Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Proteome Res ; 23(8): 3108-3123, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38648199

RESUMO

The expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.


Assuntos
Fósforo , Fotossíntese , Proteínas de Plantas , Proteômica , Zea mays , Fósforo/metabolismo , Zea mays/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Proteômica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Flavonoides/metabolismo , Proteoma/metabolismo
2.
BMC Plant Biol ; 24(1): 480, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816792

RESUMO

Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.


Assuntos
Epimedium , MicroRNAs , Fósforo , Transcriptoma , Fósforo/deficiência , Fósforo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Epimedium/genética , Epimedium/metabolismo , Epimedium/fisiologia , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339080

RESUMO

Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.


Assuntos
Fósforo , Nodulação , Fósforo/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Glycine max/genética , Fixação de Nitrogênio/genética , Simbiose , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Environ Manage ; 351: 119759, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091729

RESUMO

While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.


Assuntos
Capsicum , Sulfeto de Hidrogênio , Sulfetos , Sulfeto de Hidrogênio/farmacologia , Peróxido de Hidrogênio , Antioxidantes , Clorofila , Suplementos Nutricionais , Fosfatos , Plântula
5.
BMC Plant Biol ; 23(1): 68, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721096

RESUMO

BACKGROUND: Phosphorus (P) is an essential macronutrient required for plant metabolism and growth. Its acquisition by plants depends on the availability of dissolved P in the rhizosphere and on the characteristics of P uptake mechanisms such as root-system architecture (RSA). Compared to other crops, potato (Solanum tuberosum L.) has a relatively poor P acquisition efficiency. This is mainly due to its shallow and sparsely branched root system, resulting in a rather limited exploitable soil volume. Information about potato genotypes with RSA traits suitable to improve adaptation to nutrient scarcity is quite rare. Aim of this study is to assess phenotypic variation of RSA in a potato diversity set and its reactions to P deficiency. RESULTS: Only one out of 22 RSA-traits showed a significant increase under low-P conditions. This indicates an overall negative effect of P scarcity on potato root growth. Differences among genotypes, however, were statistically significant for 21 traits, revealing a high variability in potato RSA. Using a principal component analysis (PCA), we were able to classify genotypes into three groups with regard to their root-system size. Genotypes with both small and large root systems reacted to low-P conditions by in- or decreasing their relative root-system size to medium, whereas genotypes with an intermediate root system size showed little to no changes. CONCLUSIONS: We observed a huge variation in both the potato root system itself and its adaptation to P deficiency. This may enable the selection of potato genotypes with an improved root-zone exploitation. Eventually, these could be utilized to develop new cultivars adapted to low-P environments with better resource-use efficiencies.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Genótipo , Fenótipo , Aclimatação , Variação Biológica da População
6.
Planta ; 259(1): 29, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133691

RESUMO

MAIN CONCLUSION: Different lupin species exhibited varied biomass, P allocation, and physiological responses to P-deprivation. White and yellow lupins had higher carboxylate exudation rates, while blue lupin showed the highest phosphatase activity. White lupin (Lupinus albus) can produce specialized root structures, called cluster roots, which are adapted to low-phosphorus (P) soil. Blue lupin (L. angustifolius) and yellow lupin (L. luteus), which are two close relatives of white lupin, do not produce cluster roots. This study characterized plant responses to nutrient limitation by analyzing biomass accumulation and P distribution, absorption kinetics and root exudation in white, blue, and yellow lupins. Plants were grown in hydroponic culture with (64 µM NaH2PO4) or without P for 31 days. Under P limitation, more biomass was allocated to roots to improve P absorption. Furthermore, the relative growth rate of blue lupin showed the strongest inhibition. Under + P conditions, the plant total-P contents of blue lupin and yellow lupin were higher than that of white lupin. To elucidate the responses of lupins via the perspective of absorption kinetics and secretion analysis, blue and yellow lupins were confirmed to have stronger affinity and absorption capacity for orthophosphate after P-deprivation cultivation, whereas white lupin and yellow lupin had greater ability to secrete organic acids. The exudation of blue lupin had higher acid phosphatase activity. This study elucidated that blue lupin was more sensitive to P-scarcity stress and yellow had the greater tolerance of P-deficient condition than either of the other two lupin species. The three lupin species have evolved different adaptation strategies to cope with P deficiency.


Assuntos
Lupinus , Fósforo na Dieta , Fósforo , Fosfatos , Ácidos Carboxílicos , Raízes de Plantas
7.
New Phytol ; 239(5): 1651-1664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37322611

RESUMO

The continuous imbalance between nitrogen (N) and phosphorus (P) deposition is expected to shift many ecosystems from N- to P limitation. Extraradical hyphae of ectomycorrhizal (ECM) fungi play important roles in plant nutrient acquisition under nutrient deficiency. However, whether and how ECM hyphae enhance soil P availability to alleviate N-induced P deficiency remains unclear. We investigated the impacts of ECM hyphae on transformations among different soil P fractions and underlying mechanisms under N deposition in two ECM-dominated forests. Ectomycorrhizal hyphae enhanced soil P availability under N addition by stimulating mineralization of organic P (Po) and desorption and solubilization of secondary mineral P, as indicated by N-induced increase in positive hyphal effect on plant-available P pool and negative hyphal effects on Po and secondary mineral P pools. Moreover, ECM hyphae increased soil phosphatase activity and abundance of microbial genes associated with Po mineralization and inorganic P solubilization, while decreasing concentrations of Fe/Al oxides. Our results suggest that ECM hyphae can alleviate N-induced P deficiency in ECM-dominated forests by regulating interactions between microbial and abiotic factors involved in soil P transformations. This advances our understanding of plant acclimation strategies via mediating plant-mycorrhiza interactions to sustain forest production and functional stability under changing environments.


Assuntos
Micorrizas , Fósforo , Ecossistema , Hifas , Nitrogênio , Florestas , Micorrizas/fisiologia , Minerais , Plantas , Solo , Microbiologia do Solo
8.
New Phytol ; 239(3): 1140-1152, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37191044

RESUMO

Triphyophyllum peltatum, a rare tropical African liana, is unique in its facultative carnivory. The trigger for carnivory is yet unknown, mainly because the plant is difficult to propagate and cultivate. This study aimed at identifying the conditions that result in the formation of carnivorous leaves. In vitro shoots were subjected to abiotic stressors in general and deficiencies of the major nutrients nitrogen, potassium and phosphorus in particular, to trigger carnivorous leaves' development. Adventitious root formation was improved to allow verification of the trigger in glasshouse-grown plants. Among all the stressors tested, only under phosphorus deficiency, the formation of carnivorous leaves was observed. These glandular leaves fully resembled those found under natural growing conditions including the secretion of sticky liquid by mature capture organs. To generate plants for glasshouse experiments, a pulse of 55.4 µM α-naphthaleneacetic acid was essential to achieve 90% in vitro rooting. This plant material facilitated the confirmation of phosphorus starvation to be essential and sufficient for carnivory induction, also under ex vitro conditions. Having established the cultivation of T. peltatum and the induction of carnivory, future gene expression profiles from phosphorus starvation-induced leaves will provide important insight to the molecular mechanism of carnivory on demand.


Assuntos
Dioncophyllaceae , Fósforo , Carnivoridade , Plantas , Folhas de Planta
9.
J Exp Bot ; 74(6): 2005-2015, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36573619

RESUMO

Emerging evidence reveals that the three-dimensional (3D) chromatin architecture plays a key regulatory role in various biological processes of plants. However, information on the 3D chromatin architecture of the legume model plant Medicago truncatula and its potential roles in the regulation of response to mineral nutrient deficiency are very limited. Using high-resolution chromosome conformation capture sequencing, we identified the 3D genome structure of M. truncatula in terms of A/B compartments, topologically associated domains (TADs) and chromatin loops. The gene density, expressional level, and active histone modification were higher in A compartments than in B compartments. Moreover, we analysed the 3D chromatin architecture reorganization in response to phosphorus (P) deficiency. The intra-chromosomal cis-interaction proportion was increased by P deficiency, and a total of 748 A/B compartment switch regions were detected. In these regions, density changes in H3K4me3 and H3K27ac modifications were associated with expression of P deficiency-responsive genes involved in root system architecture and hormonal responses. Furthermore, these genes enhanced P uptake and mobilization by increasing root surface area and strengthening signal transduction under P deficiency. These findings advance our understanding of the potential roles of 3D chromatin architecture in responses of plants in general, and in particular in M. truncatula, to P deficiency.


Assuntos
Cromatina , Medicago truncatula , Cromatina/metabolismo , Fósforo/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo
10.
Exp Parasitol ; 246: 108464, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682720

RESUMO

This study aimed to evaluate histological, digestive and postabsorptive physiological parameters in Santa Ines lambs infected with Trichostrongylus colubriformis and fed different levels of phosphorus. Therefore, eighteen Santa Ines, castrated male, six-month old, healthy lambs (initial body weight 22.4 ± 2.7 kg) were distributed in one of four treatments arranged in a 2 × 2 split-plot arrangement: Sufficient dietary P level and uninfected (SPui; n = 4), Sufficient dietary P level and infected (SPi; n = 5), Deficient dietary P level and uninfected (DPui; n = 4), Deficient dietary P level and infected (DPi; n = 5). Infected lambs received, orally, a single pulse dose of 40.000 T. colubriformis infective larval stage (L3). Animals were fed Tifton 85 hay (Cynodon ssp.; 60%), and cassava meal and maize gluten meal (40%). Measurement of nutrient apparent digestibility and nitrogen metabolism were performed in individual metabolic stalls. To achieve the trial results, it was measured methane emissions in respiratory chambers, urine purine derivatives, ruminal short-chain fatty acids (SCFA), histological cuts of duodenal mucosal tissues and passage rates fluxes, analyzed by external (Yb, Cr, and Co) and internal (iNDF) markers. Statistical procedures were performed in R studio. The fixed main effects of treatment and the interactions were tested by ANOVA, and means compared by Duncan's test at 5% significance. Apparent digestibility was not affected by treatments, however, nitrogen retained decreased (P < 0.01) and urinary nitrogen losses increased (P < 0.01) in infected animals. Small intestine digesta content, empty segment weight, and length were higher in infected animals (P < 0.05). Passage rate was not majorly affected by infection or dietary P levels. Methane emissions, SCFA concentrations, and purine derivative excretion were also not affected by treatments. Regarding the histology, the vilosity weight (P < 0.05), and crypt depth (P < 0.01) decreased in infected animals. In conclusion, T. colubriformis infection can damage intestinal mucosa and affect nitrogen metabolism, but did not affect the digesta transit, and nutrient digestibility. The P dietary levels did not promote any modification in GIT physiological parameters tested in this study.


Assuntos
Doenças dos Ovinos , Tricostrongilose , Animais , Masculino , Ração Animal , Duodeno/metabolismo , Fezes , Metano , Nitrogênio/metabolismo , Ovinos , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/parasitologia , Tricostrongilose/veterinária , Tricostrongilose/metabolismo , Trichostrongylus/fisiologia , Absorção Intestinal , Fosfatos/administração & dosagem , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa