Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Microb Pathog ; 180: 106134, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150310

RESUMO

This study was designed to evaluate the synergistic effect of phage and antibiotic on the induction of collateral sensitivity in Salmonella Typhimurium. The synergistic effects of Salmonella phage PBST32 combined with ciprofloxacin (CIP) against S. Typhimurium KCCM 40253 (STKCCM) were evaluated using a fractional inhibitory concentration (FIC) assay. The CIP susceptibility of STKCCM was increased when combined with PBST32, showing 16-fold decrease at 7 log PFU/mL. The combination of 1/2 × MIC of CIP and PBST32 (CIP[1/2]+PBST32) effectively inhibited the growth of STKCCM up to below the detection limit (1.3 log CFU/mL) after 12 h of incubation at 37 °C. The significant reduction in bacterial swimming motility was observed for PBST32 and CIP[1/4]+PBST32. The CIP[1/4]+PBST32 increased the fitness cost (relative fitness = 0.57) and decreased the cross-resistance to different classes of antibiotics. STKCCM treated with PBST32 alone treatment exhibited the highest coefficient of variation (90%), followed by CIP[1/4]+PBST32 (75%). These results suggest that the combination of PBST32 and CIP can be used to control bacterial pathogens.


Assuntos
Bacteriófagos , Salmonella typhimurium , Sensibilidade Colateral a Medicamentos , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana
2.
J Biomed Sci ; 29(1): 23, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354477

RESUMO

Bacteriophages (phages) may be used as an alternative to antibiotic therapy for combating infections caused by multidrug-resistant bacteria. In the last decades, there have been studies concerning the use of phages and antibiotics separately or in combination both in animal models as well as in humans. The phenomenon of phage-antibiotic synergy, in which antibiotics may induce the production of phages by bacterial hosts has been observed. The potential mechanisms of phage and antibiotic synergy was presented in this paper. Studies of a biofilm model showed that a combination of phages with antibiotics may increase removal of bacteria and sequential treatment, consisting of phage administration followed by an antibiotic, was most effective in eliminating biofilms. In vivo studies predominantly show the phenomenon of phage and antibiotic synergy. A few studies also describe antagonism or indifference between phages and antibiotics. Recent papers regarding the application of phages and antibiotics in patients with severe bacterial infections show the effectiveness of simultaneous treatment with both antimicrobials on the clinical outcome.


Assuntos
Infecções Bacterianas , Bacteriófagos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes , Farmacorresistência Bacteriana Múltipla , Humanos
3.
Arch Microbiol ; 204(7): 421, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35748948

RESUMO

The growing interest in bacteriophages and antibiotics' combined use poses new challenges regarding this phenomenon's accurate description. This study aimed to apply the PhageScore methodology to assess the phage-antibiotic combination activity in liquid bacterial culture. For this purpose, previously described Acinetobacter infecting phages vB_AbaP_AGC01, Aba-1, and Aba-4 and antibiotics (gentamicin, ciprofloxacin, meropenem, norfloxacin, and fosfomycin) were used to obtain a lysis curve of bacteriophages under antibiotic pressure. The experimental data were analyzed using the Fractional Inhibitory Concentration Index (FICI) and PhageScore methodology. The results obtained by this method clearly show differences between phage lytic activity after antibiotic addition. Thus, we present the potential use of the PhageScore method as a tool for characterizing the phage antibiotic synergy in liquid culture. Further, the optimization of the PhageScore for this purpose can help compare antibiotics and their outcome on bacteriophage lytic activity.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Antibacterianos/farmacologia , Ciprofloxacina
4.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217844

RESUMO

When phages infect bacteria cultured in the presence of sublethal doses of antibiotics, the sizes of the phage plaques are significantly increased. This phenomenon is known as phage-antibiotic synergy (PAS). In this study, the observation of PAS was extended to a wide variety of bacterium-phage pairs using different classes of antibiotics. PAS was shown in both Gram-positive and Gram-negative bacteria. Cells stressed with ß-lactam antibiotics filamented or swelled extensively, resulting in an increase in phage production. PAS was also sometimes observed in the presence of other classes of antibiotics with or without bacterial filamentation. The addition of antibiotics induced recA expression in various bacteria, but a recA deletion mutant strain of Escherichia coli also showed filamentation and PAS in the presence of quinolone antibiotics. The phage adsorption efficiency did not change in the presence of the antibiotics when the cell surfaces were enlarged as they filamented. Increases in the production of phage DNA and mRNAs encoding phage proteins were observed in these cells, with only a limited increase in protein production. The data suggest that PAS is the product of a prolonged period of particle assembly due to delayed lysis. The increase in the cell surface area far exceeded the increase in phage holin production in the filamented host cells, leading to a relatively limited availability of intracellular holins for aggregating and forming holes in the host membrane. Reactive oxygen species (ROS) stress also led to an increased production of phages, while heat stress resulted in only a limited increase in phage production.IMPORTANCE Phage-antibiotic synergy (PAS) has been reported for a decade, but the underlying mechanism has never been vigorously investigated. This study shows the presence of PAS from a variety of phage-bacterium-antibiotic pairings. We show that increased phage production resulted directly from a lysis delay caused by the relative shortage of holin in filamented bacterial hosts in the presence of sublethal concentrations of stress-inducing substances, such as antibiotics and reactive oxygen species (ROS).


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/efeitos dos fármacos , Bacteriófagos/fisiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bacteriófagos/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/virologia , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/virologia , Quinolonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
5.
Infect Dis (Lond) ; : 1-33, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017931

RESUMO

The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.

6.
mBio ; 15(6): e0050424, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38757974

RESUMO

A recent demonstration of synergy between a temperate phage and the antibiotic ciprofloxacin suggested a scalable approach to exploiting temperate phages in therapy, termed temperate phage-antibiotic synergy, which specifically interacted with the lysis-lysogeny decision. To determine whether this would hold true across antibiotics, we challenged Escherichia coli with the phage HK97 and a set of 13 antibiotics spanning seven classes. As expected, given the conserved induction pathway, we observed synergy with classes of drugs known to induce an SOS response: a sulfa drug, other quinolones, and mitomycin C. While some ß-lactams exhibited synergy, this appeared to be traditional phage-antibiotic synergy, with no effect on the lysis-lysogeny decision. Curiously, we observed a potent synergy with antibiotics not known to induce the SOS response: protein synthesis inhibitors gentamicin, kanamycin, tetracycline, and azithromycin. The synergy results in an eightfold reduction in the effective minimum inhibitory concentration of gentamicin, complete eradication of the bacteria, and, when administered at sub-optimal doses, drastically decreases the frequency of lysogens emerging from the combined challenge. However, lysogens exhibit no increased sensitivity to the antibiotic; synergy was maintained in the absence of RecA; and the antibiotic reduced the initial frequency of lysogeny rather than selecting against formed lysogens. Our results confirm that SOS-inducing antibiotics broadly result in temperate-phage-specific synergy, but that other antibiotics can interact with temperate phages specifically and result in synergy. This is the first report of a means of chemically blocking entry into lysogeny, providing a new means for manipulating the key lysis-lysogeny decision.IMPORTANCEThe lysis-lysogeny decision is made by most bacterial viruses (bacteriophages, phages), determining whether to kill their host or go dormant within it. With over half of the bacteria containing phages waiting to wake, this is one of the most important behaviors in all of biology. These phages are also considered unusable for therapy because of this behavior. In this paper, we show that many antibiotics bias this behavior to "wake" the dormant phages, forcing them to kill their host, but some also prevent dormancy in the first place. These will be important tools to study this critical decision point and may enable the therapeutic use of these phages.


Assuntos
Antibacterianos , Escherichia coli , Lisogenia , Antibacterianos/farmacologia , Escherichia coli/virologia , Escherichia coli/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Colífagos/fisiologia , Colífagos/efeitos dos fármacos , Sinergismo Farmacológico , Bacteriófagos/fisiologia , Bacteriófagos/efeitos dos fármacos , Mitomicina/farmacologia
7.
Front Pharmacol ; 15: 1356179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659581

RESUMO

Introduction: The emergence of antibiotic resistance is a significant challenge in the treatment of bacterial infections, particularly in patients in the intensive care unit (ICU). Phage-antibiotic combination therapy is now being utilized as a preferred therapeutic option for infections that are multi-drug resistant in nature. Methods: In this study, we examined the combined impact of the staph phage vB_Sau_S90 and four antibiotics on methicillin-resistant Staphylococcus aureus (MRSA). We conducted experiments on three different treatment sequences: a) administering phages before antibiotics, b) administering phages and antibiotics simultaneously, and c) administering antibiotics before phages. Results: When the media was supplemented with sub-inhibitory concentrations of 0.25 µg/mL and 1 µg/mL, the size of the plaque increased from 0.5 ± 0.1 mm (in the control group with only the phage) to 4 ± 0.2 mm, 1.6 ± 0.1 mm, and 1.6 ± 0.4 mm when fosfomycin, ciprofloxacin, and oxacillin were added, respectively. The checkerboard analysis revealed a synergistic effect between the phages and antibiotics investigated, as indicated by a FIC value of less than 0.5. The combination treatment of phages and antibiotics demonstrated universal efficacy across all treatments. Nevertheless, the optimal effectiveness was demonstrated when the antibiotics were delivered subsequent to the phages. Utilizing the Galleria mellonella model, in vivo experiments showed that the combination of phage-oxacillin effectively eliminated biofilm-infected larvae, resulting in a survival rate of up to 80% in the treated groups. Discussion: Our findings highlight the advantages of using a combination of phage and antibiotic over using phages alone in the treatment of MRSA infections.

8.
Sci Rep ; 14(1): 9354, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653744

RESUMO

Phage-antibiotic combinations to treat bacterial infections are gaining increased attention due to the synergistic effects often observed when applying both components together. Most studies however focus on a single pathogen, although in many clinical cases multiple species are present at the site of infection. The aim of this study was to investigate the anti-biofilm activity of phage-antibiotic/antifungal combinations on single- and dual-species biofilms formed by P. aeruginosa and the fungal pathogen Candida albicans. The Pseudomonas phage Motto in combination with ciprofloxacin had significant anti-biofilm activity. We then compared biofilms formed by P. aeruginosa alone with the dual-species biofilms formed by bacteria and C. albicans. Here, we found that the phage together with the antifungal fluconazole was active against 6-h-old dual-species biofilms but showed only negligible activity against 24-h-old biofilms. This study lays the first foundation for potential therapeutic approaches to treat co-infections caused by bacteria and fungi using phage-antibiotic combinations.


Assuntos
Antibacterianos , Antifúngicos , Biofilmes , Candida albicans , Ciprofloxacina , Fagos de Pseudomonas , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Antifúngicos/farmacologia , Antibacterianos/farmacologia , Fagos de Pseudomonas/fisiologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Ciprofloxacina/farmacologia , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana
9.
Antibiotics (Basel) ; 13(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39061362

RESUMO

Acinetobacter baumannii is a challenging multidrug-resistant pathogen in healthcare. Phage vB_AbaSi_W9 (GenBank: PP146379.1), identified in our previous study, shows lytic activity against 26 (89.66%) of 29 carbapenem-resistant Acinetobacter baumannii (CRAB) strains with various sequence types (STs). It is a promising candidate for CRAB treatment; however, its lytic efficiency is insufficient for complete bacterial lysis. Therefore, this study aimed to investigate the clinical utility of the phage vB_AbaSi_W9 by identifying antimicrobial agents that show synergistic effects when combined with it. The A. baumannii ATCC17978 strain was used as the host for the phage vB_AbaSi_W9. Adsorption and one-step growth assays of the phage vB_AbaSi_W9 were performed at MOIs of 0.001 and 0.01, respectively. Four clinical strains of CRAB belonging to different sequence types, KBN10P04948 (ST191), LIS2013230 (ST208), KBN10P05982 (ST369), and KBN10P05231 (ST451), were used to investigate phage-antibiotic synergy. Five antibiotics were tested at the following concentration: meropenem (0.25-512 µg/mL); colistin, tigecycline, and rifampicin (0.25-256 µg/mL); and ampicillin/sulbactam (0.25/0.125-512/256 µg/mL). The in vitro synergistic effect of the phage and rifampicin was verified through an in vivo mouse infection model. Phage vB_AbaSi_W9 demonstrated 90% adsorption to host cells in 1 min, a 20 min latent period, and a burst size of 114 PFU/cell. Experiments combining phage vB_AbaSi_W9 with antibiotics demonstrated a pronounced synergistic effect against clinical strains when used with tigecycline and rifampicin. In a mouse model infected with CRAB KBN10P04948 (ST191), the group treated with rifampicin (100 µg/mL) and phage vB_AbaSi_W9 (MOI 1) achieved a 100% survival rate-a significant improvement over the phage-only treatment (8.3% survival rate) or antibiotic-only treatment (25% survival rate) groups. The bacteriophage vB_AbaSi_W9 demonstrated excellent synergy against CRAB strains when combined with tigecycline and rifampicin, suggesting potential candidates for phage-antibiotic combination therapy in treating CRAB infections.

10.
Phage (New Rochelle) ; 4(2): 55-67, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37350995

RESUMO

Phage-antibiotic synergy (PAS) has been extensively explored over the past decade, with the aim of developing more effective treatments against multidrug-resistant organisms. However, it remains unclear how to effectively combine these two approaches. To address this uncertainty, we assessed four main aspects of PAS interactions in this review, seeking to identify commonalities of combining treatments within and between bacterial species. We examined all literature on PAS efficacy toward ESKAPE pathogens and present an analysis of the data in papers focusing on: (1) order of treatment, (2) dose of both phage and antibiotics, (3) mechanism of action, and (4) viability of transfer from in vivo or animal model trials to clinical applications. Our analysis indicates that there is little consistency within phage-antibiotic therapy regimens, suggesting that highly individualized treatment regimens should be used. We propose a set of experimental studies to address these research gaps. We end our review with suggestions on how to improve studies on phage-antibiotic combination therapy to advance this field.

11.
Microbiol Spectr ; 11(4): e0034123, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37260382

RESUMO

Synergistic effects of phages in combination with antibiotics have received increasing attention. In this present study, we isolated a new phage pB3074 against clinically isolated multidrug-resistant Acinetobacter baumannii. Phage pB3074 combined with cell wall-targeting antibiotics could produce synergistic antibacterial effect in vitro bactericidal activities. Further research indicates that the bacteriophage dose is critical to synergistic antimicrobial effect of phage and antibiotic combination. Cefotaxime and meropenem were selected as the representative cell wall-targeting antibiotics for further synergistic antibacterial study. Results illustrated that phage pB3074 and cefotaxime or meropenem combination was very effective for the removal of mature biofilm and inhibition of biofilm formation. In a pig skin explant model, results also showed that phage pB3074 and cefotaxime or meropenem combination was very effective for the treatment of wound infection ex vivo. Subsequent studies showed that some extent recovery of drug sensitivity to cell wall-targeting antibiotics might be vital mechanism of synergistic antibacterial effect between bacteriophage pB3074 and these antibiotics. The existence of antibiotics could promote phage adsorption and proliferation, which might also be potential mechanism for synergistic antibacterial activities and have been observed in cefotaxime and meropenem application. In summary, results in the current study demonstrated that phage pB3074 has the potential to be developed as an antibacterial agent and combined application of phages and antibiotics might be a new choice for the treatment of current multidrug-resistant bacterial infections. IMPORTANCE Combined application of phages and antibiotics cannot only effectively inhibit the appearance of phage-resistant bacteria, but also reduce the effective use concentration of antibiotics, and even make some bacteria regain sensitivity to some resistant antibiotics. Therefore, phage-antibiotic combination (PAC) could improve the antibacterial activity of individual drug, providing a new choice for clinical treatment of multidrug-resistant bacterial infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Animais , Suínos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném/farmacologia , Sinergismo Farmacológico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Cefotaxima/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
12.
Front Microbiol ; 14: 1320345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249486

RESUMO

Bacteria and fungi tend to coexist within biofilms instead of in planktonic states. Usually, such communities include cross-kingdom microorganisms, which make them harder to remove from abiotic surfaces or infection sites. Additionally, the produced biofilm matrix protects embedded microorganisms from antibiotics, disinfectants, or the host immune system. Therefore, classic therapies based on antibiotics might be ineffective, especially when multidrug-resistant bacteria are causative factors. The complexities surrounding the eradication of biofilms from diverse surfaces and the human body have spurred the exploration of alternative therapeutic modalities. Among these options, bacteriophages and their enzymatic counterparts have emerged as promising candidates, either employed independently or in synergy with antibiotics and other agents. Phages are natural bacteria killers because of mechanisms of action that differ from antibiotics, phages might answer worldwide problems with bacterial infections. In this review, we report the attempts to use bacteriophages in combating polymicrobial biofilms in in vitro studies, using different models, including the therapeutical use of phages. In addition, we sum up the advantages, disadvantages, and perspectives of phage therapy.

13.
Drugs Drug Candidates ; 2(3): 673-688, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38770155

RESUMO

Bacteriophages (phages) are viruses of bacteria and have been used as antibacterial agents now for over one-hundred years. The primary pharmacodynamics of therapeutic phages can be summed up as follows: phages at a certain concentration can reach bacteria at a certain rate, attach to bacteria that display appropriate receptors on their surfaces, infect, and (ideally) kill those now-adsorbed bacteria. Here, I consider the rate at which phages reach bacteria, during what can be dubbed as an 'extracellular search'. This search is driven by diffusion and can be described by what is known as the phage adsorption rate constant. That constant in turn is thought to be derivable from knowledge of bacterial size, virion diffusion rates, and the likelihood of phage adsorption given this diffusion-driven encounter with a bacterium. Here, I consider only the role of bacterial size in encounter rates. In 1932, Schlesinger hypothesized that bacterial size can be described as a function of cell radius (R, or R1), as based on the non-phage-based theorizing of Smoluchowski (1917). The surface area of a cell-what is actually encountered-varies however instead as a function R2. Here, I both provide and review evidence indicating that Schlesinger's assertion seems to have been correct.

14.
Int J Antimicrob Agents ; 62(5): 106951, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37574030

RESUMO

Bacteriophage (phage) therapy, exploiting phages which are the natural enemies of bacteria, has been re-introduced to treat multidrug-resistant (MDR) bacterial infections. However, some intrinsic drawbacks of phages are overshadowing their clinical use, particularly the narrow host spectrum and rapid emergence of resistance upon treatment. The use of phage-antibiotic combinations exhibiting synergistic bacterial killing [termed 'phage-antibiotic synergy' (PAS)] has therefore been proposed. It is well reported that the types and doses of phages and antibiotics are critical in achieving PAS. However, the impact of treatment order has received less research attention. As such, this study used an Acinetobacter baumannii phage vB_AbaM-IME-AB2 and colistin as a model PAS combination to elucidate the order effects in-vitro. While application of the phage 8 h before colistin treatment demonstrated the greatest antibacterial synergy, it failed to prevent the development of phage resistance. On the other hand, simultaneous application and antibiotic followed by phage application were able to suppress/delay the development of resistance effectively, and simultaneous application demonstrated superior antibacterial and antibiofilm activities. Further in-vivo investigation is required to confirm the impact of treatment order on PAS.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Humanos , Antibacterianos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Farmacorresistência Bacteriana Múltipla
15.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112892

RESUMO

Salmonella, the causative agent of several diseases in humans and animals, including salmonellosis, septicemia, typhoid fever, and fowl typhoid, poses a serious threat to global public health and food safety. Globally, reports of therapeutic failures are increasing because of the increase in bacterial antibiotic resistance. Thus, this work highlights the combined phage-antibiotic therapy as a promising approach to combating bacterial resistance. In this manner, the phage ZCSE9 was isolated, and the morphology, host infectivity, killing curve, combination with kanamycin, and genome analysis of this phage were all examined. Morphologically, phage ZCSE9 is a siphovirus with a relatively broad host range. In addition, the phage can tolerate high temperatures until 80 °C with one log reduction and a basic environment (pH 11) without a significant decline. Furthermore, the phage prevents bacterial growth in the planktonic state, according to the results of the time-killing curve. Moreover, using the phage at MOI 0.1 with kanamycin against five different Salmonella serotypes reduces the required antibiotics to inhibit the growth of the bacteria. Comparative genomics and phylogenetic analysis suggested that phage ZCSE9, along with its close relatives Salmonella phages vB_SenS_AG11 and wksl3, belongs to the genus Jerseyvirus. In conclusion, phage ZCSE9 and kanamycin form a robust heterologous antibacterial combination that enhances the effectiveness of a phage-only approach for combating Salmonella.


Assuntos
Bacteriófagos , Infecções por Salmonella , Fagos de Salmonella , Salmonella enterica , Animais , Humanos , Bacteriófagos/genética , Canamicina/farmacologia , Filogenia , Salmonella/genética , Fagos de Salmonella/genética , Antibacterianos/farmacologia , Genoma Viral
16.
Biofilm ; 6: 100147, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37662851

RESUMO

Chronic wound management is extremely challenging because of the persistence of biofilm-forming pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which are the prevailing bacterial species that co-infect chronic wounds. Phage therapy has gained an increased interest to treat biofilm-associated infections, namely when combined with antibiotics. Here, we tested the effect of gentamicin as a co-adjuvant of phages in a dual species-biofilm wound model formed on artificial dermis. The biofilm-killing capacity of the tested treatments was significantly increased when phages were combined with gentamicin and applied multiple times as multiple dose (three doses, every 8 h). Our results suggest that gentamycin is an effective adjuvant of phage therapy particularly when applied simultaneously with phages and in three consecutive doses. The multiple and simultaneous dose treatment seems to be essential to avoid bacterial resistance development to each of the antimicrobial agents.

17.
Antibiotics (Basel) ; 12(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37107086

RESUMO

For ideal gasses, the likelihood of collision of two molecules is a function of concentrations as well as environmental factors such as temperature. This too is the case for particles diffusing within liquids. Two such particles are bacteria and their viruses, the latter called bacteriophages or phages. Here, I review the basic process of predicting the likelihoods of phage collision with bacteria. This is a key step governing rates of phage-virion adsorption to their bacterial hosts, thereby underlying a large fraction of the potential for a given phage concentration to affect a susceptible bacterial population. Understanding what can influence those rates is very relevant to appreciating both phage ecology and the phage therapy of bacterial infections, i.e., where phages are used to augment or replace antibiotics; so too adsorption rates are highly important for predicting the potential for phage-mediated biological control of environmental bacteria. Particularly emphasized here, however, are numerous complications on phage adsorption rates beyond as dictated by the ideals of standard adsorption theory. These include movements other than due to diffusion, various hindrances to diffusive movement, and the influence of assorted heterogeneities. Considered chiefly are the biological consequences of these various phenomena rather than their mathematical underpinnings.

18.
Antibiotics (Basel) ; 12(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37107097

RESUMO

Pseudomonas aeruginosa (PsA) is an opportunistic bacterial pathogen that causes life-threatening infections in individuals with compromised immune systems and exacerbates health concerns for those with cystic fibrosis (CF). PsA rapidly develops antibiotic resistance; thus, novel therapeutics are urgently needed to effectively combat this pathogen. Previously, we have shown that a novel cationic Zinc (II) porphyrin (ZnPor) has potent bactericidal activity against planktonic and biofilm-associated PsA cells, and disassembles the biofilm matrix via interactions with eDNA In the present study, we report that ZnPor caused a significant decrease in PsA populations in mouse lungs within an in vivo model of PsA pulmonary infection. Additionally, when combined with an obligately lytic phage PEV2, ZnPor at its minimum inhibitory concentration (MIC) displayed synergy against PsA in an established in vitro lung model resulting in greater protection of H441 lung cells versus either treatment alone. Concentrations above the minimum bactericidal concentration (MBC) of ZnPor were not toxic to H441 cells; however, no synergy was observed. This dose-dependent response is likely due to ZnPor's antiviral activity, reported herein. Together, these findings show the utility of ZnPor alone, and its synergy with PEV2, which could be a tunable combination used in the treatment of antibiotic-resistant infections.

19.
Viruses ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35891522

RESUMO

Phage-antibiotic synergy is a promising therapeutic strategy, but there is no reliable method for synergism estimation. Although the time-kill curve assay is a gold standard, the method is not appropriate for fast and extensive screening of the synergy. The aim is to optimize the checkerboard method to determine phage-chemical agent interactions, to check its applicability by the time-kill curve method, and to examine whether the synergy can be obtained with both simultaneous and successive applications of these agents. In addition, the aim is to determine interactions of the Pseudomonas phage JG024 with ciprofloxacin, gentamicin, or ceftriaxone, as well as the Staphylococcus phage MSA6 and SES43300 with ciprofloxacin, gentamicin, and oxacillin. The results show that the optimized checkerboard method is reliable and that results correspond to those obtained by the time-kill curve. The synergy is detected with the phage JG024 and ciprofloxacin or ceftriaxone against Pseudomonas aeruginosa, and the phage SES43300 with ciprofloxacin against MRSA. The synergy was obtained after simultaneous applications, and in the case of P. aeruginosa, after application of the second agent with delay of one hour, indicating that simultaneous application is the best mode of synergy exploitation for therapy. The checkerboard method can be used for thorough clinical studies on synergy and in the future for personalized therapy when infections are caused by multiple resistant bacteria.


Assuntos
Bacteriófagos , Ceftriaxona , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Sinergismo Farmacológico , Gentamicinas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
20.
Microb Drug Resist ; 28(6): 613-622, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35404123

RESUMO

Alternative therapies against multidrug-resistant bacteria are widely investigated in the postantibiotic era. Polymicrobial biofilms formed by two or more species of bacteria or fungi pose an additional threat. The removal of such complex communities requires more effort and a multidirectional approach. In this study, the effectiveness of two bacteriophages vB_SauM-A (A) and vB_SauM-D (D) combined with ciprofloxacin was used to combat Staphylococcus aureus in the presence of Candida albicans both in liquid culture and biofilm. The results showed that phage-antibiotic synergy (PAS) led to the complete removal of S. aureus in liquid culture without bacterial population regrowth after 24 hours, and C. albicans enhanced this therapeutic effect. In a biofilm assay, C. albicans presence caused a decrease of bacterial eradication and a reduction of biofilm-specific activity (BSA). However, the strong effect of PAS was observed both in mono- and dual-species biofilm. Usage of phages and ciprofloxacin (1 mg/L) caused a 90% reduction of BSA of mono-species biofilm and 69% of dual-species biofilm. Phages alone resulted in a decrease of 71% and 48%, and ciprofloxacin (1 mg/L) alone resulted in 45% and 23% reduction, respectively. The influence of C. albicans on the PAS effect against S. aureus presented in this study was not previously investigated.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Antibacterianos/farmacologia , Biofilmes , Candida albicans , Ciprofloxacina/farmacologia , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa