Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Small ; 20(4): e2303115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726245

RESUMO

Phosphorene is a 2D phosphorus atomic layer arranged in a honeycomb lattice like graphene but with a buckled structure. Since its exfoliation from black phosphorus in 2014, phosphorene has attracted tremendous research interest both in terms of synthesis and fundamental research, as well as in potential applications. Recently, significant attention in phosphorene is motivated not only by research on its fundamental physical properties as a novel 2D semiconductor material, such as tunable bandgap, strong in-plane anisotropy, and high carrier mobility, but also by the study of its wide range of potential applications, such as electronic, optoelectronic, and spintronic devices, energy conversion and storage devices. However, a lot of avenues remain to be explored including the fundamental properties of phosphorene and its device applications. This review recalls the current state of the art of phosphorene and its derivatives, touching upon topics on structure, synthesis, characterization, properties, stability, and applications. The current needs and future opportunities for phosphorene are also discussed.

2.
Chemistry ; 30(23): e202303978, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299695

RESUMO

A viable alternative to non-renewable hydrocarbon fuels is hydrogen gas, created using a safe, environmentally friendly process like water splitting. An important role in water-splitting applications is played by the development of two-dimensional (2D) layered transition metal chalcogenides (TMDCs), transition metal carbides (MXenes), graphene-derived 2D layered nanomaterials, phosphorene, and hexagonal boron nitride. Advanced synthesis methods and characterization instruments enabled an effective application for improved electrocatalytic water splitting and sustainable hydrogen production. Enhancing active sites, modifying the phase and electronic structure, adding conductive elements like transition metals, forming heterostructures, altering the defect state, etc., can improve the catalytic activity of 2D stacked hybrid monolayer nanomaterials. The majority of global research and development is focused on finding safer substitutes for petrochemical fuels, and this review summarizes recent advancements in the field of 2D monolayer nanomaterials in water splitting for industrial-scale green hydrogen production and fuel cell applications.

3.
Nanotechnology ; 35(15)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198734

RESUMO

It is crucial to deeply understand how the interlayer interaction acts on controlling the structural and electronic properties of shifted patterns of bilayer phosphorene. A comprehensive first-principles study on the bilayer phosphorene through relative translation along different directions has revealed that there is a direct correlation between the potential energy surface and the interlayer equilibrium distance. The shorter the interlayer distance, the lower the potential energy surface. The shifted patterns with the most stable state, the metastable state, and the transition state (with energy barrier of ∼1.3 meV/atom) were found associated with the AB, the Aδ, and the TS stacking configurations, respectively. The high energy barriers, on the other hand, are ∼9.3 meV/atom at the AA stacking configuration along the zigzag pathway, ∼5.3 meV/atom at the AB' stacking configuration along the armchair pathway, and ∼11.2 meV/atom at the AA' stacking configuration along the diagonal pathway, respectively. The character of electronic bandgap with respect to the shifting shows an anisotropic behavior (with the value of 0.69-1.22 eV). A transition from the indirect to the direct bandgap occurs under the shifting, implying a tunable bandgap by stacking engineering. Furthermore, the orbital hybridization at the interfacial region induces a redistribution of the net charge (∼0.002-0.011e) associated with the relative shifting between layers, leading to a strong polarization with stripe-like electron depletion near the lone pairs and accumulation in the middle of the interfacial region. It is expected that such interesting findings will provide a fundamental reference to deeply understand and analyze the complex local structural and electronic properties of twisted bilayer phosphorene and will make the shifted patterns of bilayer phosphorene promising for nanoelectronics as versatile shiftronics materials.

4.
Mikrochim Acta ; 191(8): 446, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963446

RESUMO

The stability of black phosphorene (BP) and its preparation and modification for developing and applying devices have become a hot topic in the interdisciplinary field. We propose ultrasound-electrochemistry co-assisted liquid-phase exfoliation as an eco-friendly one-step method to prepare gold-silver bimetallic nanoparticles (Au-AgNPs)-decorated BP nanozyme for smartphone-based portable sensing of 4-nitrophenol (4-NP) in different water sources. The structure, morphology, composition, and properties of Au-AgNPs-BP nanozyme are characterized by multiple instrumental analyses. Bimetallic salts are induced to efficiently occupy oxidative sites of BP to form highly stable Au-AgNPs-BP nanozyme and guarantee the integrity of the lamellar BP. The electrochemistry shortens the exfoliation time of the BP nanosheet and contributes to the loading efficiency of bimetallic nanoparticles on the BP nanosheet. Au-AgNPs-BP-modified screen-printed carbon electrode coupled with palm-sized smartphone-controlled wireless electrochemical analyzer as a portable wireless intelligent sensing platform was applied to the determination of 4-NP in a linear range of 0.6-10 µM with a limit of detection of 63 nM. It enables on-site determination of 4-NP content in lake water, river water, and irrigation ditch water. This work will provide a reference for an eco-friendly one-step preparation of bimetallic nanoparticle-decorated graphene-like materials as nanozymes and their smartphone-based portable sensing application outdoors.

5.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792034

RESUMO

In this paper, we report a titanium dioxide/polypyrrole/phosphorene (TiO2/PPy/phosphorene) nanocomposite as an active material for supercapacitor electrodes. Black phosphorus (BP) was fabricated by ball milling to induce a phase transition from red phosphorus, and urea-functionalized phosphorene (urea-FP) was obtained by urea-assisted ball milling of BP, followed by sonication. TiO2/PPy/phosphorene nanocomposites can be prepared via chemical oxidative polymerization, which has the advantage of mass production for a one-pot synthesis. The specific capacitance of the ternary nanocomposite was 502.6 F g-1, which was higher than those of the phosphorene/PPy (286.25 F g-1) and TiO2/PPy (150 F g-1) nanocomposites. The PPy fully wrapped around the urea-FP substrate provides an electron transport pathway, resulting in the enhanced electrical conductivity of phosphorene. Furthermore, the assistance of anatase TiO2 nanoparticles enhanced the structural stability and also improved the specific capacitance of the phosphorene. To the best of our knowledge, this is the first report on the potential of phosphorene hybridized with conducting polymers and metal oxides for practical supercapacitor applications.

6.
Small ; 19(52): e2303933, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37574266

RESUMO

Exploiting novel strategies for simultaneously harvesting ubiquitous, renewable, and easily accessible solar energy based on the photothermal effect, and efficiently storing the acquired thermal energy plays a vital role in revolutionizing the current fossil fuel-dominating energy structure. Developing black phosphorene-based phase-change composites with optimized photothermal conversion efficiencyand high latent heat is the most promising way to achieve efficient solar energy harvesting and rapid thermal energy storage. However, exfoliating high-quality black phosphorene nanosheets  remains challenging, Furthermore, an efficient strategy that can construct the aligned black phosphorene frameworks to maximize thermal conductivity enhancement is still lacking. Herein, high-quality black phosphorene nanosheets are prepared by an optimized exfoliating strategy. Meanwhile, by regulating the temperature gradient during freeze-casting, the framework consisting of shipshape aligned black phosphorene at long-range is successfully fabricated, improving the thermal conductivity of the poly(ethylene glycol) matrix up to 1.81 W m-1  K-1 at 20 vol% black phosphorene loading. The framework also endows the composite with excellent phase-change material encapsulation capacity and  high latent heat of 103.91 J g-1 . It is envisioned that the work advances the paradigm of contrasting frameworks with nanosheets toward controllable structure thermal enhancement of the composites.

7.
Small ; : e2302455, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199132

RESUMO

The optoelectronic signatures of free-standing few-atomic-layer black phosphorus nanoflakes are analyzed by in situ transmission electron microscopy (TEM). As compared to other 2D materials, the band gap of black phosphorus (BP) is related directly to multiple thicknesses and can be tuned by nanoflake thickness and strain. The photocurrent measurements with the TEM show a stable response to infrared light illumination and change of nanoflakes band gap with deformation while pressing them between two electrodes assembled in the microscope. The photocurrent spectra of an 8- and a 6-layer BP nanoflake samples are comparatively measured. Density functional theory (DFT) calculations are performed to identify the band structure changes of BP during deformations. The results should help to find the best pathways for BP smart band gap engineering via tuning the number of material atomic layers and programmed deformations to promote future optoelectronic applications.

8.
Small ; 19(41): e2302859, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291733

RESUMO

Violet phosphorus (VP), a recently confirmed layered elemental structure, is demonstrated to have unique photoelectric, mechanical, and photocatalytic properties. Element substitution plays a significant role in modifying the physical/chemical properties of semiconducting materials. Herein, antimony is adopted to substitute some phosphorus atoms in VP crystals to tune their physical and chemical properties, resulting in a significantly enhanced photocatalytic hydrogen evolution performance. The antimony-substituted violet phosphorus single crystal (VP-Sb) is synthesized and characterized by single crystal X-ray diffraction (CSD-2214937). The bandgap of VP-Sb has been found to be lowered from that of VP by UV/vis diffuse reflectance spectroscopy and density-functional theory (DFT) calculation, enhancing the optical absorption during photocatalytic reaction. The conducting band minimum of VP-Sb is found to be upshifted from that of VP from measurements and calculation, enhancing its hydrogen reduction activity. The valance band maximum is found to be lowered to weaken its oxidation activity. The edge of VP-Sb is calculated to have an excellent H* adsorption-desorption performance and superior H2 generation kinetics. The H2 evolution rate of VP-Sb is demonstrated to be significantly enhanced to be 1473 µmol h-1 g-1 , about five times of that of pristine VP (299 µmol h-1 g-1 ) under the same experimental conditions.

9.
Chemistry ; 29(59): e202301667, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37548585

RESUMO

Achieving high throughput protein sequencing at single molecule resolution remains a daunting challenge. Herein, relying on a solid-state 2D phosphorene nanoslit device, an extraordinary biosensor to rapidly identify the key signatures of all twenty amino acids using an interpretable machine learning (ML) model is reported. The XGBoost regression algorithm allows the determination of the transmission function of all twenty amino acids with high accuracy. The resultant ML and DFT studies reveal that it is possible to identify individual amino acids through transmission and current signals readouts with high sensitivity and selectivity. Moreover, we thoroughly compared our results to those from graphene nanoslit and found that the phosphorene nanoslit device can be an ideal candidate for protein sequencing up to a 20-fold increase in transmission sensitivity. The present study facilitates high throughput screening of all twenty amino acids and can be further extended to other biomolecules for disease diagnosis and therapeutic decision making.

10.
Chemistry ; 29(55): e202301232, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37435907

RESUMO

Black phosphorene quantum dots (BPQDs) are most commonly derived from high-cost black phosphorus, while previous syntheses from the low-cost red phosphorus (Pred ) allotrope are highly oxidised. Herein, we present an intrinsically scalable method to produce high quality BPQDs, by first ball-milling Pred to create nanocrystalline Pblack and subsequent reductive etching using lithium electride solvated in liquid ammonia. The resultant ~25 nm BPQDs are crystalline with low oxygen content, and spontaneously soluble as individualized monolayers in tertiary amide solvents, as directly imaged by liquid-phase transmission electron microscopy. This new method presents a scalable route to producing quantities of high quality BPQDs for academic and industrial applications.

11.
Chemphyschem ; 24(5): e202200791, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399544

RESUMO

We investigate the interface between carbon nitride (C3 N4 ) and phosphorene nanosheets (P-ene) by means of Density Functional Theory (DFT) calculations. C3 N4 /P-ene composites have been recently obtained experimentally showing excellent photoactivity. Our results indicate that the formation of the interface is a favorable process driven by Van der Waals forces. The thickness of P-ene nanosheets determines the band edges offsets and the charge carriers' separation. The system is predicted to pass from a nearly type-II to a type-I junction when the thickness of P-ene increases, and the conduction band offset is particularly sensitive. Last, we apply the Transfer Matrix Method to estimate the efficiency for charge carriers' migration as a function of the P-ene thickness.

12.
Nanotechnology ; 34(37)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37311437

RESUMO

We systematically investigate the thermoelectric (TE) properties of the Cr-doped blue phosphorene (blue-P) along the armchair and zigzag directions. First, we find the semiconducting band structure of the blue-P will become spin-polarized due to the Cr-doping, and can be seriously changed by the doping concentration. Then we show the Seebeck coefficient, the electronic conductance, the thermal conductance, and the figures of meritZTs are all dependent on the transport directions and doping concentration. However, two pairs of the peaks of the charge and spinZTs can be always observed with the low-height (high-height) pair on the side of the negative (positive) Fermi energy. In addition, at temperature 300 K the extrema of the charge (spin)ZTs of the blue-P along the two directions are kept to be larger than 22 (90) for the different doping concentrations and will be further enhanced at lower temperature. Therefore, we believe the Cr-doped blue-P should be a versatile high-performance TE material which may be used in the fields of the thermorelectrics and spin caloritronics.


Assuntos
Eletrônica , Temperatura
13.
Nanotechnology ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857278

RESUMO

Phosphorene, due to its remarkable properties such as self-passivation, stability, and anti-fouling, makes it a promising material for desalination membranes. Practically, these membranes acquire charges and affects the salt rejection and water flux. In this article, water desalination performance through positively charged (PC), negatively charged (NC), and charged but overall neutral (CN) single-layer nanoporous phosphorene (NPP) membrane of nanopore size ~ 41Å2 is investigated using pressure-driven molecular dynamics simulations. It is observed that the electrostatic interactions due to distribution of charge around the nanopore edges strongly affects the desalination performance rather than steric hindrance. Overall, with an equivalent magnitude of total applied charge, the water flux through CN membrane is more than PC and NC membranes. A membrane best suited for desalination performance among the charged NPP membranes is a CN membrane due to its high flux and adequate salt rejection, though it allows the passage of both ions. Comparatively, a PC or NC membrane has lower flux and allows the course of their counter ions respectively. To construe this observation salt ion density maps and molar concentration profiles are further examined. The degree of localization of counter ions around the nanopore edge increases with the increased total applied charge. While no such localization is observed for the CN membranes. PC and NC membranes provide more energetic barriers to co-ions due to strong coulombic repulsions and molecular layering of the adsorbed water, which hinder their transport. This study suggests the design of charged phosphorene membranes to maximize water transport while still maintaining the salt rejection potential.

14.
Mikrochim Acta ; 191(1): 52, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147136

RESUMO

Coconut cadang-cadang viroid (CCCVd) is an infectious single-stranded RNA (ssRNA) pathogen, which leads directly to the death of a large number of coconut palm trees and heavy economic loss to coconut farmers. Herein, a novel electrochemical impedance RNA genosensor is presented based on highly stable gold nanoparticles (AuNPs) decorated phosphorene (BP) nanohybrid with graphene (Gr) for highly sensitive, low-cost, and label-free detection of CCCVd. BP-AuNPs are environmentally friendly prepared by ultrasonic-assisted liquid-phase exfoliation of black phosphorus, accompanying direct reduction of chloroauric acid. Gr/BP-AuNPs are facilely prepared by the in situ growth of AuNPs onto the BP surface and its nanohybrid with Gr to improve environmental stability of BP. Gr/BP-AuNP-based RNA genosensor is fabricated by immobilizing the thiol-functionalized single-stranded DNA (ssDNA) oligonucleotide probe onto the surface of Gr/BP-AuNP-modified glassy carbon electrode via gold-thiol interactions, which served as an electrochemical genosensing platform for the label-free impedance detection of CCCVd by hybridization between the functionalized ssDNA probe and the complementary CCCVd ssRNA sequence in a wide linear range from 1.0 × 10-11 to 1.0 × 10-7 M with a low limit of detection of 2.8 × 10-12 M. This work supplies an experimental support and theoretical direction for the fabrication of RNA biosensors based on graphene-like materials and potential application for a specific diagnosis of plant RNA viral disease in Arecaceae planting industry.


Assuntos
Grafite , Nanopartículas Metálicas , Ouro , DNA de Cadeia Simples , Compostos de Sulfidrila
15.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834502

RESUMO

Two-dimensional black phosphorus (BP) has attracted great attention as a perspective material for various applications. The chemical functionalization of BP is an important pathway for the preparation of materials with improved stability and enhanced intrinsic electronic properties. Currently, most of the methods for BP functionalization with organic substrates require either the use of low-stable precursors of highly reactive intermediates or the use of difficult-to-manufacture and flammable BP intercalates. Herein we report a facile route for simultaneous electrochemical exfoliation and methylation of BP. Conducting the cathodic exfoliation of BP in the presence of iodomethane makes it possible to generate highly active methyl radicals, which readily react with the electrode's surface yielding the functionalized material. The covalent functionalization of BP nanosheets with the P-C bond formation has been proven by various microscopic and spectroscopic methods. The functionalization degree estimated by solid-state 31P NMR spectroscopy analysis reached 9.7%.


Assuntos
Comércio , Processamento de Proteína Pós-Traducional , Metilação , Eletrodos , Fósforo
16.
Molecules ; 28(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110804

RESUMO

Phosphorene, the 2D form of black phosphorus, has recently attracted interest for optoelectronic and tribological applications. However, its promising properties are affected by the strong tendency of the layers to oxidize in ambient conditions. A significant effort has been made to identify the role of oxygen and water in the oxidation process. In this work, we introduce a first-principles study of the phosphorene phase diagram and provide a quantitative estimate of the interaction of pristine and fully oxidized phosphorene layers with oxygen and water molecules. Specifically, we study oxidized layers with oxygen coverages of 25% and 50% that keep the typical anisotropic structure of the layers. We found that hydroxilated and hydrogenated phosphorene layers are both energetically unfavorable, leading to structural distortions. We also studied the water physisorption on both pristine and oxidized layers, finding that the adsorption energy gain doubled on the oxidized layers, whereas dissociative chemisorption was always energetically unfavorable. At the same time, further oxidation (i.e., the dissociative chemisorption of O2) was always favorable, even on oxidized layers. Ab initio molecular dynamics simulations of water intercalated between sliding phosphorene layers showed that even under harsh tribological conditions water dissociation was not activated, thus further strengthening the results obtained from our static calculations. Overall, our results provide a quantitative description of the interaction of phosphorene with chemical species that are commonly found in ambient conditions at different concentrations. The phase diagram that we introduced confirms the tendency of phosphorene layers to fully oxidize due to the presence of O2, resulting in a material with improved hydrophilicity, a piece of information that is relevant for the application of phosphorene, e.g., as a solid lubricant. At the same time, the structural deformations found for the H- and OH- terminated layers undermine their electrical, mechanical, and tribological anisotropic properties and, therefore, the usage of phosphorene.

17.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630403

RESUMO

Black phosphorene quantum dots (BPQDs) were prepared by ultrasonic-assisted liquid-phase exfoliation and centrifugation with morphologies proved by TEM results. Furthermore, an electrochemical enzyme sensor was prepared by co-modification of BPQDs with horseradish peroxidase (HRP) on the surface of a carbon ionic liquid electrode (CILE) for the first time. The direct electrochemical behavior of HRP was studied with a pair of well-shaped voltammetric peaks that appeared, indicating that the existence of BPQDs was beneficial to accelerate the electron transfer rate between HRP and the electrode surface. This was due to the excellent properties of BPQDs, such as small particle size, high interfacial reaction activity, fast conductivity, and good biocompatibility. The presence of BPQDs on the electrode surface provided a fast channel for direct electron transfer of HRP. Therefore, the constructed electrochemical HRP biosensor was firstly used to investigate the electrocatalytic behavior of trichloroacetic acid (TCA) and potassium bromate (KBrO3), and the wide linear detection ranges of TCA and KBrO3 were 4.0-600.0 mmol/L and 2.0-57.0 mmol/L, respectively. The modified electrode was applied to the actual samples detection with satisfactory results.


Assuntos
Pontos Quânticos , Carbono , Centrifugação , Eletrodos , Peroxidase do Rábano Silvestre
18.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513274

RESUMO

It is critical for gas sensors that sense greenhouse gas molecules to have both good sensitivity and selectivity for water molecules in the ambient environment. Here, we study the charge transfer, IV curves, and electric field tuning of vanadium-doped monolayer ϵ-phosphorene as a sensor for NO, NO2, and H2O gas molecules via first-principle and transport calculations. We find that the paramagnetic toxic molecules of NO and NO2 have a high adsorption energy on V-ϵ-phosphorene, which originates from a large amount of charge transfer driven by the hybridisation of the localised spin states of the host with the molecular frontier orbital. Using the non-equilibrium Green's function, we investigate the IV responses with respect to the adsorption of different molecules to study the performance of gas molecule sensors. Our IV curves show a larger amount of changes in resistance of the paramagnetic NO and NO2 than nonmagnetic H2O gas molecules, suggesting both sensitivity and selectivity. Moreover, our calculations show that an applied external electric field (gate voltage) can effectively tune the amount of charge transfer. More charge transfer makes the sensor more sensitive to the molecule, while less charge transfer can reduce the adsorption energy and remove the adsorbed molecules, allowing for the repeated use of the sensor.

19.
Angew Chem Int Ed Engl ; 62(19): e202302124, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864648

RESUMO

Electrocatalytic N2 reduction reaction (NRR) is recognized as a zero-carbon emission method for NH3 synthesis. However, to date, this technology still suffers from low yield and low selectivity associated with the catalyst. Herein, inspired by the activation of N2 by lithium metal, a highly reactive defective black phosphorene (D-BPene ) is proposed as a lithium-like catalyst for boosting electrochemical N2 activation. Correspondingly, we also report a strategy for producing environmentally stable D-BPene by simultaneously constructing defects and fluorination protection based on topochemical reactions. Reliable performance evaluations show that the fluorine-stabilized D-BPene can induce a high NH3 yield rate of ≈70 µg h-1 mgcat. -1 and a high Faradaic efficiency of ≈26 % at -0.5 V vs. RHE in an aqueous electrolyte. This work not only exemplifies the first stable preparation and practical application of D-BPene , but also brings a new design idea for NRR catalysts.

20.
Small ; 18(2): e2105130, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34862720

RESUMO

Edge termination plays a vital role in determining the properties of 2D materials. By performing compelling ab initio simulations, a lowest-energy U-edge [ZZ(U)] reconstruction is revealed in the bilayer phosphorene. Such reconstruction reduces 60% edge energy compared with the pristine one and occurs almost without an energy barrier, implying it should be the dominating edge in reality. The electronic band structure of phosphorene nanoribbon with such reconstruction resembles that of an intrinsic 2D layer, exhibiting nearly edgeless band characteristics. Although ZZ(U) changes the topology of phosphorene nanoribbons, simulated transmission electron microscope, scanning transmission electron microscope and scanning tunneling microscope images indicate it is very hard to be identified. One possible identified method is infrared/Raman analyses because the ZZ(U) edge alters vibrational modes dramatically. In addition, it also increases the thermal conductivity of PNR 1.4 and 2.3 times than the pristine and Klein edges.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa