviral RNA for up to 12 months under refrigeration.


Assuntos
Vírus da Diarreia Viral Bovina , Infecções por Pestivirus , Animais , Bovinos , RNA Viral/genética , Análise Custo-Benefício , Infecções por Pestivirus/diagnóstico , Infecções por Pestivirus/veterinária , Vírus da Diarreia Viral Bovina/genética
12.
J Clin Microbiol ; 60(11): e0069722, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36222547

RESUMO

Pestivirus K, commonly known as atypical porcine pestivirus (APPV), is the most common cause of congenital tremor (CT) in pigs. Currently, there is limited information on the infection dynamics of and immune response against APPV and no robust serologic assay to assess the effectiveness of preventative measures. To that end, known infection status samples were generated using experimental inoculation of cesarean-derived, colostrum-deprived pigs. Pigs (2 per pen) were inoculated with minimum essential medium (n = 6; negative control) or APPV (n = 16). Serum, pen-based oral fluid samples, and nasal swabs were collected through 70 days postinoculation (dpi). The immune response to recombinant APPV Erns, E2, or NS3 antigens was evaluated using both serum and oral fluids via indirect enzyme-linked immunosorbent assays (ELISAs). APPV was detected by real-time reverse transcription-PCR (RT-qPCR) in all oral fluid and serum samples from APPV-inoculated animals by 24 and 35 dpi, respectively. All samples remained genome positive until 70 dpi. Detection of nasal shedding was less consistent, with APPV being detected by RT-qPCR in all inoculated animals at 42, 49, and 56 dpi. Antibodies were first detected in oral fluids at 14 dpi, 10 days before serum detection, and concurrently with the first oral fluids RT-qPCR detection. Across sample types and time points, the Erns ELISA outperformed the other targets. In conclusion, both oral fluid and serum APPV Erns ELISAs can be used to economically evaluate the individual and herd status prior to and following intervention strategies.


Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Suínos , Animais , Pestivirus/genética , Infecções por Pestivirus/diagnóstico , Infecções por Pestivirus/veterinária , Doenças dos Suínos/diagnóstico , Filogenia , Ensaio de Imunoadsorção Enzimática
13.
J Virol ; 95(15): e0052121, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011544

RESUMO

Pestiviruses are members of the family Flaviviridae, a group of enveloped viruses that bud at intracellular membranes. Pestivirus particles contain three glycosylated envelope proteins, Erns, E1, and E2. Among them, E1 is the least characterized concerning both biochemical features and function. E1 from bovine viral diarrhea virus (BVDV) strain CP7 was analyzed with regard to its intracellular localization and membrane topology. Here, it is shown that even in the absence of other viral proteins, E1 is not secreted or expressed at the cell surface but localizes predominantly in the endoplasmic reticulum (ER). Using engineered chimeric transmembrane domains with sequences from E1 and vesicular stomatitis virus G protein, the E1 ER-retention signal could be narrowed down to six fully conserved polar residues in the middle part of the transmembrane domain of E1. Retention was observed even when several of these polar residues were exchanged for alanine. Mutations with a strong impact on E1 retention prevented recovery of infectious viruses when tested in the viral context. Analysis of the membrane topology of E1 before and after the signal peptide cleavage via a selective permeabilization and an in vivo labeling approach revealed that mature E1 is a typical type I transmembrane protein with a single span transmembrane anchor at its C terminus, whereas it adopts a hairpin-like structure with the C terminus located in the ER lumen when the precleavage situation is mimicked by blocking the cleavage site between E1 and E2. IMPORTANCE The shortage of specific antibodies against E1, making detection and further analysis of E1 difficult, resulted in a lack of knowledge on E1 compared to Erns and E2 with regard to biosynthesis, structure, and function. It is known that pestiviruses bud intracellularly. Here, we show that E1 contains its own ER retention signal: six fully conserved polar residues in the middle part of the transmembrane domain are shown to be the determinants for ER retention of E1. Moreover, those six polar residues could serve as a functional group that intensely affect the generation of infectious viral particles. In addition, the membrane topology of E1 has been determined. In this context, we also identified dynamic changes in membrane topology of E1 with the carboxy terminus located on the luminal side of the ER in the precleavage state and relocation of this sequence upon signal peptidase cleavage. Our work provides the first systematic analysis of the pestiviral E1 protein with regard to its biochemical and functional characteristics.


Assuntos
Vírus da Diarreia Viral Bovina/metabolismo , Retículo Endoplasmático/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Vírus da Diarreia Viral Bovina/genética , Glicoproteínas de Membrana/metabolismo , Conformação Proteica , Sinais Direcionadores de Proteínas/genética , Coelhos , Proteínas do Envelope Viral/genética
14.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568504

RESUMO

Pestiviruses such as bovine viral diarrhea virus (BVDV) and classical swine fever virus (CSFV) belong to the family Flaviviridae and represent pathogens of outstanding veterinary relevance. Pestiviruses enter cells via receptor-mediated endocytosis. For entry in bovine cells, complement regulatory protein CD46bov serves as a cellular receptor for BVDV. In this study, the role of porcine CD46pig in cellular entry was investigated for the recently discovered atypical porcine pestivirus (APPV), CSFV, and Bungowannah virus (BuPV) in order to elucidate the observed differences in host cell tropism. A cell culture-adapted APPV variant, which shows enhanced viral replication in vitro, was generated and demonstrated a strict tropism of APPV for porcine cells. One of the porcine cell lines displayed areas of CD46pig-expressing cells and areas of nonexpressing cells, and one single cell line revealed not to express any CD46pig The CD46pig-deficient porcine lymphoma cell line, known to facilitate CSFV replication, was the only porcine cell line nonpermissive to APPV, indicating a significant difference in the entry mechanism of APPV and CSFV. Infection experiments with a set of genetically engineered CD46pig knockout cells confirmed that CD46pig is a major receptor of APPV as CD46bov is for BVDV. In contrast, it is apparently not an essential determinant in host cell entry of other porcine pestiviruses such as CSFV and BuPV. Existence of a CD46pig-independent entry mechanism illustrates that the pestiviral entry process is more diverse than previously recognized.IMPORTANCE Pestiviruses comprise animal pathogens such as classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV) that cause notifiable diseases with great economic impact. Several additional pestivirus species affecting animal health were recently identified, including atypical porcine pestivirus (APPV). APPV is associated with health problems in piglets and is highly abundant in pig populations worldwide. Complement control protein CD46 serves as a receptor for diverse bacterial and viral pathogens, including particular adenoviruses, herpesviruses, measles virus (MeV), and BVDV. Porcine CD46 (CD46pig) was suggested to be a major receptor for CSFV. Here, we identified remarkable differences in relevance of CD46pig during entry of porcine pestiviruses. Resembling BVDV, efficient APPV infection in cell culture depends on CD46pig, while other porcine pestiviruses can efficiently enter and infect cells in the absence of CD46pig Thus, the study provides insights into the entry process of these pathogens and may help to understand differences in their biology.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/virologia , Proteína Cofatora de Membrana/fisiologia , Receptores Virais/fisiologia , Tropismo Viral , Internalização do Vírus , Animais , Linhagem Celular , Proteína Cofatora de Membrana/imunologia , Suínos
15.
Virol J ; 19(1): 51, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331281

RESUMO

BACKGROUND: Atypical porcine pestivirus (APPV) is a single-stranded RNA virus with high genetic variation that causes congenital tremor (CT) in newborn piglets, belonging to the genus Pestivirus of the family Flaviviridae. Increasing cases of APPV infection in China in the past few years would pose severe challenges to the development of pig production. In view of the high genetic variability of APPV, the genetic characteristics of APPV in Hubei province was determined. METHODS: 52 tissue samples from 8 CT-affected newborn piglets were collected at two different periods in the same pig farm in Hubei province. Viral nucleic acid was extracted to detect pathogens that can cause CT in piglets or other common clinical pathogens by RT-PCR. Haematoxylin and eosin (HE) staining, immunohistochemical (IHC) analysis, and qRT-PCR were performed to observe histopathological changes and histological distribution, and detect the viral load of APPV in CT-affected piglets. The full-length genome of APPV was obtained and sequence analysis was conducted to determine the phylogenetic relationship. RESULTS: Histopathological observation and histological distribution analysis showed that the histological lesions and distribution of APPV were mainly in central nervous system (CNS) tissues and immune tissues. Viral load analysis revealed that the viral copy number was higher in the cerebellum, submaxillary lymph nodes, tonsil, and serum than in other tissues. Phylogenetic analysis showed that CH-HB2020 and CH-HB2021 belonged to Clade I.3, and is most closely related to APPV_CH-GX2016. Sequence alignment based on APPV encoding sequences (CDS) showed that the nucleotide identities of CH-HB2020 or CH-HB2021 with Clade I, Clade II, and Clade III strains were 83.5-98.6%, 83.1-83.5%, and 81.1-81.4%, respectively, while the amino acid identities were 91.9-99.2%, 91.2-95.3%, and 90.77-91.4%, respectively. No recombination event was observed in CH-HB2020 or CH-HB2021 strains. CONCLUSIONS: These findings enhance our understanding of the pathogenesis of APPV and may provide potential molecular evidence for its prevalence and transmission.


Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Animais , Animais Recém-Nascidos , China/epidemiologia , Pestivirus/genética , Infecções por Pestivirus/veterinária , Filogenia , Suínos , Tremor/congênito , Tremor/genética , Tremor/veterinária
16.
Virol J ; 19(1): 201, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447230

RESUMO

BACKGROUND: Classical swine fever (CSF), African swine fever (ASF), and atypical porcine pestivirus (APPV) are acute, virulent, and contagious viral diseases currently hampering the pig industry in China, which result in mummification or stillbirths in piglets and mortality in pigs. Diagnostic assays for the differentiation of infection and vaccination of CSFV, in addition to the detection of ASFV and APPV, are urgently required for better prevention, control, and elimination of these viral diseases in China. METHODS: A quadruple PCR-based gene microarray assay was developed in this study to simultaneously detect wild-type and vaccine CSFV strains, ASFV and APPV according to their conserved regions. Forty-two laboratory-confirmed samples, including positive samples of 10 other swine viral diseases, were tested using this assay to confirm its high specificity. RESULTS: This assay's limit of detections (LODs) for the wild-type and vaccine CSFV were 6.98 and 6.92 copies/µL. LODs for ASFV and APPV were 2.56 × 10 and 1.80 × 10 copies/µL, respectively. When compared with standard RT-PCR or qPCR for CSFV (GB/T 26875-2018), ASFV (MARR issue No.172), or APPV (CN108611442A) using 219 clinical samples, the coincidence was 100%. The results showed that this assay with high sensitivity could specifically distinguish ASFV, APPV, and CSFV, including CSFV infection and immunization. CONCLUSION: This assay provides a practical, simple, economic, and reliable test for the rapid detection and accurate diagnosis of the three viruses and may have good prospects for application in an epidemiological investigation, prevention, and control and elimination of these three diseases.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Clássica , Pestivirus , Doenças dos Suínos , Vacinas , Animais , Suínos , Vírus da Febre Suína Clássica/genética , Pestivirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/prevenção & controle
17.
BMC Vet Res ; 18(1): 168, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524302

RESUMO

BACKGROUND: Control programs were implemented in several countries against bovine viral diarrhea (BVD), one of the most significant cattle diseases worldwide. Most of the programs rely on serological diagnostics in any phase of the program. For the detection of antibodies against BVD virus (BVDV), neutralization tests as well as a variety of (commercially available) ELISAs are used. Here, test systems applied in various laboratories were evaluated in the context of an international interlaboratory proficiency trial. A panel of standardized samples comprising five sera and five milk samples was sent to veterinary diagnostic laboratories (n=51) and test kit manufacturers (n=3). RESULTS: The ring trial sample panel was investigated by nine commercially available antibody ELISAs as well as by neutralization tests against diverse BVDV-1, BVDV-2 and/or border disease virus (BDV) strains. The negative serum and milk sample as well as a serum collected after BVDV-2 infection were mostly correctly tested regardless of the applied test system. A serum sample obtained from an animal immunized with an inactivated BVDV-1 vaccine tested positive by neutralization tests or by total antibody or Erns-based ELISAs, while all applied NS3-based ELISAs gave negative results. A further serum, containing antibodies against the ovine BDV, reacted positive in all applied BVDV ELISAs, a differentiation between anti-BDV and anti-BVDV antibodies was only enabled by parallel application of neutralization tests against BVDV and BDV isolates. For the BVDV antibody-positive milk samples (n=4), which mimicked prevalences of 20% (n=2) or 50% (n=2), considerable differences in the number of positive results were observed, which mainly depended on the ELISA kit and the sample incubation protocols used. These 4 milk samples tested negative in 43.6%, 50.9%, 3.6% and 56.4%, respectively, of all investigations. Overall, negative results occurred more often, when a short sample incubation protocol instead of an over-night protocol was applied. CONCLUSIONS: While the seronegative samples were correctly evaluated in most cases, there were considerable differences in the number of correct evaluations for the seropositive samples, most notably when pooled milk samples were tested. Hence, thorough validation and careful selection of ELISA tests are necessary, especially when applied during surveillance programs in BVD-free regions.


Assuntos
Vírus da Doença da Fronteira , Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Doenças dos Ovinos , Animais , Anticorpos Antivirais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Bovinos , Diarreia/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Leite/química , Ovinos , Vacinas de Produtos Inativados
18.
BMC Vet Res ; 18(1): 348, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36109741

RESUMO

BACKGROUND: Atypical porcine pestivirus (APPV) is a neurotropic virus associated with congenital tremor type A-II. A few experimental studies also indicate an association between APPV and splay leg. The overarching aim of the present study was to provide insights into the virome, local cytokine response, and histology of the CNS in piglets with signs of congenital tremor or splay leg. RESULTS: Characterization of the cytokine profile and virome of the brain in piglets with signs of congenital tremor revealed an APPV-associated upregulation of Stimulator of interferon genes (STING). The upregulation of STING was associated with an increased expression of the gene encoding IFN-α but no differential expression was recorded for the genes encoding CXCL8, IFN-ß, IFN-γ, IL-1ß, IL-6, or IL-10. No viral agents or cytokine upregulation could be detected in the spinal cord of piglets with signs of splay leg or in the brain of piglets without an APPV-infection. The histopathological examination showed no lesions in the CNS that could be attributed to the APPV-infection, as no difference between sick and healthy piglets could be seen. CONCLUSION: The results from this study provide evidence of an APPV-induced antiviral cytokine response but found no lesions related to the infection nor any support for a common causative agent.


Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Animais , Antivirais , Citocinas/genética , Interferons , Interleucina-10 , Interleucina-6 , Infecções por Pestivirus/veterinária , Suínos , Tremor/congênito , Tremor/veterinária , Viroma
19.
Trop Anim Health Prod ; 54(6): 336, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207639

RESUMO

Bovine viral diarrhoea virus (BVDV) is a serious veterinary health concern worldwide. We conducted this study to determine the prevalence of persistent infections (PI) and identify the current strain among some dairy cattle herds in Egypt. A total of 240 serum samples were collected from six Egyptian provinces. Between 2019 and 2020, samples were tested by Enzyme linked immunosorbent assay (ELISA) for detection of PI animals, and then molecular characterization was performed. Six calves were found PI with a prevalence of 2.5% (6/240). Using molecular characterization, HoBi-like Pestivirus (BVD-3) was successfully identified in Egypt for the first time. Based on the BVD-3 reference strains on Genbank, the detected strains had an identity ranging from 98.8 to 99.6%. Partial nucleotide sequence of the 5'UTR gene for six tested samples was submitted to Genbank with accessions: OM324396, OM324397, OM324398, OM324399, OM3243100, and OM3243101.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina , Infecções por Pestivirus , Pestivirus , Regiões 5' não Traduzidas , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Egito/epidemiologia , Pestivirus/genética , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária
20.
Virologie (Montrouge) ; 26(5): 327-341, 2022 09 01.
Artigo em Francês | MEDLINE | ID: mdl-36413119

RESUMO

Classical swine fever (CSF) is a highly contagious swine-specific disease which may have a huge economic impact for porcine production. CSF is caused by a virus belonging to the Pestivirus genus, which has expanded for the past 5 years with the discovery of new species whose genetic proximity to the CSF virus could further complicate laboratory diagnosis. The various forms of the disease, and in particular the increased frequency of attenuated forms, linked to an evolution of CSF virus strains towards a reduction in their virulence, delay clinical diagnosis. Thus, a long period may elapse before an outbreak is detected, allowing the virus to circulate longer, with the risk of spreading to distant geographical areas. Efforts must be maintained in terms of surveillance and diagnostic tools development in order to detect CSF virus infection early and thus limit the spread of the disease and facilitate control measures.


La peste porcine classique (PPC) est une maladie très contagieuse, spécifique des suidés, qui continue à constituer une menace pour la production porcine malgré un statut indemne de la plupart des pays de l'Union européenne. La PPC est causée par un virus de la famille des Flaviviridae appartenant au genre Pestivirus, en extension depuis les cinq dernières années avec la découverte de nouvelles espèces, notamment chez le porc ou autres animaux de rente dont la proximité génétique avec le virus de la PPC pourrait davantage compliquer le diagnostic de laboratoire. La diversité des formes de la maladie, et notamment la fréquence accrue des formes atténuées et inapparentes liée à une évolution des souches du virus de la PPC vers une réduction de leur virulence, retarde le diagnostic clinique. Ainsi, une longue période peut s'écouler avant la détection d'un foyer, permettant au virus de la PPC de circuler plus longuement, avec le risque de diffuser vers des zones géographiques éloignées des premiers cas d'infection. Les efforts doivent être maintenus en termes de surveillance et de développement d'outils de diagnostic afin de détecter précocement une infection par le virus de la PPC et ainsi limiter la propagation de la maladie et faciliter les mesures de contrôle.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Pestivirus , Suínos , Animais , Peste Suína Clássica/diagnóstico , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/prevenção & controle , Vírus da Febre Suína Clássica/genética , Surtos de Doenças
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa