RESUMO
The treatment efficiency of acidic phenol-containing wastewater is hindered by the absence of efficient acid-resistant phenol-degrading bacteria, and the acid-resistant mechanism of such bacteria remains poorly studied. In this study, the acid-resistant strain Hly3 was used as a research model to investigate its ability to degrade phenol and its underlying mechanism of acid resistance. Strain Hly3 exhibited robust acid resistance, capable of surviving in extremely acidic environments (pH 3) and degrading 1700 mg L-1 phenol in 72 h. Through the physiological response analysis of strain Hly3 to pH, the results indicated: firstly, the strain could reduce the relative permeability of the cell membrane and increase EPS secretion to prevent H+ from entering the cell (shielding effect); secondly, the strain could accumulate more buffering substances to neutralize the intracellular H+ (neutralization effect); thirdly, the strain could expel H+ from the cell by enhancing H+-ATPase activity (pumping effect); finally, the strain produced more active scavengers to reduce the toxicity of acid stress on cells (antioxidant effect). Subsequently, combining liquid chromatography-mass spectrometry (LC-MS) technology with exogenous addition experiments, it was verified that the acid resistance mechanism of microorganisms is achieved through the activation of acid-resistant response systems by glutamine, thereby enhancing functions such as shielding, neutralization, efflux, and antioxidation. This study elucidated the acid resistance mechanism of Acinetobacter pittii, providing a theoretical basis and guidance for the treatment of acidic phenol-containing wastewater.
Assuntos
Acinetobacter , Fenol , Acinetobacter/metabolismo , Fenol/metabolismo , Concentração de Íons de Hidrogênio , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Águas Residuárias/microbiologia , Ácidos/metabolismoRESUMO
Coal gasification fine slag (CGFS), as a difficult-to-dispose solid waste in the coal chemical industry, consists of minerals and residual carbon. Due to the aggregate structure of minerals blocking pores and encapsulating active substances, the high-value utilization of CGFS still remains a challenge. Based on the intrinsic characteristics of CGFS, this study synthesized Fe-N doped porous carbon/silicate composites (Fe-NC) by alkali activation and pyrolysis for electrocatalytic degradation of phenolic wastewater. Meanwhile, minerals were utilized to regulate the surface chemical and pore structure, turning their disadvantages into advantages, which caused a sharp increase in m-cresol mineralization. The positive effect of minerals on composite properties was investigated by characterization techniques, electrochemical analyses and density functional theory (DFT) calculations. It was found that the mesoporous structure of the mineral-regulated composites was further developed, with more carbon defects and reactive substances on its surface. Most importantly, silicate mediated iron conversion through strong interaction with H2O2, high work function gradient with electroactive iron, and excellent superoxide radical (â¢O2-) production capacity. It effectively improved the reversibility and kinetics of the entire electrocatalytic reaction. Within the Fe-NC311 electrocatalytic system, the m-cresol removal rate reached 99.55 ± 1.24%, surpassing most reported Fe-N-doped electrocatalysts. In addition, the adsorption and electrooxidation experiment confirmed that the synergistic effect of Fe-N doped porous carbon and silicate simultaneously promoted the capture of pollutants and the transformation of electroactive molecules, and hence effectively shortened the diffusion path of short-lived radicals, which was further supported by molecular dynamics simulation. Therefore, this research provides new insights into the problem of mineral limitations and opens an innovative approach for CGFS recycling and environmental remediation.
Assuntos
Carbono , Ferro , Fenóis , Silicatos , Águas Residuárias , Poluentes Químicos da Água , Silicatos/química , Águas Residuárias/química , Carbono/química , Porosidade , Ferro/química , Poluentes Químicos da Água/química , Fenóis/química , Catálise , Carvão Mineral , Minerais/química , Nitrogênio/química , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas/métodos , Resíduos Industriais/análiseRESUMO
The formation of aerobic granular sludge (AGS) is relatively difficult during the treatment of refractory wastewater, which generally shows small granular sizes and poor stability. The formation of AGS is regulated by N-Acyl homoserine lactones (AHLs)-mediated quorum sensing (QS). However, the potential role of AHLs in AGS formation under the toxic stress of refractory pollutants and the heterogeneity in the distribution and function of AHLs across different aggregates are not well understood. This study investigated the potential effects of AHLs on the formation of AGS during phenolic wastewater treatment. The distribution and succession of AHLs across varying granular sizes and development stages of AGS were investigated. Results showed that AGS was successfully formed in 13 days with an average granular size of 335 ± 39 µm and phenol removal efficiency of >99%. The levels of AHLs initially increased and then decreased. C4-HSL and 3-oxo-C10-HSL were enriched in large granules, suggesting they may play a pivotal role in regulating the concentration and composition of extracellular polymeric substances (EPS). The content of EPS constantly increased to 149.4 mg/gVSS, and protein (PN) was enriched in small and large granules. Luteococcus was the dominant genus constituting up to 62% after the granulation process, and exhibited a strong association with C4-HSL. AHLs might also regulate the bacterial community responsible for EPS production, and pollutant removal, and facilitate the proliferation of slow-growing microorganisms, thereby enhancing the formation of AGS. The synthesis and dynamics of AHLs were mainly governed by AHLs-producing bacterial strains of Rhodobacter and Pseudomonas, and AHLs-quenching strains of Flavobacterium and Comamonas. C4-HSL and 3-oxo-C10-HSL might be the major contributors to promoting sludge granulation under phenol stress and play critical roles in large granules. These findings enhance our understanding of the roles that AHLs play in sludge granulation under toxic conditions.
Assuntos
Acil-Butirolactonas , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Esgotos/química , Acil-Butirolactonas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia , Aerobiose , Percepção de Quorum , Fenóis/análise , Poluentes Químicos da Água/análiseRESUMO
Supercritical water gasification technology provides a favorable technology to achieve pollution elimination and resource utilization of phenolic wastewater. In this study, the reaction mechanism of phenolic wastewater supercritical water gasification was investigated using a combination of experimental and computational methods. Five reaction channels were identified to elucidate the underlying pathway of phenol decomposition. Importantly, the rate-determining step was found to be the dearomatization reaction. By integrating computational and experimental analyses, it was found that phenol decomposition via the path with the lowest energy barrier generates cyclopentadiene, featuring a dearomatization barrier of 70.97 kcal/mol. Additionally, supercritical water plays a catalytic role in the dearomatization process by facilitating proton transfer. Based on the obtained reaction pathway, alkali salts (Na2CO3 and K2CO3) are employed as a catalyst to diminish the energy barrier of the rate-determining step to 40.00 kcal/mol and 37.14 kcal/mol. Alkali salts catalysis significantly improved carbon conversion and pollutant removal from phenolic wastewater, increasing CGE from 58.44% to 93.55% and COD removal efficiency from 94.11% to 99.79%. Overall, this study provides a comprehensive understanding of the decomposition mechanism of phenolic wastewater in supercritical water.
Assuntos
Águas Residuárias , Águas Residuárias/química , Catálise , Fenóis/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Água/químicaRESUMO
In this study, the performance of a zero-gap flow-through reactor with three-dimensional (3D) porous Ti/RuO2-TiO2@Pt anodes was systematically investigated for the electrocatalytic oxidation of phenolic wastewater, considering phenol and 4-nitrophenol (4-NP) as the target pollutants. The optimum parameters for the electrochemical oxidation of phenol and 4-NP were examined. For phenol degradation, at an initial concentration of 50 mg/L, initial pH of 7, NaCl concentration of 10.0 g/L, current density of 10 mA/cm2, and retention time of 30 min, the degradation efficiency achieved was 95.05%, with an energy consumption of 15.39 kWh/kg; meanwhile, for 4-NP, the degradation efficiency was 98.42% and energy consumption was 19.21 kWh/kg (at an initial concentration of 40 mg/L, initial pH of 3, NaCl concentration of 10.0 g/L, current density of 10 mA/cm2, and retention time of 30 min). The electrocatalytic oxidation of phenol and 4-NP conformed to the pseudo-first-order kinetics model, and the k values were 0.2562 min-1 and 0.1736 min-1, respectively, which are 1.7 and 3.6-times higher than those of a conventional electrolyzer. Liquid chromatography-mass spectrometry (LC-MS) was used to verify the intermediates formed during the degradation of phenol or 4-NP and a possible degradation pathway was provided. The extremely narrow electrode distance and the flow-through configuration of the zero-gap flow-through reactor were thought to be essential for its lower energy consumption and higher mass transfer efficiency. The zero-gap flow-through reactor with a novel 3D porous Ti/RuO2-TiO2@Pt electrode is a superior alternative for the treatment of industrial wastewater.
RESUMO
Anaerobic fluidized bed microbial fuel cell (AFB-MFC) is a technology that combines fluidized bed reactor and microbial fuel cell to treat organic wastewater and generate electricity. The performance and the mechanism of treating m-cresol wastewater in AFB-MFC using carbon brush as biofilm anode were studied. After 48 h of operation, the m-cresol removal efficiency of AFB-MFC, MAR-AFB (fluidized bed bioreactor with acclimated anaerobic sludge), MAR-FB (ordinary fluidized bed reactor with only macroporous adsorptive resin) and AST (traditional anaerobic sludge treatment) were 95.29 ± 0.67%, 85.78 ± 1.81%, 71.24 ± 1.86% and 70.41 ± 0.32% respectively. The maximum output voltage and the maximum power density of AFB-MFC using carbon brush as biofilm anode were 679.7 mV and 166.6 mW/m2 respectively. The results of high-throughput sequencing analysis indicated the relative abundance of dominant electroactive bacteria, such as Trichococcus, Geobacter, and Pseudomonas, on the anode carbon brushes was higher than that of AST, and also identified such superior m-cresol-degrading bacteria as Bdellovibrio, Thermomonas, Hydrogenophaga, etc. Based on the determination of m-cresol metabolites detected by Gas Chromatography-Mass Spectrometry (GC-MS), the possible biodegradation pathway of m-cresol under anaerobic and aerobic conditions in AFB-MFC was speculated. The results showed that m-cresol was decomposed into formic acid-acetic anhydride and 3-methylpropionic acid under the action of electrochemistry, which is a simple degradation pathway without peripheral metabolism in AFB-MFC.
Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Esgotos , Carbono , Anaerobiose , Eletricidade , Fenóis , EletrodosRESUMO
A sewage sludge-based activated carbon (SBAC) intercalated MgAlFe ternary layered double hydroxide (SBAC-MgAlFe-LDH) composite was synthesized via the coprecipitation method. The adsorptive performance of the composite for phenol uptake from the aqueous phase was evaluated via the response surface methodology (RSM) modeling technique. The SBAC-MgAlFe-LDH phenol uptake capacity data were well-fitted to reduced RSM cubic model (R2 = 0.995, R2-adjusted = 0.993, R2-predicted = 0.959 and p-values < 0.05). The optimum phenol adsorption onto the SBAC-MgAlFe-LDH was achieved at 35 °C, 125 mg/L phenol, and pH 6. Under the optimal phenol uptake conditions, pseudo-first-order and Avrami fractional-order models provided a better representation of the phenol uptake kinetic data, while the equilibrium data models' fitting follows the order; Liu > Langmuir > Redlich-Peterson > Freundlich > Temkin. The phenol uptake mechanism was endothermic in nature and predominantly via a physisorption process (ΔG° = -5.33 to -5.77 kJ/mol) with the involvement of π-π interactions between the phenol molecules and the functionalities on the SBAC-LDH surface. The maximum uptake capacity (216.76 mg/g) of SBAC-MgAlFe-LDH was much higher than many other SBAC-based adsorbents. The improved uptake capacity of SBAC-LDH was attributed to the effective synergetic influence of SBAC-MgAlFe-LDH, which yielded abundant functionalized surface groups that favored higher aqueous phase uptake of phenol molecules. This study showcases the potential of SBAC-MgAlFe-LDH as an effective adsorbent material for remediation of phenolic wastewater.
RESUMO
OBJECTIVE: To develop a method to treat saline phenolic wastewater in a biological contact oxidation reactor (BCOR) with immobilized cells of a marine microorganism, Oceanimonas sp., isolated from seawater. RESULTS: Cells were immobilized on fibre carriers in the BCOR. Saline wastewater with phenol at 1.5 g/l and NaCl at 6 % (w/v) was treated. In continuous assays, 99 % removal of phenol was achieved and a kinetic model for the phenol degradation is presented based on Monod's equation. CONCLUSION: The BOCR system using immobilized cells of Oceanimonas efficiently treats saline phenolic wastewaters without having decrease the salinity of the wastewater.
Assuntos
Aeromonadaceae/metabolismo , Reatores Biológicos/microbiologia , Biodegradação Ambiental , Células Imobilizadas/metabolismo , Modelos Teóricos , Águas Residuárias/microbiologiaRESUMO
The study optimized the parameters of low-intensity ultrasound (LIUS), including ultrasound density (0.25 W·mL-1), duration (12 min), and interval time (48 h), through a combination of uniform experiments and response surface prediction. The optimized parameters were aimed at enhancing the removal efficiency of phenolic wastewater to approximately 80%. Furthermore, they facilitate the production of hydrolytic gases in anaerobic digestion, resulting in methane accumulation of up to 237.3 mL·(g VS)-1. Following the long-term experiment, LIUS has been demonstrated to effectively enhance the enzyme activity of anaerobic organisms while also damaging the bacterial structure of microorganisms. However, microbiological analysis indicates that the ultrasound-induced screening mechanism effectively increases the relative abundance of dominant bacterial communities. This facilitated the removal of persistent phenolic contaminants and stabilized the balanced development of the overall anaerobic environment. These findings suggest that LIUS can enhance biological activity and improve the anaerobic treatment of phenolic wastewater.
Assuntos
Fenóis , Águas Residuárias , Anaerobiose , Fenóis/metabolismo , Biodegradação Ambiental , Metano/metabolismo , Reatores Biológicos , Ondas Ultrassônicas , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismoRESUMO
The selective transformation of organics from wastewater to value-added chemicals is considered an upcycling process beneficial for carbon neutrality. Herein, we present an innovative electrocatalytic oxidation (ECO) system aimed at achieving the selective conversion of phenols in wastewater to para-benzoquinone (p-BQ), a valuable chemical widely utilized in the manufacturing and chemical industries. Notably, 96.4% of phenol abatement and 78.9% of p-BQ yield are synchronously obtained over a preferred carbon cloth-supported ruthenium nanoparticles (Ru/C) anode. Such unprecedented results stem from the weak Ru-O bond between the Ru active sites and generated p-BQ, which facilitates the desorption of p-BQ from the anode surface. This property not only prevents the excessive oxidation of the generated p-BQ but also reinstates the Ru active sites essential for the rapid ECO of phenol. Furthermore, this ECO system operates at ambient conditions and obviates the need for potent chemical oxidants, establishing a sustainable avenue for p-BQ production. Importantly, the system efficacy can be adaptable in actual phenol-containing coking wastewater, highlighting its potential practical application prospect. As a proof of concept, we construct an electrified Ru/C membrane for ECO of phenol, attaining phenol removal of 95.8% coupled with p-BQ selectivity of 73.1%, which demonstrates the feasibility of the ECO system in a scalable flow-through operation mode. This work provides a promising ECO strategy for realizing both phenols removal and valuable organics recovery from phenolic wastewater.
Assuntos
Benzoquinonas , Águas Residuárias , Poluentes Químicos da Água , Fenol/química , Fenóis , Carbono , Poluentes Químicos da Água/químicaRESUMO
A novel graphene oxide-modified resin (graphene oxide-macroporous adsorption resin) was prepared and used as a multifunctional carrier in an anaerobic fluidized bed microbial fuel cell (AFB-MFC) to treat phenolic wastewater (PW). The macroporous adsorption resin (MAR) was used as the carrier, graphene oxide was used as the modified material, the conductive modified resin was prepared by loading graphene oxide (GO) on the resin through chemical reduction. The modified resin particles were characterized by scanning electron microscopy (SEM), Raman spectroscopy (RS), specific surface area and pore structure analysis. Graphene oxide-macroporous adsorption resin special model was established using the Amorphous Cell module in Materials Studio (MS), and the formation mechanism of graphene oxide-macroporous adsorption resin was studied using mean square displacement (MSD) of the force module. Molecular dynamics simulation was used to study the motion law of molecular and atomic dynamics at the interface of graphene oxide-macroporous adsorption resin composites. The strong covalent bond between GO and MAR ensures the stability of GO/MAR. When the modified resin prepared in 3.0â mg/mL GO mixture was used in the AFB-MFC, the COD removal of wastewater was increased by 9.1% to 72.44%, the voltage was increased by 84.04% to 405.8â mV, and power density was increased by 765.44% to 242.67â mW/m2.
RESUMO
A novel bimetallic doped PAC (Fe-Mn/PAC) pellet was prepared with a facile sol-gel method and used as an ozone catalyst for phenolic wastewater (PWW) treatment. Adoption of Fe-Mn/PAC pellet in microbubble ozonation enhanced the 1-h chemical oxygen demand (COD) and phenol removal in PWW to 79% and 95%, respectively. With ozone dosage of 10 mg/L, 1 g/L Fe-Mn/PAC pellet exhibited ozone conversion of 92%. In comparison to microbubble ozonation process, Fe-Mn/PAC induced microbubble-catalytic ozonation process promoted ozone decomposition rate by 1.9 times. In terms of â¢OH production, Fe-Mn/PAC pellet enhanced â¢OH exposure by 10 times, with a Rct value of 2.92 × 10 -8. Rct kinetic model also suggested that Fe-Mn/PAC pellet obtained higher kinetic rate constants for initiating and promoting â¢OH generation. Usage of Fe-Mn/PAC pellet in microbubble ozonation for phenolic wastewater treatment also reduced the total ozone consumption by 70%. In Fe-Mn/PAC induced microbubble-catalytic ozonation process, the ratio between ozone consumption and COD removal (ΔO3/ΔCOD) was 0.91. Fe-Mn/PAC pellet characterization with X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR) and X-ray powder diffraction (XRD) analysis revealed successful doping of Fe-Mn on PAC substrate and larger numbers of carbon-oxygen/hydroxyl surface groups, which played key roles in ozone decomposition and â¢OH production.
Assuntos
Ozônio , Poluentes Químicos da Água , Catálise , Carvão Vegetal , Análise Custo-Benefício , Fenol , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
Two humic-rich natural materials namely peat soil and lignite were supplemented in up-flow anaerobic sludge blanket (UASB) bioreactors for the treatment of phenolic wastewater. Peat soil improved phenol degradation and resistance to shock load; ultimately, contributing to higher COD removal efficiency (83.3%), methane production (4532 mL d-1), and better reactor's stability. Accordingly, the amount of extracellular polymeric substances (EPS) and coenzyme F420 in sludge were increased to 1.3-fold and 2.5-fold, respectively, as compared to the control treatment. The addition of lignite however displayed poor phenol degradation and no effects on the secretion of EPS and F420. The peat soil significantly influenced the microbial community structures, whereas the effect of lignite was inconspicuous. In the presence of peat soil, the abundance of syntrophic fermentation bacteria and methanogens was significantly increased. This study illustrates the potential use of peat soil in UASB for the treatment of phenolic wastewaters.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Águas ResiduáriasRESUMO
Phenolic compounds are common ccontaminants in industrial effluents. In this study, a combined catalytic microbubble ozonation and biological process was developed and applied for efficient industrial phenolic wastewater (PWW) treatment. Catalytic activity of an iron-oxides (FeOx) doped granular activated carbon (GAC) catalyst (FeOx@GAC) in microbubble ozonation for PWW treatment was investigated. The results demonstrated that the FeOx@GAC catalyzed microbubble ozonation (O3/FeOx@GAC) obtained significantly higher reaction rate constant (k1 = 0.023 min-1) in TOC removal compared to the bare GAC catalyzed microbubble ozonation (O3/GAC, k1 = 0.013 min-1) and ordinary microbubble ozonation (k1 = 0.008 min-1). Destruction rate constant of phenolic compounds (k2) was improved from 0.014 min-1 (ordinary microbubble ozonation) to 0.025 min-1 (O3/FeOx@GAC). The 60-min pretreatment of PWW by O3/FeOx@GAC process enhanced BOD5/COD ratio from 0.31 to 0.76 and reduced the acute bio-toxicity by 79.2%. Screening and characterization of biological post-treatment processes were conducted among activated sludge process (ASP), up-flow anaerobic sludge blanket (UASB) and membrane bioreactor (MBR). UASB and ASP showed limited phenolic compounds removal of 35.4% and 57.0% with lower bio-toxicity resistance than MBR (94.9% phenolic compounds removal). The combined process O3/FeOx@GAC-MBR was thus developed and achieved high COD removal (98.0%) and phenolic compounds degradation (99.4%). PWW pretreatment by O3/FeOx@GAC process decreased membrane fouling rate of MBR by 88.2% by reducing proteins/polysaccharides accumulation in both extracellular polymeric substances and soluble microbial products. 16S rRNA high-throughput sequencing revealed the predominance of phylum Proteobacteria, class Alphaproteobacteria and genera Mycobacterium, Gordonia, Pedomicrobium & Defluviimonas in biological PWW treatment bio-systems. Pearson correlation coefficient and ANOVA analysis verified that Mycobacterium possessed high bio-toxicity resistance and was the main contributor to the biodegradation of phenolic compounds.
Assuntos
Fenômenos Biológicos , Ozônio , Poluentes Químicos da Água , Reatores Biológicos , Catálise , Carvão Vegetal , Microbolhas , RNA Ribossômico 16S , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
With the rapid development of industry, especially the rapid rise of the chemical industry, the problem of water pollution is becoming more and more serious. Among them, the discharge of organic pollutants represented by phenolic substances has always been at the forefront. In this paper, ultrasound-assisted electrochemical treatment for phenolic wastewater is investigated. The effects of ultrasonic frequency, current, pH value and the amount of fly ash-loaded titanium TiO2-Fe3+ particles on phenol removal from phenol-containing wastewater are investigated. The experimental results demonstrate that the removal rate of phenol in phenol-containing wastewater is the best when ultrasonic frequency is 45 kHz, power is 200 W, the current is 1.2 A, pH is 5 and the dosage of fly ash-loaded titanium TiO2-Fe3+ particles is 3 g. In addition, microwave-assisted-Fenton reagent treatment for phenol wastewater is investigated. The effects of Fenton reagent dosage, initial pH value, microwave power density and radiation time on phenol degradation rate are investigated. The results show that microwave can accelerate the reaction rate, reduce the number of metal ions, save the process cost and reduce the difficulty of post-treatment. Finally, the research status of phenol wastewater treatment technology at the present stage is reviewed, and the future development direction is discussed.
RESUMO
A tubing TPPB (Two-Phase Partitioning Bioreactor) was operated with the objective of verifying the effective treatment of a phenolic synthetic wastewater with simultaneous polymeric tubing bioregeneration by introducing tubing effluent recycle and modifications to the Hydraulic Retention Time (HRT). 2,4-dichlorophenol (DCP) was employed as the target substrate and the bioreactor was operated for a 3 month period under severe loading conditions (from 77 to 384 mg/L d) with HRT in the tubing in the range of 2-4 h. Tubing effluent recycle (recycle flow rate/influent flow rate ratio = 0.3) was applied when a loss of performance was detected arising from the increased load. For HRT values of 3 and 4 h, almost complete DCP removal was achieved after a few days (1-5) of operation while for the 2 h HRT (i.e. in the most severe loading condition) the DCP removal was ≥97%. A beneficial effect on the process performance arising from recycle application was evident for all the operating conditions investigated, and was confirmed by statistical analysis. Essentially complete polymer bioregeneration was achieved when the bioreactor was operated at the lowest HRT (i.e. 2 h), combined with the application of tubing effluent recycle. The results of this study highlighted several advantages of the tubing TPPB configuration in a comparative analysis of different regeneration options, including the possibility of operating continuously with simultaneous bioregeneration and without the need for additional units or operational steps and extra-energy consumption.
Assuntos
Reatores Biológicos , Águas Residuárias , Reciclagem , Eliminação de Resíduos LíquidosRESUMO
Phenols are industrially generated intermediate chemicals found in wastewaters that are considered a class of environmental priority pollutants. Up-flow anaerobic sludge blanket (UASB) reactors are used for phenolic wastewater treatment and exhibit high volume loading capability, favorable granule settling, and tolerance to impact loads. Use of support materials can promote biological productivity and accelerate start-up period of UASB. In the present study, turf soil was used as a support material in a mesophilic UASB reactor for the removal of phenols in wastewater. During sludge acclimatization (45-96 days), COD and phenols in the treatments were both reduced by 97%, whereas these contents in the controls were decreased by 81% and 75%, respectively. The phenol load threshold for the turf soil UASB reactor was greater (1200â¯mg/L, the equivalent of COD 3000â¯mg/L) in comparison with the control UASB reactor (900â¯mg/L, the equivalent of COD 2250â¯mg/L) and the turf soil UASB reactor was also more resistant to shock loading. Improved sludge settling, shear resistance, and higher biological activity occurred with the turf soil UASB reactor due to the formation of large granular sludge (0.6â¯mm or larger) in higher relative percentages. Granular sludge size was further enhanced by the colonization of filamentous bacteria on the irregular surface of the turf soil.
Assuntos
Reatores Biológicos/normas , Fenóis/química , Esgotos/química , Solo/química , Águas Residuárias/microbiologia , Anaerobiose , Bactérias , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodosRESUMO
Although toxic and refractory organics, such as phenol and quinoline, are decomposed by anaerobic bacteria, the establishment of specific degrading consortia is a relatively slow process. An anaerobic membrane bioreactor allows for complete biomass retention that can aid the establishment of phenol- and quinoline-degrading consortia. In this study, the anaerobic digestion of phenol (500 mg L-1) and quinoline (50 mg L-1) was investigated using an anaerobic baffled ceramic membrane bioreactor (ABCMBR). The results showed that, within 30 days, 99% of phenol, 98% of quinoline and 88% of chemical oxygen demand (COD) were removed. The substrate utilisation rates of the cake layer for phenol and quinoline, and specific methanogenic activity of the cake layer, were 7.58 mg phenol g-1 mixed liquor volatile suspended solids (MLVSS) day-1, 8.23 mg quinoline g-1 MLVSS day-1 and 0.55 g CODCH4 g-1 MLVSS day-1, respectively. The contribution of the cake layer to the removals of phenol and quinoline was extremely underestimated because the uncounted scoured cake layer was disregarded. Syntrophus was the key population for phenol and quinoline degradation, and it was more abundant in the cake layer than in the bulk sludge. The highly active scattered cake layer sped up the establishment of phenol- and quinoline-degrading consortia in the ABCMBR.
Assuntos
Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Fenol/metabolismo , Quinolinas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Biomassa , Cerâmica , Esgotos/microbiologiaRESUMO
Anaerobic digestion was an important way to remove phenols from saline wastewater; however the anaerobic microorganisms were adversely affected by high concentration of salts. In order to clarify the performance robustness and microbial community structure for anaerobic digestion of saline phenolic wastewater, the UASB reactors were compared to treat phenolic wastewater under saline and non-saline conditions. The saline reactors were operated stably with phenols concentration increasing from 100 to 500mgL-1 at 10g Na+ L-1. The robustness of the saline reactors was weakened at 1000mg phenols L-1 and 10g Na+ L-1. However, the substrate utilization rates (SURs) for phenol, catechol, resorcinol, hydroquinone, and the specific methanogenic activity (SMA) of sludge were decreased by 95%, 85%, 97%, 78%, and 68%, respectively with phenols concentration enhancing from 1000 to 2000mgL-1. Moreover, the SURs for phenol, catechol, resorcinol, hydroquinone, and the SMA of sludge were reduced by 32%, 65%, 74%, 45%, and 59%, respectively with Na+ concentration increasing from 10 to 20gL-1, in comparison with the values obtained at 10g Na+ L-1 and 1000mg phenols L-1. Finally, the analysis of microbial community structure demonstrated that phenols degraders were less tolerant to high concentrations of Na+ and phenols than methanogens.
Assuntos
Reatores Biológicos/microbiologia , Consórcios Microbianos/efeitos dos fármacos , Fenóis/toxicidade , Salinidade , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Fenóis/isolamento & purificaçãoRESUMO
A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect.